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Three Big Questions

about Uncertainty

Q1: Measurement
How do we construct an empirical proxy for uncertainty?

Q2: Causality
Does uncertainty drive activity? Does activity drive
uncertainty? Are they causally linked at all?

Q3: Origins
What is the fundamental source of uncertainty fluctuations?
Real economy? Financial system?

This Paper’s Contribution
LMN move on from Q1 to Q2 and Q3, in a well motivated and
exciting continuation of their agenda.
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A Classic Identification Problem
Estimate Reduced Form, Desire Structural IRFs

VAR in Xt = (Yt, Ut)′, ηt = Bet, B =

[
bY Y bY U

bUY bUU

]
, et ∼ N(0, I2×2)

4 Parameters, Only 3 Equations

Ω = V ar(η) =

[
b2Y Y + b2Y U bY Y bUY + bY U bUU

bY Y bUY + bY U bUU b2UY + b2UU

]
LMN Approach Is to Use External Moments for Identification
Imagine a series Z with E(ZeU ) 6= 0 but E(ZeY ) = 0

E(ηY Z) = bY UE(ZeU )
E(ηUZ) = bUUE(ZeU )

}
→ bUUE(ηY Z) = bY UE(ηUZ)

Iteratively Construct the “Instrument” Z
Start with external, endogenous series S, e.g.

S = bSY eY + bSUeU + bSSeS

1) Guess e(i) = {(eY , eU )}(i)

2) Cleanse S of e
(i)
Y to get Z(i) via projection

3) B(i) identified up to sign normalization

4) Set e(i+1) = B(i)−1
η until convergence
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Works Well in Practice
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Estimates are mean and 90% intervals of 250 Monte Carlo repetitions.
Results in this discussion are based on independent implementation and
code, entirely consistent with LMN results. Thanks to LMN for providing
their data, code, and advice!
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Identification Isn’t Free

An Exclusion Restriction
- External S used to construct Z must not belong in the VAR.
- Shock eS must not affect activity or uncertainty, so E(ηeS) = 0.
- LMN summarize this issue nicely on p10.

What Can Go Wrong?
- If E(ηeS) 6= 0, then bUUE(ηY Z) = bY UE(ηUZ) fails.
- Back to standard unidentified SVAR case.
- Approach may fail to recover IRFs.
- Identified shocks may be contaminated by endogeneity from eS .

An Inherently Economic – Not Econometric – Assumption
- S equal to stock returns in LMN.
No other shocks reflected in stock returns, other than “activity” or
“uncertainty” shocks, may also affect activity or uncertainty.
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Exclusion Restriction Violation
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Estimates are mean and 90% intervals of 250 Monte Carlo repetitions.
Allowed shock to S to enter positively in contemporaneous Y and U
equations of the VAR.
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Basu & Bundick (2015)

Demand & Uncertainty
New Keynesian DSGE model

Two Shocks
Demand: level shock to discount rate
Uncertainty: shock to volatility of demand shocks

Household-Side Demand Mechanism

Uncertainty →
(

Precautionary savings,
labor supply

)
→ Recession

Measurement
Y : aggregate output
U : expected variance of stock returns
S: mean stock returns

Thanks to authors for code and simulated data.
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Basu & Bundick (2015)

LMN Approach Works Well
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Results from application of the LMN approach to 10,000 quarters
of simulated data from the Basu & Bundick model.
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Basu & Bundick (2015)

LMN Approach Works Well
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Corr(eY t,êY t) ≈ 0.8, Corr(eUt,êUt) ≈ 0.9
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Gilchrist, Sim, & Zakrajsek (2014)

Adding Financial Shocks
Neoclassical model with micro TFP shocks, nonconvex capital adj. costs,
financial frictions via equity dilution at issuance

Three Macro Shocks
Macro TFP: level shock to macro productivity
Uncertainty: shock to volatility of micro TFP shocks
Financial: shock to liquidation value of capital

Firm-Side Real Options Mechanism

Uncertainty →
(

“wait and see” behavior,
investment freeze

)
→ Recession

Measurement
Y : aggregate output
U : cross-sectional standard deviation of returns
S: mean returns

Thanks to authors for simulated data.
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Gilchrist, Sim, & Zakrajsek (2014)

Three Separate Shocks

TFP Shock

Figure 6: Impact of an Aggregate Technology Shock

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2
Percent

w/ FF
w/o FF 

Output

 

     

