Class \#3

- Welcome back!
- Daily Math Workouts
- Where have we been and where are we going?
- What does it mean to prove something?
- View video: What do elementary students think about proof?
- Exercise in proving that a mathematical statement is true
- Wrap-up, announcements \& assignments

Daily Math Workouts

- DMWs are an important part of this class
- Practice what we've worked on
- "Limber up" for future work
- Knowing math for yourself
- Knowing math for teaching

What Have We Covered So Far?

- Choosing and using mathematical definitions
- Defined specific terms: e.g., factor, square number, prime number, even number, integers
- Criteria of precision and usability
- Evaluating and writing definitions
- Looking for patterns
- Giving mathematical explanations
- Seeing the need for explanation, including explaining things you already know
- Beginning to develop skills at giving explanations

What Have We Covered So Far?

- Knowing math as a teacher
- Analyzing student errors
- Appraising students' work and solution methods
- Sizing up the mathematics in a textbook lesson
- Learning to watch video -- paying close attention to the mathematics, the students' mathematical ideas, and the mathematical moves of the teacher

Where We're Headed (before the midterm)

- Mathematical proof
- Divisibility rules
- Place value
- Meanings of operations
- Giving and evaluating mathematical explanations
- Evaluating and selecting appropriate representations

Launching Our Work on Proof

Context for video:

- Third-graders
- Multi-cultural and multi-lingual class
- Working on proving statements with even and odd numbers

千Thursday, January 18

Meeting with fourth grade class:
Even and odd numbers

Friday, January 19

Debriefing the meeting
(Return to conjectures about even and odd numbers
Odd + odd = even
Even + even = even
Odd + even = odd
Shea brings up idea: 6 could be even or odd
Class attempts to refute, using three different definitions of even numbers: alternating (even, odd, even, odd. . .), fair share (2 k or $\mathrm{k}+$ k), pairing by twos (k2 or $2+2+\ldots+2+2$)

Lin generalizes Shea's claim in an effort to refute it:
"What about 10? Why don't you call 10 an even and an odd number?"
Ogechi develops clearer expression of definition of odd numbers
("numbers with a 1 in the middle $2+2+2+\ldots+1+\ldots+2+2+2$)
Rania observes pattern: 14, 18, 22, $26 \ldots$
Teacher labels the generalized class of even numbers "Shea Numbers"; class defines as " even numbers that have an odd number of groups of twos"

Definitions of even and odd number are reconciled and made more precise: k2 (even) and k2 +1 (odd)

Friday, January 26
Jillian and Shekira argue that it is not possible to prove
Bernadette's conjecture: An odd number plus an odd number equals an even number.
Tuesday, January 30
Bernadette offers a proof of the conjecture.

Viewing Focus

- What do these students seem to know or think about proof?
- What does the teacher have to be sensitive to in terms of proof?

Exploring What it Means to Show that Something is True in Mathematics

Can you prove that:

An odd number plus an odd number equals an even number.

Have you shown that this would be true for all odd numbers?

Wrap Up

- Individual assignment (due Wednesday July 20)
- Posted today by 5pm
- Wednesday's class at Plymouth library 12:453:35
- We will be collecting notebooks on Wednesday
- Don't forget Study Hall on Tuesday, from 46pm in 2400 conference room

