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I Introduction

Computational advances have revolutionized economics, allowing for the solution and simula-

tion of previously intractable problems. Macroeconomists developing micro-founded models

have especially bene�ted from these developments. In particular, large databases underlying

computation of price indexes have produced new evidence on pricing behavior of �rms, which

in turn has spurred interest in developing models to match and explain these facts. These

models have generally relied on state-dependent pricing (SDP) mechanisms, since SDP mod-

els allow for a broader range of outcomes than their time-dependent counterparts, but they

lack the explicit closed-form solutions of the latter due to their nonlinearities and nondi¤er-

entiabilities. Thus they are a prime candidate for solving via computational methods.

This paper compares and contrasts two methods of solving SDP models using simulation

techniques. The �rst method considered is discretization: we convert the problem�s state

variables to a grid, perform value function iteration, construct a policy matrix, and simulate

the model by constraining actions and outcomes to the discretized states. The second method

considered is collocation: we use Chebyshev polynomials to approximate the solution to the

value function and use this solution to simulate arbitrary state realizations. We consider

performance across the methods through a variety of indicators� such as macro (business

cycle) moments, micro (pricing) moments, impulse responses, and computational aspects

(processing time, memory, and numerical precision)� and for alternative parameterizations

of the structural model.

Our �ndings suggest that the discretization and collocation solution methods generally

provide results that are qualitatively similar. However, the results tend to exhibit statistically
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signi�cant quantitative di¤erences. This latter point is important for economists using these

models to calibrate or estimate structural parameters.

In light of this discrepancy, we view the evidence as favoring discretization over colloca-

tion for SDP models using simulation techniques. This conclusion is based on several facts.

First, moments produced using discretization converge without requiring extremely large

numbers of grid points or computational time. We do not �nd the same result for colloca-

tion. Second, discretization can require considerably less time than collocation� a relevant

fact for practical implementation. Third, discretization appears to be a more reliable solu-

tion method than collocation in terms of robustness to alternative parameterizations and the

addition of grid points/nodes. This conclusion contrasts with that presented by Hatchondo

et al. (2008) for a model of sovereign default, but is in line with the warning in Aruoba et

al. (2006) that nondi¤erentiabilities (as are present in SDP models) may prove problematic

for collocation methods.

We also contribute to the growing literature that seeks to match empirical micro pricing

evidence with SDP models. In particular, the model incorporates �rm-speci�c factor markets

for labor as one source of real rigidity in the midst of idiosyncratic productivity shocks. Under

such an assumption, however, we �nd that the menu costs would need to average 2:1% of

revenues and productivity shocks would need a standard deviation of 22:5%� numbers that

would seem to be implausibly large. The �nding that �rm-speci�c labor markets are di¢ cult

to reconcile within SDP models is consistent with similar �ndings for diminishing returns to

labor in Golosov and Lucas (2007) and for kinked demand curves in Klenow andWillis (2006),

supporting Nakamura and Steinsson�s (2007) conjecture that, in order to be consistent with

micro pricing evidence, real rigidity must emanate from other sources.
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The outline of the paper is as follows. Section II develops the model and Section

III discusses the discretization and collocation methods. Section IV calibrates the model.

Section V presents results from solving and simulating the model using discretization and

collocation, and Section VI discusses their relevance. Section VII concludes. An Appendix

(Section VIII) contains additional robustness exercises, extensions, and explanations.

II The Model

The model is relatively standard in the New Keynesian tradition (cf. Woodford 2003),

featuring a representative household and monopolistically competitive �rms. Firms face

explicit "menu" costs they must pay to change their prices, generating state-dependent

pricing decisions. The ability to optimize over the timing of price changes is a feature unique

to SDP models, in contrast to the more common assumption in the sticky-price literature of

Calvo-style price setting in which the timing of price changes is random.

