Lecture I: Introduction to Tropical Geometry David Speyer

The field of Puiseux series

 $\mathbb{C}[[t]]$ is the ring of formal power series $a_0 + a_1t + \cdots$ and $\mathbb{C}((t))$ is the field of formal Laurent series: $a_{-N}t^{-N} + a_{-N+1}t^{-N+1} + \cdots$.

$$\mathcal{K} = \bigcup_{n \ge 1} \mathbb{C}((t^{1/n})), \quad \mathcal{R} = \bigcup_{n \ge 1} \mathbb{C}[[t]].$$
$$v : \mathcal{K}^{\times} \to \mathbb{Q}, \ v\left(\sum a_i t^{i/N}\right) = \min\left(i/n : a_i \ne 0\right).$$

We should think of \mathcal{R} as functions of t in some small neighborhood $[0, \epsilon)$ and \mathcal{K} as functions on $[0, \epsilon)$ with some pole.

If the relevant sums converge, then

$$v(f) = \lim_{t \to 0^+} \frac{\log f(t)}{\log t}.$$

 ${\mathcal K}$ is conveniently algebraically closed.

For X in $(\mathcal{K}^{\times})^n$, set Trop X to be $v(X) \subseteq \mathbb{Q}^n$. You'll also see $\overline{v(X)} \subseteq \mathbb{R}^n$. Each of these creates some notational awkwardness at the beginning, but we will soon have theorems telling us not to worry about it.

Everyone's first example: x + y + 1 = 0

If x(t) + y(t) + 1 = 0, then either

- $v(x) \ge 0$ and v(y) = 0.
- $v(y) \ge 0$ and v(x) = 0.
- $v(x) = v(y) \le 0.$

This example has "constant coefficients", meaning that there are no t's in the equation x + y + 1 = 0. We'll stick to constant coefficient examples for a while.

We'll talk about

- Hypersurfaces with constant coefficients
- The "initial variety" construction
- General varieties with constant coefficients
- Nonconstant coefficients

Let $F \in \mathbb{C}[x_1^{\pm}, x_2^{\pm}, \dots, x_n^{\pm}]$ and let X be the hypersurface F = 0. Let $\Delta(F)$ be the Newton polytope

 $\Delta(F) = \operatorname{Hull}(a \in \mathbb{Z}^n : x^a \text{ has nonzero coefficient in } F) \subset \mathbb{R}^n$

For any $w \in \mathbb{R}^n$, the function $\langle w, \rangle$ is minimized on a face of $\Delta(F)$. Divide \mathbb{R}^n up into cones according to which face of $\Delta(F)$ this minimum occurs on. This is the normal fan to $\Delta(F)$.

Theorem: Trop X is the union of the codimension one faces of the normal fan.

Trop X is a bunch of rational polyhedral cones. This is why we don't care much about the difference between \mathbb{Q} and \mathbb{R} .

Is there a geometric meaning to this normal fan construction? Yes! $F = \sum F_a x^a$ continues to have constant coefficients. Consider $w \in \mathbb{Q}^n$ and let Γ be the face of $\Delta(F)$ where $\langle w, \rangle$ is minimized. Let $in_w F$ be $\sum_{a \in \Gamma} F_a x^a$.

Let $w = (w_1, \ldots, w_n) \in \mathbb{Q}^n$. Let $\operatorname{in}_w X$ be the hypersurface cut out by $\operatorname{in}_w X$. There is a point of X of the form $(a_1 t^{w_1} + \cdots, a_2 t^{w_2} + \cdots, \ldots, a_n t^{w_n} + \cdots)$ if and only if $(a_1, \ldots, a_n) \in \operatorname{in}_w(X)$.

In particular, this explains why Trop X is the w for which $in_w F$ is not a monomial.

