Statistical prediction of hand-load carrying strategy and load level from wearable inertial sensor data

Sol Lim, Clive D’Souza, Ph.D.
Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI

Objective

To develop and validate a statistical prediction algorithm that uses body-worn inertial sensor data for classifying load carrying strategy and load level in workers.

Motivation

- Work tasks such as carrying heavy hand-loads often and over long durations are known risk factors for low back disorders in workers.
- Work-related overexertion events, dominated by low back disorders and pain, cost the US $13.8 billion each year [1].
- Measuring workers exposures to carrying is an important step towards managing and reducing the prevalence of low back disorders.

Methods

1. Instrumentation

 Inertial sensor (APDM Inc.)
 Sampling freq.: 80 Hz
 R & L Thigh
 R & L Shank

2. Collected data from 10 right-handed males in simulated carrying tasks

3. Algorithmically detect gait events from inertial sensor data [2]

4. Compute predictor variables = 24 Gait parameters for each cycle

5. Implemented Random Forest [3]

6. Predict Carrying Strategy [stage 1]

 2H Side carry

7. Predict Load Level [stage 2]

 2.36 kg
 50% Max Load
 75% Max Load

 75% Max Load

Sample gait trajectory

Model Performance

Based on 10-fold holdout cross-validation repeated 20 times

<table>
<thead>
<tr>
<th>Actual strategy</th>
<th>Predicted strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref 1H, R, 1H, L 2H side 2H Ant</td>
<td>1H, R, 1H, L 2H side 2H Ant</td>
</tr>
<tr>
<td>2.36 kg</td>
<td>2.36 kg</td>
</tr>
<tr>
<td>50% Max Load</td>
<td>50% Max Load</td>
</tr>
<tr>
<td>75% Max Load</td>
<td>75% Max Load</td>
</tr>
</tbody>
</table>

Model Interpretation

Top 5 important variables for carrying strategy (top) & loads (bottom)

- Torso-pelvis phase angle, coronal plane
- Coronal ROM at T6
- Pelvis flexion
- Knee flexion ROM
- Torsa-pelvis phase angle, transverse plane

Conclusions

- A two-stage random forest algorithm correctly classified the carrying strategy and load level in 389 out of 478 (81.3%) gait cycles
- Wearable sensor data combined with statistical prediction demonstrate strong potential for measuring workers exposures to physically demanding tasks over time.
- Our goal is to develop low-cost personalized tools for assessing physical workload and injury risk in workers engaged in physical labor.

References

This study was supported by NIDILRR (Grant # 90IF0094-01-00).