II.1 Households and Firms

A representative household maximizes utility given by

E0

1X
t=0

�t
�
C1��t � 1
1� �

� �

1 + �

Z 1

0

l1+�jt dj

�
; (1)

where � is the subjective discount factor, � is the inverse intertemporal elasticity of substi-

tution, � is the inverse labor supply elasticity, and � is a parameter determining the relative

weighting of labor to consumption in the utility function. The amount of labor supplied to

�rm j is ljt. For conciseness, we henceforth omit time subscripts and use 0 and �1 to denote

the next and the previous period�s values, respectively.

The consumption composite is C = [
R 1
0
c
(��1)=�
j dj]�=(��1), with elasticity of substitution
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� > 1 and cj consumption of the jth good. The price level P = [
R 1
0
p1��j dj]1=(1��) is the

minimum cost of purchasing one unit of the consumption aggregate, with pj the price of

good j. Given this framework, consumers maximize consumption for a given level of ex-

penditure. Total consumption expenditures are
R 1
0
pjcjdj = PC, and demand for good j is

cj = C (pj=P )
��.

The household faces the budget constraint C �
R 1
0

�wj
P
lj +�j

�
dj, where wj and �j are

the nominal wage and real pro�ts, respectively, earned from �rm j.1 Thus labor supply is a

function of the real wage and consumption,

wj
P
= �l�jC

�. (2)

We also impose a binding cash-in-advance constraint, PC =M , with M the money supply.

Firms are monopolistic competitors producing di¤erentiated goods. Market clearing

requires that aggregate output Y equal aggregate consumption C, and that consumption

and production of each good be equal (yj = cj) for all j. Thus demand for �rm j�s product

is

yj = Y
�pj
P

���
: (3)

Firms satisfy all demand at their price pj via the production function yj = aj`
�
j ; with `j the

amount of labor used to produce good j, returns to scale in labor �, and productivity for

�rm j given by aj. Firm-speci�c productivity is stochastic and follows

ln aj = �a ln aj;�1 + �j; (4)

with �a 2 (0; 1) and �j � i.i.d. N
�
0; �2�

�
.

The labor supplied to �rm j from the household�s problem, lj, may di¤er from the

1Rotemberg (1987) develops and discusses a similar model along these lines.
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amount used in production, `j, since it is costly for a �rm to adjust its price. Speci�cally, a

�rm that sets pj 6= pj;�1 expends a �xed amount of labor, �, on this change� i.e., there is a

menu cost to adjusting prices. The relationship between labor supplied to �rm j and labor

demand is lj = `j + Ij�; where the indicator Ij equals one if a price change occurs and zero

otherwise.

When making pricing decisions, �rms realize they face an upward-sloping labor supply

curve given by (2) and demand for their product given by (3). Real pro�ts for �rm j are

�
�pj
P
; aj; Y; Ij

�
= Y

�pj
P

�1��
� �Y �

"�
Y

aj

�1=� �pj
P

���=�
+ Ij�

#1+�
: (5)

Contemporaneous pro�ts if Ij = 0 and the �rm keeps the previous period�s price are denoted

�K , and �C denotes pro�ts if Ij = 1 and it changes its price to epj. With Z denoting a vector
of aggregate variables, the value to the �rm of keeping its old price is

V K
�pj;�1
P

; aj; Z
�
= �K

�pj;�1
P

; aj; Y
�
+ �EV

�pj;�1
P 0

; a0j; Z
0
�
: (6)

The value to the �rm of changing its price is

V C
�pj;�1
P

; aj; Z
�
= maxepj �C

�epj
P
; aj; Y

�
+ �EV

� epj
P 0
; a0j; Z

0
�
; (7)

with the �rm using � units of labor in the price change captured by �C . The �rm optimizes

over these choices such that

V = max
�
V K ; V C

	
: (8)

II.2 Monetary Policy and Expectations

The typical convention in SDP models is for monetary policy to take the form of a rule

for the level of money or money growth. We consider the AR(1) process

�m = � (1� �) + ��m�1 + "; (9)
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where � 2 (0; 1), �m = ln (M=M�1), and " � i.i.d. N(0; �2").

