Monetary Policy Expectations and Economic Fluctuations at the Zero Lower Bound

> Rachel Doehr Claremont McKenna & Enrique Martínez-García FRB Dallas/SMU

SEA discussion by

Stephen Terry Boston University

A HUGELY IMPORTANT QUESTION

How does monetary policy work at the ZLB?

A THEORETICAL FRAMEWORK

Model basics

The authors use a 3-equation NK framework with a NKPC, an IS curve, and a monetary policy rule

Monetary policy shocks

Split into current policy rate shock, "conventional policy," and a news shock about future rates, "forward guidance".

Key prediction: response to news of lower future rate

	Normal Times	ZLB
Δy_t	? to -	+
$\Delta \pi_t$	+	+

Mechanism: lower future rates \rightarrow inflationary pressure \rightarrow policy contraction in normal times, no policy response at ZLB

AN EMPIRICAL FRAMEWORK

Augmented VAR

Inflation, unemployment rate, FFR, and SPF survey expectations of 1-year ahead T-Bill rate.

Panel VAR, subsamples, recursive identification

Panel structure includes individual fcsts, estimated separately on pre-ZLB & post-ZLB data, fcst T-Bill rates ordered first.

IRF to positive shock to expected T-Bill rate

Normal: unemployment declines ✓

ZLB: unemployment increases \checkmark

My Take

- Fantastic question!
- Well written and engaging paper with a lot of hard and really impressive work very evident throughout
- Comforting, immediately policy relevant finding: monetary policy is still effective through guidance!

Theoretical comments

- Linearized model in a nonlinear environment
- Mechanism relies upon dramatic intertemporal substitution

Empirical comments

- Price puzzle
- Some puzzling technical choices

LINEARIZED MODELS & THE ZLB

A big problem, not just for this paper!

ZLB is occasionally binding, explicitly nonlinear. Linearization or hybrid linearization with "regimes" gets the dynamics, magnitudes of fluctuations, and policy responses wrong.

Key cite

Fernández-Villaverde, Guerrón, Gordon, Rubio-Ramírez. "Nonlinear Adventures at the Zero Lower Bound" *Journal of Economic Dynamics and Control* 2015

My suggestion

Concede this explicitly in the text or remove theory

Forward Guidance Mechanism

A suspiciously powerful force

Lower future real interest rate r_{t+l} reduces the price of consumption C_{t+l-1} relative to C_{t+l} , putting upward pressure on the entire stream of consumption from t to t+l-1

IES & magnitudes

Motive to intertemporally exploit this rel. price difference, and hence the inflationary effects of a future interest rate cut, depends crucially on IES

Incomplete Markets

Intertemporal substitution also requires absence of credit constraints, doesn't hold with incomplete markets (see recent paper McKay, Nakamura, and Steinsson 2015)

FORWARD GUIDANCE MECHANISM

Note: The figure plots the theoretical responses of output in the model to news of a 1% future interest rate cut in normal times and at the ZLB, varying the IES σ . For normal times, I use the authors' baseline calibration discussed in footnote 10. For the ZLB, I assume $\alpha=0.5,$ corresponding to an expected duration of the ZLB of two quarters.

IES value l'd prefer \approx 0.5 (Hall 2009)

My Suggestions

- Mention nonlinearity of ZLB
- Highlight ambiguity of theory

A CLASSIC PRICE PUZZLE

IRF to positive shock to expected T-Bill rate Inflation increases in normal times, at odds with model

Endogeneity concern, not just an issue for this paper! Financial crises, uncertainty shocks, nonlinearities in economy or policy rule...

My suggestions

- Remove causal language, reduce structural interpretation
- Interpretation should rest on the fact that recursively identified shocks are not theoretical shocks.
- Recursively-derived IRFs are still useful and important! See, e.g. Christiano, Eichenbaum, & Trabandt (2015).

Some Technical Choices

Why a Panel VAR?

Panel VAR structure incorporates individual SPF fcsts, complicating estimation & notation. Why preferred over consensus fcst, since the full distribution of forecasts isn't exploited? Precision?

FFR variation in the ZLB state

VAR contains the current FFR in **both** the normal and ZLB periods. ZLB FFR parameters should be unidentified. Can only estimate the model because ZLB period extends backwards a few quarters (footnote 18). Based on my experience as a Fed RA drafting reports during this period, I don't agree that ZLB was fully anticipated in 2008:Q2 pre-Lehman.

My Suggestions

- Drop panel VAR structure or check against consensus measure VAR
- Drop FFR in ZLB period, or use a nonlinear or regime-switching model which can account for this lack of FFR variation

My Take

- Fantastic question!
- Well written and engaging paper with a lot of hard and really impressive work very evident throughout
- Comforting, immediately policy relevant finding: monetary policy is still effective through guidance!

Theoretical comments

- Linearized model in a nonlinear environment
- Mechanism relies upon dramatic intertemporal substitution

Empirical comments

- Price puzzle
- Some puzzling technical choices