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Recall K =
⋃
m≥1 C((t1/m)). Let R =

⋃
m≥1 R((t1/m)) ⊂ K. Let R

be the sub-semifield of power series whose leading coefficient is

positive.

Suppose our variety X ⊂ (K×)n is defined by equations in R. We’ll

set

Trop+(X) = {w ∈ Qn : inw(X) ∩ (R>0)n 6= ∅}.

Trop+(X) is a subfan of TropX

y = x+ 1



I’m not sure this is the best definition. It would seem more elegant

to me to set Trop+(X) = v(X ∩Rn+). Danielle Alesandrini has

studied this. It is also a fan, but possibly a smaller one.

Example

X = {x2 − 2x+ 1 + t2 = 0} = {1 + it, 1− it}.

Then in0(X) = x2 − 2x+ 1 = (x− 1)2, so 0 is a positive point by

the definition on the previous slide, but not by the alternative here.

In particular, whether w ∈ Trop+(X) cannot be determined by

inwX with the proposed alternate definition, which is inconvenient

in many ways.

I am going to be focusing on examples (coming from cluster

algebras) where this distinction isn’t important. In particular, if

inwX is smooth, then the two definitions are equivalent at w.



Let X be a hypersurface with constant coefficients in R. Let F be

the defining equation and let ∆ be the Newton polytope. Suppose

that each edge of ∆ has no inner lattice points. Then Trop+(X)

consists of those walls of the normal fan which separate positive

and negative coefficients.
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If X has variable coefficients in K, then similarly Trop+(X) is dual

to those edges which separate coefficients in R+ and R−

−

+ −

+

1− x− y + txy

This is key to Viro’s patchworking method.



The great thing about positivity is that interacts so well with

parameterization.

Suppose that we have a rational function f/g ∈ R(x1, . . . , xn),

where both f and g have positive coefficients.

Let y1, . . . , yn ∈ R+. Then

v

(
f(y1, . . . , yn)

g(y1, . . . , yn)

)
is determined by v(y1), v(y2), . . . , v(yn).



The recipe:

• Replace + by min

• Replace × by + and / by −.

• Replace constants (members of R) by 0

Example f(x1, x2) = x1 + x2 + 1 becomes min(x1, x2, 0). If

v(x1) = v1 and v(x2) = v2, with x1 and x2 ∈ R+, then

v(x1 + x2 + 1) = min(v1, v2, 0).

No need to assume that f/g is in lowest terms, or that all

polynomials are fully expanded out.

If we have varying coefficients in R+, then replace the coefficient a

by v(a).



For example, let X be the variety

x1x3 = x2 + 1, x2x4 = x3 + 1, x3x5 = x4 + 1

x4x1 = x5 + 1, x5x2 = x1 + 1

in (K×)5. This is M0,5, and also is the cluster variety of type A2

with no frozen variables.

We can rewrite

x3 =
x2 + 1

x1
, x4 =

x1 + x2 + 1

x1x2
, x5 =

x1 + 1

x2
.

So we can parametrize

Trop+(X) = (x1, x2,min(x2, 0)− x1,min(x1, x2, 0)− (x1 + x2),

min(x1, 0)− x2)
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y−x

(x, y, min(x, 0)− y, min(x, y, 0)− x− y, min(y, 0)− x)

In general, if we have a parameterization φ : Rm+ → (X ∩ Rn+) given

by positive rational functions, then we get a piece-wise linear

parametrization Tropφ of Trop+(X) by Rm.

−→ R5



If the parametrization φ : Rm+ → (X ∩ Rn+) is by positive Laurent

polynomials, then the components of Tropφ are concave piecewise

linear functions.

Let ∆i be the Newton polytope of φi. Then Tropφi is linear on the

regions of the normal fan of ∆i and Tropφ is linear on the regions

of the normal fan to the Minkowski sum of all the ∆i.

⊕ ⊕ =



Let X have dimension d, and let w be in the interior of a

d-dimensional face σ of TropX. Let H be the d-dimensional linear

space spanned by 〈u− w〉u∈σ.

Then inwX is invariant under the torus exp(H). Let

Y := inw/ exp(H). By dimension counting, Y has dimension 0.

The weight w(σ) of σ is the length of the scheme Y . These are the

weights in Mikhalkin’s talk.

Intuitively, if we have an amoeba which is “near TropX” then the

fiber of the log | | map will be w(σ) copies of (S1)d.



Now suppose that w lies in a face τ of dimension d− 1; let H be

the corresponding d− 1 plane. So inwX = exp(H)× Y where Y

has dimension 1.

Remember that the neighborhood of w in TropX looks like

Trop inwX. In this case, Trop inwX = H × TropY . To understand

what tropical varieties look like near codimension 1 faces, we just

need to understand what TropY looks like for Y a constant

coefficient curve.



If Y is a planar curve defined by a degree d polynomial F with the

standard Newton polytope, then TropY looks like a tropical line,

with some multiplicities. What are the multiplicities?

Recall that inwF is the polynomial gotten by looking at one side of

the triangle. It has degree d. The corresponding scheme is d points

(possibly with multiplicity). So the weight of each ray is d.



More generally, if Y is any curve with a map

(φ1, . . . , φn) : Y → (C∗)n, then Tropφ(Y ) has a ray for each

puncture of Y . Letting z be a local coordinate on Y around a

puncture, the direction of that ray is

(ord(φ1(z)), ord(φ2(z)), . . . , ord(φn(z)) where ord is the order of

zero or pole.

The balancing condition says∑
z

(ord(φ1(z)), ord(φ2(z)), . . . , ord(φn(z)) = 0

The balancing condition expresses that a meromorphic function on

a compact curve has equally many zeroes and poles!