Firms form expectations over productivity and money growth via (4) and (9), respec-

tively. To form expectations over other aggregate variables, we assume �rms employ a

forecasting rule. The use of a forecasting rule is related to Krusell and Smith (1998) and was

introduced into SDP models by Willis (2002). While simplifying computation of expecta-

tions, the forecasting rule is consistent with the real-world idea that information is costly to

acquire and process.2 Such a stylized fact renders the full-information, rational expectations

equilibrium� which requires every �rm to know all the state variables of all other �rms in

the economy� infeasible to implement.3

We posit that agents use the forecasting rule

lnY = b0 + b1 lnY�1 + b2�m: (10)

The rule has several notable features. First and foremost, it is parsimonious, thereby keep-

ing the number of state variables to a minimum. Second, it has economic signi�cance: b1

measures the persistence of real output movements, and b2 measures the response of output

to nominal shocks.

To ensure that expectations are on average consistent with outcomes, we guess a starting

value for the vector of coe¢ cients from the forecasting rule, denoted B0, and simulate the

model using the implied forecasting rule. One then estimates (10) with the realizations

of the aggregate variables, producing a set of estimates B̂0. For some critical value � c, if

2Among others, see the lines of research by Mankiw and Reis (2002), Sims (2003), and Reis (2006).
Zbaracki et al. (2004) o¤er empirical evidence of information costs in a case study of a large industrial
manufacturer.

3As an alternative, one could impose distributional restrictions on the state space to make the problem
tractable, as in Dotsey et al. (1999), for instance. However, such restrictions would need to be consistent
with the behaviors of real-world price setters.
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���B̂0 �B0

��� < � c then agents�expectations in the model are consistent with outcomes and

vice versa. If not, we choose new coe¢ cients B1 and iterate to convergence.

III Methods for Solving and Simulating the Model

State-dependent pricing models have the virtue of enabling �rms to optimize over the timing

of their price changes. But this bene�t comes with a cost. In particular, SDP models can

be cumbersome to work with, given the number of state variables involved, and the discrete

nature of the problem� �rms either keep their old price or pay a �xed cost and change it

as they see �t� creates nonlinearities and nondi¤erentiabilities. Computational methods

are therefore especially important for researchers in this �eld. This section discusses two

alternative methods of solving and simulating these types of models.

III.1 Discretization

The �rst method we employ is discretization. We discretize the relevant state variables

to solve the �rms�problem via value function iteration and then constrain actions when

simulating the model so as to remain on the grid. Papers using variants of this approach

in the SDP literature include Willis (2002), Klenow and Willis (2006, 2007), Knotek (2006),

and Nakamura and Steinsson (2007, 2008).

We discretize the �rms�real prices pj=P , the idiosyncratic productivity states aj, and

the aggregate variables (denoted by Z): money growth �m, output Y , and in�ation �.

The real price grid contains 349 points in increments of 0:15%, �ne enough to capture

interesting pricing behaviors in the model, including potential monetary neutrality. Following

Tauchen (1986), productivity is converted into its discrete Markov representation spanning
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two standard deviations around the unconditional process mean. Similarly, the aggregate

variables are discretized after combining the money growth rule (9) and the forecasting rule

(10) into a VAR and converting it to its Markov representation, as in Terry and Knotek

(2008). These Markov representations are used to form expectations during value function

iteration. The discretized states for money growth and output imply a discretization of

in�ation via the cash-in-advance constraint.

Value function iteration proceeds in three steps. First, we initialize V via a method

that guesses a common value V0 for all elements in the value function and then iteratively

assesses whether the guess should have been higher (or lower), moving in the direction

indicated. Second, from V0 we use an accelerating algorithm, starting with a small number

of grid points for the aggregate variables (but the full number for pj=P and aj). After

iterating to convergence, we add aggregate grid points and linearly interpolate. The third

step iterates to convergence on the full version of V . With the �nal value of V , we construct

a policy matrix that returns the price �rm j sets (and, thus, whether it changes its price or

not) as a function of pj;�1=P , aj, and the aggregate variables Z.

