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1. Introduction

Vector autoregressions (VARs) are useful as a concise specification
of the dynamics of an economic system. In some applications, however,
this usefulness is limited without a simple method for calculating
expectations involving the system. For example, iterative methods for
solving a Bellman equation with a VAR specification for the state
transitions require computing the expected future values of the states.
The implied integration can quickly hinder the solution process.

In this general context, Tauchen (1986) proposes a tractable
method for approximating a VAR using a Markov chain over a finite
grid. The resulting probabilities allow for simple computation of
expectations without integration. The paper makes use of trans-
formed VARs under the assumption of a diagonal covariance structure
in the reduced-form error term. This permits the integration of well
known univariate distributions.

In this paper, we show that one can treat the problem more
conveniently. While other generalizations of Markov approximation
techniques have been introduced, these are sometimes set within a
much extended environment, such as the treatment of non-linear
models with quadrature methods in Tauchen and Hussey (1991).
Instead, we focus on simple techniques for the calculation of
multivariate probabilities with arbitrary positive-definite covariance
structures that allow economists to deal directly with VAR processes
without the need to modify their forms to satisfy diagonality
assumptions. In addition, researchers can use recent techniques for
the calculation of probabilities involving positive semi-definite
systems to directly treat processes with singular error covariance.
While these types of simplifications are not necessary in theory, in
practice and in the context of the solution of a broader economic
model they can be quite useful. We present two example VAR-process
approximations with non-diagonal and singular non-diagonal error
covariance matrices and show that our procedure admirably recovers
the traits of the original structural processes.

2. Approximation

In the discussion that follows, we consider a VAR of the form

A0Zt = A1 + A2Zt−1 + εt ; εt∼N 0;Σð Þ;

with Zt an m×1 vector and Σ an arbitrary positive-semidefinite error
covariance matrix. The reduced-form specification is

Zt = A1 + A2Zt−1 + εt ; εt∼N 0;Σ
� �

;

where Ai = A−1
0 Ai, εt = A−1

0 εt , and Σ = A−1
0 ΣA−1′

0 . A stationarity
assumption for Zt yields the process covariance Σ* after iteration on
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Σ ←A2Σ*A
′

2 + Σ. This VAR structure for Zt substantially differs from
that considered by Tauchen (1986) only in the practical treatment of
the error covariance matrix Σ; Tauchen (1986) had required that Σ
be diagonal and positive-definite. The general positive-semidefi-
niteness of Σ also allows for arbitrary positive-semidefinite structure
in Σ. Non-diagonal and singular covariance matrices are present in
this class.

To approximate the process Zt, one sets up afinite grid S consisting of
Q possible states, denoted S1,...,SQ∈Rm. The Markov-chain approxima-
tion,Mt, varies over this grid S. By definition, the dynamic properties of
Mt are completely determined by the associated Q×Q transition matrix
P such that Pi, j=P(Mt+1=Sj|Mt=Si). These transition probabilities are
defined in this approximation asPi, j=P(Zt+1∈Vj|Zt=Si),where theVi's
are non-overlapping m-dimensional intervals such that Si∈Vi and
∪ i=1

Q Vi=Rm.
Given the autoregressive structure of Zt, this definition can be

rewritten as

Pi; j = P A1 + A2Si + εt+1∈Vj

� �
= P εt+1∈V ′

j

� �
;

where V ′
j = Vj− A1 + A2Si

� �
. Recall that εt+1∼N 0;Σ

� �
. This implies

that the probability above can be expressed as the m-dimensional
integral

Pi; j = ∫
V ′
j

f
Σ

kð Þdk

with f
Σ

kð Þ equal to the multivariate density for N 0;Σ
� �

(when such a

density exists).
Integrals of the above form are well understood. Genz (1992)

presents a Monte Carlo-type algorithm that can be used in the case of
arbitrary positive-definite Σ. Genz and Kwong (2000) provide a
technique for the case of singular Σ. With these integration methods,
quite general covariance structures are tractable within the frame-
work of Tauchen (1986). As a comparison, note that this general
multivariate integration is avoided in practice in that work under the
assumption of a diagonal error covariance structure by the decom-
position of the integral above into

∏
m

i=1
∫
Vi′
j

fi kið Þdki

where fi is the univariate normal density of the i-th component of εt+1

and Vj
i ′ is the i-th univariate component of Vj′.

Although the notation and integration techniques apply to an
arbitrary selection of the location and number of the points Si and
the integration bounds Vi, these choices are important because they
constrain the possible behavior of the approximation Mt. While
larger grids with finer grid points allow in principle for more
complex and accurate dynamics, they require greater computational
time. Tauchen's (1986) uniformly spaced scheme is used in the
examples below, but this is not the only available technique; e.g.,
Adda and Cooper (2003) use equal probability weights to construct a
univariate grid.

3. Examples and simulation

This section approximates a trivariate VAR Zt for two cases: (1) a
non-diagonal error covariance matrix, and (2) a singular non-
diagonal error covariance matrix. As a check of the reliability of the
approximations, we run 1000 simulations for both the original
process Zt and the approximation Mt for each covariance structure.
We then compare mean estimated OLS coefficients for each 100-
period simulated data set. Calculations were performed in MATLAB,
with the required Monte Carlo-type multivariate integration carried
out using the function qscmvnv.m (available on the website of Alan
Genz) with 1000 random draws.1

The specification of the grid is the same across both examples and
follows Tauchen (1986). Let qi be the number of unique i-th
dimensional states in S which can be visited by the i-th component
Mit of the Markov-chain approximation, with the total number of
states Q=∏ i=1

3 qi. We set qi=5 for each i, yielding 125 total states
in the approximation grid S. After iteration, the unconditional
standard deviation of each component Zit can be found from the
diagonal of the process covariance Σ*. Given the unconditional mean
of Zt, μ = I−A2

� �−1
A1, we space the components of the grid points

S1,…,S125 equally around the components μi so that two uncondi-
tional standard deviations of Zit are spanned in either direction
around μi.

