As you come in... Please finish making your grid rectangle chart from yesterday and hang it up on the wall.

Class \#2

- Questions and comments about syllabus/course
- Discuss grid rectangle problem
- View videotape: Practice learning to hear students' mathematics
- Work on definitions of even and odd numbers
- Exercise in proving a statement is mathematically true; what does it mean to "prove" something in mathematics (and in other subjects)?
- Wrap up \& assignments

Comments about Comments

- From yesterday...
- Overall, positive comments
- Enjoyed interactions with classmates
- Some anxiety --- about math, our expectations, working together
- Intrigued by thinking about math in a different way -importance of listening, the focus on "why", exploring alternative methods, relearning math you thought you knew
- Appreciated connections to teaching
- Other questions/comments about syllabus/course?

The Grid Rectangle Problem

For numbers of tiles from I - 36, build all the grid rectangles you can.
How do you know you have all of them?
What patterns do you notice?

Discuss the Grid Rectangle Problem

- Choose one number of tiles and explain how you know you have all of the grid rectangles for that number.
- Share one of your patterns with your partner. Describe the pattern and try to explain why it occurs.

Partner: Why are you convinced?

Viewing Mathematics Teaching

- Context
- Third graders
- Multi-cultural and multi-lingual class
- Working on odd and even numbers, January

Timeline of Work on Even and Odd Numbers

Starting point: Recognize and correctly label small cases

Ending point: Define even/odd and use definitions to reason: Claims and critiques

Thursday, January 18

Meeting with fourth grade class:
Even and odd numbers

Friday, January 19

Debriefing the meeting
(Return to conjectures about even and odd numbers
Odd + odd = even
Even + even = even
Odd + even = odd
Shea brings up idea: 6 could be even or odd
Class attempts to refute, using three different definitions of even numbers: alternating (even, odd, even, odd. . .), fair share (2 k or $\mathrm{k}+$ k), pairing by twos (k2 or $2+2+\ldots+2+2$)

Lin generalizes Shea's claim in an effort to refute it:
"What about 10? Why don't you call 10 an even and an odd number?"

Ogechi develops clearer expression of definition of odd numbers
("numbers with a 1 in the middle $2+2+2+\ldots+1+\ldots+2+2+2$)
Rania observes pattern: 14, 18, 22, 26 . . . (period four)
Teacher labels the generalized class of even numbers "Shea Numbers"; class defines as "even numbers that have an odd number of groups of twos"

Definitions of even and odd number are reconciled and made more precise: k2 (even) and k2 +1 (odd)

Friday, January 26
Jillian and Shekira argue that it is not possible to prove Bernadette's conjecture: An odd number plus an odd number equals an even number.

Tuesday, January 30

Bernadette offers a proof of the conjecture.

Viewing Focus

What do students in this class understand about what an even or an odd number is?

Discuss Video

- What do students in this class understand about what an even or an odd number is?
- What definitions do they have for "even number"?
- What other evidence do you see about their knowledge of even and odd numbers?

What makes a "good" definition?

- Mathematically precise - correctly identifies the kind of object, process, property
- Usable by user community - based on already-defined and understood term

Examine Textbook Definitions for
 Even Number

I. An even number is a number of the form $2 k$, where k is an integer.
2. An even number is a natural number that is divisible by 2 .
3. An even number is any multiple of 2 .
4. An even number is a number that has $0,2,4,6$, or 8 in the ones place.

What is a mathematically precise and usable definition of "even number"
 for third graders?

Why Work on Mathematical Definitions?

- Brings us in a better position to
- judge the appropriateness and accuracy of the definitions presented in curriculum materials;
- make sense of the different definitions used by children and make decisions about their mathematical accuracy; and
- help children develop, revise, and refine their own definitions.
- Helps us
- deepen our understanding of mathematical ideas and concepts as we connect them together; and
- develop a sensitivity in using mathematical language in a precise way.

Assignments

- Complete survey \& comment on syllabus (by Sunday)
- Daily Math Workout: Do mathematics "workouts" every day, alone or with others
- Write to us by Saturday, July 9, to tell us how your workouts are going and any help you need
- Partner assignment (due Monday, July I8)
- Assigned partners; joint write-up
- Details on website by Friday
- Please leave your notebooks here - we'll bring them to your class this afternoon

Study Hall

- Once per week in the conference room in Suite 2400
- Open to both ELMAC cohorts
- Possible days \& times:
- Tuesdays, 4:00-6:00 pm
- Wednesdays, 4:00-6:00 pm
- Thursdays, 4:00-6:00 pm

Comment Cards

- What study hall day would you prefer?
- Tuesdays, Wednesdays, or Thursdays, 4:00-6:00 pm
- Any thoughts about the first week...
- Insights
- Lingering questions or concerns
- Other feedback

Please leave your notebooks!