To simulate the model, random values of aj and �m are generated using their Markov

approximations. We solve for the other aggregate variables on the grid through a guess-and-

verify procedure, such that �rms�real prices pj;�1=P , productivity aj, and elements of Z are

consistent with pricing outcomes suggested by the policy matrix and with each other. While

aj and Z are always elements of the grid, real prices are "nudged" to the nearest grid point

since there is no guarantee that pj;�1= (P�1e�) is a point on the real-price grid.4

4This constrasts with other approaches� e.g., Aruoba et al. (2006)� which use linear interpolation when
simulating the model.
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III.2 Collocation

The second method we employ is a projection technique known as collocation. Collo-

cation allows us to convert the Bellman problem into a system of equations involving linear

combinations of orthogonal Chebyshev polynomials that can be dealt with using standard

nonlinear solution techniques for �nite-dimensional problems.5 Klenow and Kryvtsov (2008)

employ Chebyshev collocation in SDPmodels, and Hatchondo et al. (2008) apply the method

to a model of sovereign default.

To solve the Bellman problem, for a �nite N let � i be a Chebyshev basis and �i be

coe¢ cients, where i = 1; :::; N . The appropriate basis of Chebyshev polynomials is the tensor

product of the corresponding univariate Chebyshev polynomial bases. Since the state S is

four dimensional in pj;�1=P , aj, �m, and Y , we also specify N collocation state nodes on a

four-dimensional interval I = [�1; �1]� :::� [�4; �4]. The exact nodes S1; :::; SN are formed by

taking the Cartesian product of the four sets of univariate Chebyshev interpolation nodes,

which are in turn determined by the selection of the endpoints in the interval I.6 With this

framework, we can proceed in one of two ways.

The �rst way is to approximate the value function itself, V , with Chebyshev polynomials:

V =
PN

i=1 �
V
i
� i(S). At each Chebyshev node Sk, k = 1; :::; N , we then require that this

approximation satisfy the Bellman equation (8), which can be written as

NX
i=1

�Vi
� i(Sk) = max

�
�K(Sk) + �E

PN
i=1 �

V
i
� i(S

0);

max~pj �
C(S (k; ~pj)) + �E

PN
i=1 �

V
i
� i(S

0(~pj))

�
. (11)

5Judd (1998) provides some standard de�nitions describing the polynomial basis that we use; see also
Miranda and Fackler (2002).

6The curse of dimensionality is present here since we must have that N = N1 �N2 �N3 �N4, where Nr is
the size of the univariate Chebyshev basis  r1; :::;  

r
Nr
containing polynomials with maximum degree Nr � 1.

Also note that each four-dimensional polynomial � i =  1i1(i) �  
2
i2(i) �  

3
i3(i) �  

4
i4(i) is by de�nition of the

tensor product equal to the product of four of these univariate basis polynomials.
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This produces a system of N nonlinear equations depending on the N coe¢ cients �V .

The second way is to separately approximate the �rm�s value to keeping its price and

the value to changing its price as V K =
PN

i=1 �
K
i
� i(S) and V

C =
PN

i=1 �
C
i
� i(S). At each

Chebyshev node Sk, k = 1; :::; N , we require that the approximations satisfy equations (6)

and (7), respectively:

NX
i=1

�Ki
� i(Sk) = �

K(Sk) + �Emax

(
NX
i=1

�Ki
� i(S

0);
NX
i=1

�Ci
� i(S

0)

)
; (12)

NX
i=1

�Ci
� i(Sk) = max

~pj
�C(S (k; ~pj)) + �Emax

� PN
i=1 �

K
i
� i(S

0 (~pj));PN
i=1 �

C
i
� i(S

0 (~pj))

�
: (13)

Note that since �Ki and �Ci depend on themselves and each other, this produces a single

system of 2N nonlinear equations depending on the 2N coe¢ cients
�
�K ; �C

�0
.