What happens when X is not a hypersurface?

$$\operatorname{Trop} X = \bigcap_{F|_X=0} \operatorname{Trop} \{F=0\}$$

Moreover, there is a finite set of polynomial F_1, F_2, \ldots, F_r such that

$$\operatorname{Trop} X = \operatorname{Trop} \{F_1 = 0\} \cap \operatorname{Trop} \{F_2 = 0\} \cap \dots \cap \operatorname{Trop} \{F_r = 0\}$$

Therefore, Trop X is a union of finitely many rational cones. (Rational means of the form $\{w : \langle w, a_1 \rangle, \langle w, a_2 \rangle, \ldots, \langle w, a_r \rangle \ge 0\}$ for a_i vectors in \mathbb{Z}^n .) This is why we don't have to worry much about the difference between \mathbb{Q} and \mathbb{R} . The variety $\operatorname{in}_w X$ is cut out by $\operatorname{in}_w F$, for F in I. Again, there is a point of X of the form $(a_1t^{w_1} + \cdots, a_2t^{w_2} + \cdots, \ldots, a_nt^{w_n} + \cdots)$ if and only if $(a_1, \ldots, a_n) \in \operatorname{in}_w(X)$. And we can choose the finite generating set F_1, F_2, \ldots, F_r on the previous slide so that $\operatorname{in}_w F_1$, $\operatorname{in}_w F_2, \ldots, \operatorname{in}_w F_r$ cut out $\operatorname{in}_w(X)$ for all w.

We have $\dim X = \dim \operatorname{Trop} X$.

If X is connected in codimension 1, so is $\operatorname{Trop} X$.

Near a point $w \in \operatorname{Trop} X$, $\operatorname{Trop} X$ looks like a translate of $\operatorname{Trop} \operatorname{in}_w X$.

What about nonconstant coefficients? I don't expect to use these in my lectures, but I certainly expect professors Mikhalkin and Gross will.

So, what does $\operatorname{Trop}(xy + x + y + t)$ look like? It is the union of the following possibilities:

- $v(y) = 0, v(x) \le 0.$
- $v(x) = 0, v(y) \le 0.$
- $0 \le v(x) = v(y) \le 1.$
- $v(y) = 1, v(x) \ge 1.$
- $v(x) = 1, v(y) \ge 1.$

Let $F = \sum F_a x^a$ be a polynomial in $\mathcal{K}[x_1^{\pm}, \ldots, x_n^{\pm}]$, where *a* ranges over some finite subset *A* of \mathbb{Z}^n . Let $w \in \mathbb{Q}^n$.

Let

$$u = \min_{a \in A} v(F_a) + \langle a, w \rangle.$$

Let $F_a = g_a t^{u - \langle a, w \rangle}$ + higher order terms, so $g_a \neq 0$ if and only if the minimum defining u is achieved at a. Set

$$\mathrm{in}_w F = \sum g_a x^a$$

and

$$\mathrm{in}_w X = \{\mathrm{in}_w F = 0\}.$$

There is a point of X of the form $(a_1t^{w_1} + \cdots, a_2t^{w_2} + \cdots, \ldots, a_nt^{w_n} + \cdots)$ if and only if $(a_1, \ldots, a_n) \in in_w(X)$. So $w \in \text{Trop } X$ if and only if $in_w F$ is not a monomial. Combinatorially, this involves working with a convex subdivision of the Newton polytope of F.

For nonhypersurfaces, let $I \subset \mathcal{K}[x_1^{\pm}, \dots, x_n^{\pm}]$ be the ideal of X. Define $\operatorname{in}_w X$ to be $\{x : (\operatorname{in}_w F)(x)\} = 0$, for $F \in I$. Again, we can find a finite subset G of I such that $\operatorname{in}_w X$ is generated by $(\operatorname{in}_w F)_{F \in G}$ for all w. There is a point of X of the form $(a_1 t^{w_1} + \cdots, a_2 t^{w_2} + \cdots, \dots, a_n t^{w_n} + \cdots)$ if and only if

 $(a_1, \ldots, a_n) \in in_w(X)$. So $w \in \text{Trop } X$ if and only if $in_w F$ is not a monomial.

Again, Trop X is a finite rational polyhedral complex, of dimension dim X. One can recover the degree of X, and limited information about the cohomology of X, from Trop X.