0 10 20 30 40

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0
Percent

Consumption

 

     

0 10 20 30 40
-2.0

 0.0

 2.0

 4.0

 6.0

 8.0

10.0

12.0
Percent

Investment

 

     

0 10 20 30 40
-0.1

 0.0

 0.1

 0.2

 0.3

 0.4

 0.5
Percent

Hours worked

 

     

0 10 20 30 40

-0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2
Percent

Capital

 

0 10 20 30 40
-0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0

 1.2
Percent

Debt

 

0 10 20 30 40
-0.10

-0.05

 0.00

 0.05

 0.10

 0.15

 0.20

 0.25
Percentage points

Risk-free rate

 

0 10 20 30 40
-0.2

 0.0

 0.2

 0.4

 0.6

 0.8
Percentage points

Credit spread

 

0 10 20 30 40

Note: The solid lines depict the impulse response functions of the model with financial frictions (w/ FF),
while the dashed lines are those of the model without financial frictions (w/o FF). In the experiment, a shock
increases aggregate TFP one standard deviation upon impact (period 5); aggregate TFP is then allowed to
revert back to its steady-state value following the process in equation (9). The impulse response functions
are averages of 50,000 simulations, where each simulation is an aggregation of the impulse responses of 10,000
firms (see Section B.3 of the model appendix).

role of these frictions, we also solve a version of the model without financial distortions. In that

case, the firms face the same irreversibility and nonconvex capital adjustment frictions as in the

benchmark case, except that investment is financed using only internal funds and equity, where the

issuance of the latter is not subject to any dilution costs.27

In computing the model-implied impulse response functions, we take into account the non-

linearities in the firms’ investment and financial policies that arise naturally in an economy with

irreversible investment, fixed capital adjustment costs, and financial distortions.28 As described

27In that case, the stock of outstanding corporate debt is no longer an aggregate state variable, and the forecasting
rules in equation (38) are modified accordingly (see Section B.3 of the model appendix).

28As shown in Table B-2 in Section B.3 of the model appendix, the linear laws of motion used by the agents to
forecast equilibrium prices are very accurate in a statistical sense. In other words, although the agents’ policy functions
are highly nonlinear at the micro level, the model’s key endogenous quantities exhibit fairly linear aggregate dynamics.
In fact, the existence of such “aggregation smoothing” is typically used to justify the use of an algorithm that uses
only a small number of moments to characterize the dynamics of the joint distribution µ (see Khan and Thomas,
2008). In principle, therefore, the response of key endogenous aggregate quantities to aggregate shocks could be
constructed using the estimated perceived laws of motion. While computationally straightforward, this approach is
limited in scope, however. For example, the response of the average credit spread—an object of great interest in our
analysis—cannot be constructed in such a linear fashion.
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Negative Fin. Shock

Figure 8: Impact of a Capital Liquidity Shock
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Note: The solid lines depict the impulse response functions of the model with financial frictions (w/ FF),
while the dashed lines are those of the model without financial frictions (w/o FF). In the experiment, a shock
reduces the liquidation value of the firms’ capital assets (p−) 5 percent upon impact (period 5), a shock of
about 1.5 standard deviations; the liquidation value of capital is then allowed to revert back to its steady-
state value following the process in equation (12). The impulse response functions are averages of 50,000
simulations, where each simulation is an aggregation of the impulse responses of 10,000 firms (see Section B.3
of the model appendix).

with the liquidation value of capital. Not surprisingly, these correlations are essentially zero in

the model with frictionless financial markets. However, when financial distortions are present, the

average (positive) capital outlay is strongly positively correlated with fluctuations in the resale value

of capital, reflecting the tight link between capital liquidity shocks and the firms’ debt capacity.

On the extensive margin, the correlation between the liquidation value of capital and the frequency

of positive investment expenditures is negative, whereas the correlation with lumpy investment

is positive. Evidently, an improvement in the liquidity of the secondary market for capital—an

improvement in the sense of higher resale value—makes the nonconvex capital adjustment costs

relatively more important for firms that are considering adjusting their production capacity; this

induces firms to economize on transaction costs arising from the fixed capital adjustment costs by

increasing the average size of investment expenditures and by more frequently making large capital

outlays.