Expectations in (11), (12), and (13) must be taken over �j and " to �nd S
0. The implied

integration is carried out numerically using Gauss-Hermite quadrature. The above systems

can be expressed compactly as 	� = F (�), or

	�� F (�) = 0: (14)

When approximating V , 	 is N�N such that 	k;i = � i(Sk), � is N�1 with i-th component

�Vi , and F (�) is N � 1 with k-th component given by the quadrature-based evaluation of

the right-hand side of (11). When approximating V K and V C , 	 is 2N �2N block diagonal,

� =
�
�K ; �C

�0
, and F (�) is a 2N�1 vector with the stacked quadrature-based evaluations of

the right-hand sides of (12) and (13), respectively. This replaces the solution of the integral

Bellman equation with a �nite-dimensional root-�nding problem, depending solely on the

coe¢ cient vector �. A variety of methods can solve for �; we use Newton�s method but

discuss this and other options below.7

7In solving (14) for any �, we also must perform the �rm�s underlying optimization over ~pj at each node
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Given a coe¢ cient solution �, a �rm�s policy decision can in principle be accurately

obtained via evaluation of the expressions on the right-hand sides of (11), or (12) and (13),

replacing the node Sk with arbitrary state S to exploit the continuous nature of collocation.

Unfortunately, repeated evaluation of these expressions is extremely time-consuming. To

avoid this, note that with the coe¢ cient solution �V one can obtain at each collocation node

Sk the value to the �rm of keeping its price V K
�
Sk;�

V
�
, the value of changing its price

V C
�
Sk;�

V
�
, and the optimal price when changing ~p

�
Sk;�

V
�
. One can then interpolate

these functions on the set of collocation nodes, producing the polynomial interpolants V K(S),

V C(S), and ~p (S) for arbitrary S. For the case in which we approximate the value to keeping

and the value to changing price directly, the coe¢ cient solutions �K and �C allow one

to evaluate V K =
PN

i=1 �
K
i
� i(S) and V

C =
PN

i=1 �
C
i
� i(S) for arbitrary S, thereby only

requiring one interpolant ~p (S).

To simulate the model, values for aj and �m are generated based on (4) and (9), respec-

tively, and �rms enter the period with nominal prices pj;�1.8 We then solve for equilibrium

output (and by extension the price level and in�ation) using a guess-and-verify procedure,

wherein the guess completes current period state information for each �rm and we evaluate

whether �rms would wish to keep their price or change it. In the case of the latter, we

evaluate ~p to obtain the �rm�s new price. We then verify whether the guess is consistent

with the aggregate outcomes, iterating to convergence as necessary.9

Sk. Because of the explicit form of the pro�t function and the Chebyshev basis polynomials, we analytically
compute �rst and second derivatives with respect to the policy variable and apply a modi�ed version of
Newton�s method to solve this optimization problem. We discuss this in more detail below.

8The values of aj and �m are constrained to their collocation/interpolation intervals in order to avoid
pathological behavior outside of the intervals.

9Reiter (2006) presents an alternative solution method that combines elements of projection and pertur-
bation methods.
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IV Model Calibration

The structural parameters of the model are calibrated using values in line with the litera-

ture. Table 1 provides a detailed list. We track the pricing decisions of n = 5; 000 �rms

and aggregate their decisions accordingly. Adding more �rms did not materially a¤ect the

conclusions presented below. The parameters of the exogenous money growth process (9)

were estimated for nominal GDP growth for the U.S. between 1984Q1 and 2007Q4. This

T = 96 quarter period is also the length of a simulation. Forecasting rule coe¢ cients in (10)

were found by averaging over S = 25 simulations.

The model uses a quarterly frequency, hence � = 0:99. Utility over consumption takes a

natural-log form (� = 1). The persistence of productivity shocks is �a = 0:35, translating the

coe¢ cient from Nakamura and Steinsson (2007) from a monthly into a quarterly frequency.

The parameter � is calibrated so the �exible-price rate of output is 1.

