Lecture I: Introduction to Tropical Geometry
David Speyer

The field of Puiseux series
$\mathbb{C}[[t]]$ is the ring of formal power series $a_{0}+a_{1} t+\cdots$ and $\mathbb{C}((t))$ is the field of formal Laurent series: $a_{-N} t^{-N}+a_{-N+1} t^{-N+1}+\cdots$.

$$
\begin{gathered}
\mathcal{K}=\bigcup_{n \geq 1} \mathbb{C}\left(\left(t^{1 / n}\right)\right), \quad \mathcal{R}=\bigcup_{n \geq 1} \mathbb{C}[[t]] . \\
v: \mathcal{K}^{\times} \rightarrow \mathbb{Q}, v\left(\sum a_{i} t^{i / N}\right)=\min \left(i / n: a_{i} \neq 0\right) .
\end{gathered}
$$

We should think of \mathcal{R} as functions of t in some small neighborhood $[0, \epsilon)$ and \mathcal{K} as functions on $[0, \epsilon)$ with some pole.

If the relevant sums converge, then

$$
v(f)=\lim _{t \rightarrow 0^{+}} \frac{\log f(t)}{\log t}
$$

\mathcal{K} is conveniently algebraically closed.

For X in $\left(\mathcal{K}^{\times}\right)^{n}$, set Trop X to be $v(X) \subseteq \mathbb{Q}^{n}$. You'll also see $\overline{v(X)} \subseteq \mathbb{R}^{n}$. Each of these creates some notational awkwardness at the beginning, but we will soon have theorems telling us not to worry about it.

Everyone's first example: $x+y+1=0$

If $x(t)+y(t)+1=0$, then either

- $v(x) \geq 0$ and $v(y)=0$.
- $v(y) \geq 0$ and $v(x)=0$.
- $v(x)=v(y) \leq 0$.

This example has "constant coefficients", meaning that there are no t's in the equation $x+y+1=0$. We'll stick to constant coefficient examples for a while.

We'll talk about

- Hypersurfaces with constant coefficients
- The "initial variety" construction
- General varieties with constant coefficients
- Nonconstant coefficients

$$
\operatorname{Trop} X=\lim _{t \rightarrow 0^{+}} \frac{\log |X|}{\log t}
$$

$\log t=-2$

$\log t=-5 \quad \log t=-10$
$t=0$

Let $F \in \mathbb{C}\left[x_{1}^{ \pm}, x_{2}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$and let X be the hypersurface $F=0$.
Let $\Delta(F)$ be the Newton polytope

$$
\Delta(F)=\operatorname{Hull}\left(a \in \mathbb{Z}^{n}: x^{a} \text { has nonzero coefficient in } F\right) \subset \mathbb{R}^{n}
$$

For any $w \in \mathbb{R}^{n}$, the function $\langle w$,$\rangle is minimized on a face of \Delta(F)$. Divide \mathbb{R}^{n} up into cones according to which face of $\Delta(F)$ this minimum occurs on. This is the normal fan to $\Delta(F)$.

Theorem: $\operatorname{Trop} X$ is the union of the codimension one faces of the normal fan.
$\operatorname{Trop} X$ is a bunch of rational polyhedral cones. This is why we don't care much about the difference between \mathbb{Q} and \mathbb{R}.

Is there a geometric meaning to this normal fan construction? Yes! $F=\sum F_{a} x^{a}$ continues to have constant coefficients. Consider $w \in \mathbb{Q}^{n}$ and let Γ be the face of $\Delta(F)$ where $\langle w$,$\rangle is minimized.$
Let $\operatorname{in}_{w} F$ be $\sum_{a \in \Gamma} F_{a} x^{a}$.

Let $w=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{Q}^{n}$. Let $\operatorname{in}_{w} X$ be the hypersurface cut out by $\mathrm{in}_{w} X$. There is a point of X of the form $\left(a_{1} t^{w_{1}}+\cdots, a_{2} t^{w_{2}}+\cdots, \ldots, a_{n} t^{w_{n}}+\cdots\right)$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{in}_{w}(X)$.

In particular, this explains why $\operatorname{Trop} X$ is the w for which $\operatorname{in}_{w} F$ is not a monomial.