As shown in the bottom panel of Table 4, such liquidity shocks have the potential of being

an important source of cyclical fluctuations in an economy with imperfect financial markets and

capital specificity. Recall that the (quarterly) standard deviation of capital liquidity shocks is only
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Uncertainty Shock
Figure 7: Impact of an Uncertainty Shock

-0.25

-0.20

-0.15

-0.10

-0.05

 0.00

 0.05
Percent

w/ FF
w/o FF 

Output

 

     

0 10 20 30 40
-0.10

-0.05

 0.00

 0.05

 0.10

 0.15

 0.20
Percent

Consumption

 

     

0 10 20 30 40
-7.0

-6.0

-5.0

-4.0

-3.0

-2.0

-1.0

 0.0

 1.0
Percent

Investment

 

     

0 10 20 30 40
-0.4

-0.3

-0.2

-0.1

 0.0

 0.1
Percent

Hours worked

 

     

0 10 20 30 40

-0.5

-0.4

-0.3

-0.2

-0.1

 0.0

 0.1
Percent

Capital

 

0 10 20 30 40
-0.5

-0.4

-0.3

-0.2

-0.1

 0.0

 0.1
Percent

Debt

 

0 10 20 30 40
-0.25

-0.20

-0.15

-0.10

-0.05

 0.00

 0.05
Percentage points

Risk-free rate

 

0 10 20 30 40
-0.2

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0
Percentage points

Credit spread

 

0 10 20 30 40

Note: The solid lines depict the impulse response functions of the model with financial frictions (w/ FF),
while the dashed lines are those of the model without financial frictions (w/o FF). In the experiment, a shock
increases the volatility of the idiosyncratic technology shock (σ) 3 percentage points (annualized) upon impact
(period 5), a shock of 2.5 standard deviations; volatility is then allowed to revert back to its steady-state value
following the process in equation (10). The impulse response functions are averages of 50,000 simulations,
where each simulation is an aggregation of the impulse responses of 10,000 firms (see Section B.3 of the model
appendix).

into the adjustment at intensive and extensive margins. We measure the adjustment at the extensive

margin by calculating—for each period—the fraction of firms with positive investment expenditures

(Freq[I+]). As another metric, we also consider “lumpy” investment, defined as a proportion

of firms with capital expenditures in excess of 10 percent of the book value of installed capital

(Freq[lumpy-I+]). The intensive margin, by contrast, is defined as the average positive capital

expenditures (Avg[I+]) in each period.29

According to the standard irreversibility theory, aggregate investment dynamics, especially in

response to fluctuations in uncertainty, will primarily reflect the firms’ adjustment at the extensive

margin—a jump in uncertainty raises the option value of waiting, which increases the proportion

of firms in the inactive region. As shown in the top panel of Table 5, this is indeed the case in the

model without financial frictions: The frequency of positive investment adjustments is negatively

29In this experiment, the liquidation value of capital is fixed at its steady-state value of 0.5. With this calibration,
liquidating capital is almost never optimal, unless the realization of the idiosyncratic technology shock is unusually
bad and the firm has a significant capital overhang problem, a combination that generates large losses due to fixed
operating costs. As a result, disinvestment at the firm level plays a minor role in the determination of the dynamics
of aggregate investment, which allows us to focus on positive investment expenditures only.
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Gilchrist, Sim, & Zakrajsek (2014)

Applying the LMN Approach
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Results from application of the LMN approach to 900 quarters of
simulated data from the Gilchrist, Sim, and Zakrajsek model.
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Gilchrist, Sim, & Zakrajsek (2014)

Why Didn’t LMN Work?

LMN Exclusion Restriction Violated
With nontrivial – and independent – financial shocks, stock returns
should have been in the VAR all along.

Resulting Identified Shocks are an Amalgam of True Shocks
“Activity Shocks” = TFP (+), financial (-), uncertainty (-)
“Uncertainty Shocks” = TFP (+), financial (+), and uncertainty (+)

Spurious Conclusions
- Uncertainty appears to be endogenously countercyclical.
- Uncertainty appears to cause booms.
- Neither is true in underlying model.
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My Conclusions

A New and Useful Econometric Tool from LMN
SVAR identification using an external endogenous series to
construct an instrument.

An Exclusion Restriction with Economic Content
- External series must not belong in the VAR.
- “Other shocks reflected in stock returns must not affect activity
or uncertainty.”

Should We Worry about this Assumption?
- Seems ok in some state of the art uncertainty models.
- Fails with independent financial shocks, spurious conclusions of
endogenous uncertainty, wrong sign of uncertainty impact.

I’m not yet convinced that uncertainty is endogenous or that
uncertainty causes booms.
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