As a baseline case, we consider an economy characterized by real rigidity (or strategic

complementarity in pricing decisions), with an elasticity of substitution � = 5, returns to

scale in labor � = 2=3, and inverse labor supply elasticity � = 0:5, generating a reduced-form

real rigidity parameter around 0:31.10 We explored variations on these parameters as well.

Given the other calibrations of the model, the menu cost � (expressed in terms of labor)

and the size of the idiosyncratic productivity shocks �� are calibrated to match evidence on

the average duration between price changes and the average absolute size of price changes

in Klenow and Kryvtsov (2008) for regular prices.

Finally, solving and simulating the model requires selecting the number of grid points

10Algebraically, the amount of real rigidity can be measured by (� � �) = (1� ��), with � = 1�(1 + �) =�.
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for the discretization technique, and for the collocation technique the number of Chebyshev

nodes and the number of Gauss-Hermite quadrature nodes. For discretization, results below

range for grids from 100 thousand to 25 million points. For collocation, we present results

ranging from 250 to 1600 Chebyshev nodes with 9 to 12 quadrature nodes. The Appendix

contains more details.

V Comparisons between Solution Methods

The model�s richness provides myriad opportunities for analyzing the discretization and

collocation methods. We compare and contrast the solution techniques along a large number

of dimensions, including value function characteristics, direct simulations, micro (pricing)

moments, and macro (business cycle) moments. The Appendix provides further comparisons.

V.1 Evaluating and Comparing Value Functions

The di¤erent techniques�approaches to solving the Bellman problem suggest that ex-

amination of the value functions themselves is warranted. For collocation approximating

the value function V directly, we assess the accuracy of the solution via comparison of the

left- and right-hand sides of (11) after solving (14) for the coe¢ cients �V . By de�nition, the

Bellman equation is satis�ed exactly at the collocation nodes; away from those nodes, the

two sides will not perfectly coincide. When approximating the functions V K and V C instead

of V , the appropriate comparison is, for any state value, the maximum of the left-hand sides

of (12) and (13) versus the maximum of the right-hand sides of (12) and (13) after solving

for �K and �C .

Figure 1(a) plots a cross-section of the left- and right-hand sides of the direct approxima-
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tion of V at one collocation node, allowing real price to vary. The purely polynomial left-hand

side tracks the right-hand side well for much of the time, with the Chebyshev approximation

exhibiting traditional equioscillatory behavior. At nondi¤erentiable points� where the pric-

ing decision switches between changing and keeping� the �t predictably deteriorates. Figure

1(b) plots the comparable cross-section of the left- and right-hand sides for V implied when

approximating V K and V C directly. Because a single polynomial is no longer used to ap-

proximate a kinked function, the left-hand side plotted in panel (b) more precisely captures

the nondi¤erentiable switching points.11 Di¤erences between the plotted left- and right-hand

sides represent errors in the �rms�problem, since �rms�values, as represented by the right-

hand side, are based in part on next period expectations involving the left-hand side. The

discretization technique does not require similar assessment, since value function iteration

produces discretized values for V that are internally consistent to a prescribed tolerance.12

Figure 2 compares the value functions across the solution techniques, varying real price

and with all other states at steady-state values. The methods yield similar results. Quali-

tatively, the hump-shaped regions of �rm inaction and the �at portions in which �rms re-

optimize nominal price cover virtually identical areas of the real-price space. Quantitatively,

the results di¤er at most by 2:5%.

