
PROBLEM SET 3

1. In Topological Methods in Algebraic Geometry, Hirzebuch winds up study-
ing a power series F (z) = F−1z

−1 +F0 +F1z+F2z
2 + · · · with the property

that, for every n, the coefficient of z−1 in F (z)n is 1. Use Lagrange inversion
to find out what F is.

2. Let an be the number of ways to divide a 2n-gon into quadrilaterals. For
example, a4 = 12.

Let A(x) =
∑

anx
n. Find an equation obeyed by A(x). Find a formula

for an. (You can do this with Lagrange inversion, but there are many other
ways.)

3. Let tn be the number of planar trees where, for every vertex, each child is
labeled as LEFT or RIGHT, but we are allowed to have an arbitrary number
of left and an arbitrary number of right vertices. Let T (x) =

∑
tnx

n. Find
a function W such that T (x) = xW (T (x)). Find a formula for tn.

4. Consider rooted trees where every vertex has at most 2 children, but the
trees are not planar, so we don’t keep track of the order of the children. Let
F (x) be the corresponding generating function. Show that

F (x) = x +
x

2

(
F (x)2 + F (x2)

)
.

(Harder) Work out the corresponding relation when a vertex may have ≤ 3
children, and we again don’t care about order. This example is important
in chemistry, where such trees occur as the configurations of carbon atoms
in alkane radicals.

1



2 PROBLEM SET 3

5. On a one way street with m parking spaces, m drivers drive through
looking for parking. The k-th driver starts looking when he reaches position
pk and then takes the next available spot. The sequence (p1, p2, . . . , pm) is
called a parking function if all the drivers successfully park. So, if m = 2,
then (1, 1), (1, 2) and (2, 1) are all parking sequences, but (2, 2) is not.

(a) For any sequence (p1, p2, . . . , pm) of numbers between 1 and m, let ck by
the number of times that k appears in the sequence (pi). Set (d1, . . . , dm+1) =
(0, cm, cm−1, . . . , c1). Show that (p1, . . . , pm) is a parking sequence if and
only if (d1, d2, . . . , dm+1) is a Lukasiewicz word. (Recall that this means
1 − d1, 2 − d1 − d2, . . . , (m + 1) − d1 − d2 − . . . − dm) are all nonnegative
and (m + 1) −

∑
di = 1.)

(b) Consider a Lukasiewicz word (d1, d2, . . . , dm+1). Show that there are
m!

(d1)!(d2)!···(dm+1)!
sequences (p1, . . . , pm) which correspond to it.

6. (continues ideas from Problem 5) Let Pm be the number of parking
sequences. Problem 5 shoes thatPm =

∑ m!
(d1)!(d2)!···(dm+1)!

, where the sum

is over Lukasiewicz words. As we learned in class,
∑ (m+1)!

(d1)!(d2)!···(dm+1)!
=

(m + 1)m, so Pm = (m + 1)m/(m + 1) = (m + 1)m−1. We will now provide
a direct proof that Pm = (m + 1)m−1.

(a) Imagine that we now have m cars parking on a circular road with m +
1 spots. Again, the k-th driver starts looking for parking in position pk,
and then drives around the ring until she finds parking. After all the cars
are parked, there will be one empty space. Show that (p1, p2, . . . , pm) is a
parking sequence if and only if that empty space is in position m + 1.

(b) Show that, of the (m+ 1)m possible ways for the m cars to try parking
on a circular road, precisely (m + 1)m−1 wind up leaving the empty space
in position m + 1.

Remark for computer scientists: We can think of the parking procedure
is attempting to insert m items into a hash table of size m. Of the mm

possible hashes, we have just shown that (m + 1)m−1 are inserted with
overflowing the table; that is to say, we avoid an overflow with probability
(1+1/m)m(m+1)−1 ≈ em−1. Of course, the question of practical interest is
to insert a number of entries that is much less than the size of the table; that
question can be addressed by more sophisticated versions of these methods.