What happens when X is not a hypersurface?

$$
\operatorname{Trop} X=\bigcap_{\left.F\right|_{X}=0} \operatorname{Trop}\{F=0\}
$$

Moreover, there is a finite set of polynomial $F_{1}, F_{2}, \ldots, F_{r}$ such that

$$
\operatorname{Trop} X=\operatorname{Trop}\left\{F_{1}=0\right\} \cap \operatorname{Trop}\left\{F_{2}=0\right\} \cap \cdots \cap \operatorname{Trop}\left\{F_{r}=0\right\}
$$

Therefore, $\operatorname{Trop} X$ is a union of finitely many rational cones. (Rational means of the form $\left\{w:\left\langle w, a_{1}\right\rangle,\left\langle w, a_{2}\right\rangle, \ldots,\left\langle w, a_{r}\right\rangle \geq 0\right\}$ for a_{i} vectors in \mathbb{Z}^{n}.) This is why we don't have to worry much about the difference between \mathbb{Q} and \mathbb{R}.

The variety $\operatorname{in}_{w} X$ is cut out by $\operatorname{in}_{w} F$, for F in I. Again, there is a point of X of the form $\left(a_{1} t^{w_{1}}+\cdots, a_{2} t^{w_{2}}+\cdots, \ldots, a_{n} t^{w_{n}}+\cdots\right)$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{in}_{w}(X)$. And we can choose the finite generating set $F_{1}, F_{2}, \ldots, F_{r}$ on the previous slide so that $\operatorname{in}_{w} F_{1}$, $\operatorname{in}_{w} F_{2}, \ldots, \operatorname{in}_{w} F_{r}$ cut out $\operatorname{in}_{w}(X)$ for all w.

We have $\operatorname{dim} X=\operatorname{dim} \operatorname{Trop} X$.
If X is connected in codimension 1 , so is Trop X.
Near a point $w \in \operatorname{Trop} X, \operatorname{Trop} X$ looks like a translate of $\operatorname{Trop~in}_{w} X$.

What about nonconstant coefficients? I don't expect to use these in my lectures, but I certainly expect professors Mikhalkin and Gross will.

So, what does $\operatorname{Trop}(x y+x+y+t)$ look like? It is the union of the following possibilities:

- $v(y)=0, v(x) \leq 0$.
- $v(x)=0, v(y) \leq 0$.
- $0 \leq v(x)=v(y) \leq 1$.
- $v(y)=1, v(x) \geq 1$.
- $v(x)=1, v(y) \geq 1$.

Once again, we can see this as $\lim _{t \rightarrow 0^{+}} \frac{\log |X(t)|}{\log t}$.

$$
t=0.5
$$

$t=0.1$

$t=0.01$
$t=0$

Let $F=\sum F_{a} x^{a}$ be a polynomial in $\mathcal{K}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$, where a ranges over some finite subset A of \mathbb{Z}^{n}. Let $w \in \mathbb{Q}^{n}$.

Let

$$
u=\min _{a \in A} v\left(F_{a}\right)+\langle a, w\rangle .
$$

Let $F_{a}=g_{a} t^{u-\langle a, w\rangle}+$ higher order terms, so $g_{a} \neq 0$ if and only if the minimum defining u is achieved at a. Set

$$
\operatorname{in}_{w} F=\sum g_{a} x^{a}
$$

and

$$
\mathrm{in}_{w} X=\left\{\operatorname{in}_{w} F=0\right\}
$$

There is a point of X of the form $\left(a_{1} t^{w_{1}}+\cdots, a_{2} t^{w_{2}}+\cdots, \ldots, a_{n} t^{w_{n}}+\cdots\right)$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{in}_{w}(X)$. So $w \in \operatorname{Trop} X$ if and only if $\mathrm{in}_{w} F$ is not a monomial.

Combinatorially, this involves working with a convex subdivision of the Newton polytope of F.

For nonhypersurfaces, let $I \subset \mathcal{K}\left[x_{1}^{ \pm}, \ldots, x_{n}^{ \pm}\right]$be the ideal of X.
Define $\operatorname{in}_{w} X$ to be $\left\{x:\left(\operatorname{in}_{w} F\right)(x)\right\}=0$, for $F \in I$. Again, we can find a finite subset G of I such that $\mathrm{in}_{w} X$ is generated by $\left(\operatorname{in}_{w} F\right)_{F \in G}$ for all w.

There is a point of X of the form
$\left(a_{1} t^{w_{1}}+\cdots, a_{2} t^{w_{2}}+\cdots, \ldots, a_{n} t^{w_{n}}+\cdots\right)$ if and only if $\left(a_{1}, \ldots, a_{n}\right) \in \operatorname{in}_{w}(X)$. So $w \in \operatorname{Trop} X$ if and only if $\operatorname{in}_{w} F$ is not a monomial.

Again, $\operatorname{Trop} X$ is a finite rational polyhedral complex, of dimension $\operatorname{dim} X$. One can recover the degree of X, and limited information about the cohomology of X, from Trop X.