Each simulation of the process Zt itself requires draws from
N 0;Σ
� �

and initialization, chosen here as the mean μ . Simulation of
the approximate Markov process Mt follows Adda and Cooper
(2003) via draws u from the uniform [0,1] distribution. After
calculating the transition probabilities Pi, j, consider the matrix P
with Pi;j = ∑j

k=1 Pi;k. Given Mt= Si, the uniform draw ut+1∈
Pi; j−1; Pi; j
� �

implies Mt+1=Sj (and Mt+1=S1 if ut+1≤Pi;1). The
simulation of Mt is also initialized at μ, noting that μ∈S in our grid
specification.

3.1. Non-diagonal and non-singular

The first example considers a non-diagonal error covariance
matrix. Using the reduced-form notation for Zt, the parameters of
the VAR are

A1 =
−0:5
0:9
0:6

2
4

3
5; A2 =

0:25 0:1 0:5
−0:5 0:09 −0:75
0:6 0 0:15

2
4

3
5; Σ =

0:4 0:18 0:3
0:18 0:2 0:1
0:3 0:1 0:7

2
4

3
5:

Themean estimates using OLS on the directly simulated data Zt are

AD
1 =

−0:51
0:90
0:60

2
4

3
5; A

D
2 =

0:23 0:11 0:50
−0:51 0:09 −0:75
0:59 0:01 0:13

2
4

3
5; Σ

D
=

0:38 0:17 0:28
0:17 0:19 0:09
0:28 0:09 0:67

2
4

3
5:

The mean OLS estimates from the simulation of the Markov
approximation Mt are

AM
1 =

−0:50
0:91
0:60

2
4

3
5; A

M
2 =

0:23 0:10 0:48
−0:49 0:09 −0:76
0:57 0:01 0:14

2
4

3
5; Σ

M
=

0:43 0:15 0:27
0:15 0:32 0:08
0:27 0:08 0:73

2
4

3
5:

3.2. Non-diagonal and singular

The second example uses a non-diagonal and singular error
covariance matrix.2 We assume the same grid S and coefficients A1

and A2. We change Σ to the singular matrix,

Σ =
0:01 0:01 0
0:01 0:1 −0:09
0 −0:09 0:09

2
4

3
5:

1 The MATLAB code used to produce all the results contained in this paper is
available upon request from the authors.

2 In results not presented here, we also consider the case of a singular diagonal error
covariance matrix. The Markov approximation also performs well in this case.
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Such singular non-diagonal covariance structures can arise when
converting a VAR to its reduced-form representation, since
Σ = A−1

0 ΣA−1′
0 .3 In our case, we consider the singular

Σ =
0:01 0 0
0 0 0
0 0 0:09

2
4

3
5

and the non-diagonal

A−1
0 =

1 0 0
1 −1 −1
0 0 1

2
4

3
5:

The mean OLS estimates from direct simulation are

AD
1 =

−0:49
0:93
0:57

2
4

3
5; A

D
2 =

0:23 0:09 0:49
−0:49 0:06 −0:77
0:57 0:03 0:16

2
4

3
5; Σ

D
=

0:01 0:01 0:00
0:01 0:10 −0:09
0:00 −0:09 0:09

2
4

3
5:

Simulation from the Markov approximation produces

AM
1 =

−0:49
0:91
0:59

2
4

3
5; A

M
2 =

0:23 0:10 0:48
−0:48 0:06 −0:73
0:55 0:02 0:14

2
4

3
5; Σ

M
=

0:01 0:01 0:00
0:01 0:11 −0:08
0:00 −0:08 0:09

2
4

3
5:

3.3. Recovery of system properties

The examples above demonstrate that Markov-chain approxima-
tions to VARs with relatively complicated error covariance matrices
can be constructed with reasonable confidence in their ability to
recover the dynamics of the underlying process. A simple way to
3 Of course, singular covariance implies that some components of the error term are
redundant. Such a specification can be useful in applied work because it allows for
exact equations to be incorporated into the larger dynamic structure of the process. In
results not reported, we compared the performance of a non-singular bivariate VAR
with a singular trivariate VAR differing only by the inclusion of an identity. The
transition probabilities obtained were equivalent, as expected.
measure this ability is the duplication of system parameters after
simulation and OLS estimation. The processes considered here have
distinctive error covariance structures, but the sign and magnitude of
system parameters recovered from simulation of the Markov-chain
approximations are very comparable to the results obtained from
direct simulation of the VAR.

4. Conclusion

Tauchen (1986) presents a useful and simple method of
approximating VAR processes via Markov chains, under the assump-
tion that the reduced-form error term's covariance matrix is diagonal.
While this method is general in theory, we show that arbitrary error
covariance structures can be considered in practice within the original
framework proposed by Tauchen (1986) without initial modification
of the underlying process. Doing so simply requires the use of general,
readily available multivariate integration methods. We provide two
examples of VAR approximation and simulation using this technique
that recover dynamic properties of the underlying process virtually as
well as direct simulation of the process.
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