11The collocation equation (14) is solved to within a maximum absolute tolerance of 1E�8 in the standard
norm. When approximating V with 448 collocation nodes, this yields a global maximum absolute percentage
di¤erence between the left- and right-hand sides of 0:1%. When approximating V K and V C directly, the
global maximum absolute percentage di¤erence between the implied left- and right-hand sides of V is 0:05%.
The Appendix contains a detailed analysis of the precision of the collocation method given larger numbers
of nodes.
12The maximum absolute percentage di¤erence between value function iteration loops was set to 1E�6;

varying this tolerance did not a¤ect the analysis.
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V.2 Comparing Simulated Economies

The ideal way to compare model simulations across solution techniques is to subject

the methods to the same exogenous processes and examine the responses of endogenous

variables. This is slightly problematic in the current context, since discretization requires

approximation through Markov processes and remaining "on the grid" whereas collocation

presumes normal shocks and can handle arbitrary states. To avoid this inconsistency, we

use the Markov approximations to (4) and (9) to draw random series for idiosyncratic pro-

ductivity and money growth, respectively, and simulate the responses of the discretized and

collocation economies to these same series.

Figure 3 plots the in�ation and output gap series generated by the solution techniques

for a representative 96-quarter period. The in�ation series move in virtually identical ways

and are highly correlated with each other; the output gaps are similar but exhibit more

di¤erences to the naked eye, since small di¤erences in in�ation translate into relatively

larger di¤erences in output gaps. In general, adding more discretization grid points or

Chebyshev nodes produces similar results. By contrast, if one were to use only a few hundred

thousand discretization grid points, or very few Chebyshev nodes, the dynamics would di¤er

quantitatively and qualitatively between the solution methods.

V.3 Computing Time and Resources

The more interesting comparisons between the models, however, embrace the fact that

the discretization and collocation solution techniques generate di¤ering exogenous processes

because discretization uses Markov approximations for (4) and (9). The number of discretiza-

tion grid points a¤ects not only the Markov approximations for the exogenous processes but
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also the endogenous responses as well. We consider how these issues a¤ect the mechan-

ics of solving and simulating the model, as well as the ensuing dynamics, in the following

sub-sections.

Crucial considerations for economists doing computational work are the time and mem-

ory required to solve and simulate� and, potentially, estimate� a model. Along these lines,

we �nd a tradeo¤ between memory usage and computational time across solution tech-

niques. Figure 4 plots the maximum memory required to solve and simulate the model using

discretization and collocation for di¤erent numbers of discretization points and collocation

nodes. For a reasonably �ne grid with 7:5 million points, discretization requires more mem-

ory than collocation. Figure 5 plots the total amount of time required to solve and simulate

the model across techniques. With 7:5 million grid points, discretization requires a fraction

of the time of collocation.13

The reasons for the time-memory tradeo¤ are simple. Discretization stores the value

and policy functions at every discrete point, absorbing a large amount of memory. Once this

information is stored, model simulation is very fast because �rms�actions are constrained

to the grid and these are read directly from the policy matrix. The continuous nature of

collocation avoids the need for large amounts of memory usage, but it requires polynomial

evaluations to determine �rms�actions at the continuously varying states. The time required

for these evaluations makes collocation much slower than the grid technique, especially as

the size of the matrix calculations involved becomes increasingly large.14

13A dual-processor/dual-core 3:0 GHz CPU with 8:0 GB of RAM was used for the computations. Each
method required approximately 2; 000 lines of MATLAB code, with faster development time for the dis-
cretization method. Parallelization would reduce processor time for both discretization and collocation,
more so for the latter. However, as not all economists may be able to take advantage of parallelization, we
do not report times for it.
14In general, collocation via Newton�s method requires less time to solve for the value function than
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Note that there are missing observations associated with collocation in the �gures. These

are cases in which the solution technique failed to solve or simulate the model correctly for

a given combination of Chebyshev nodes. We discuss this below in more detail.15

V.4 Macro Moments

Given series for money growth, in�ation, and the output gap, one can calculate any

number of business cycle statistics. For the sake of space, we summarize macro moments

generated by the model along several dimensions. Others, such as standard deviations,

autocorrelations, cross-correlations, and other regressions, are available upon request.

A useful and parsimonious description of the macro properties of the model comes

from the coe¢ cients from (10), b1 and b2, since these coe¢ cients measure the persistence of

real output movements and the response of output to nominal money shocks, respectively.

Figure 6 plots the average regression value for b1 and Figure 7 plots the average for b2 across

s = 100 simulations to mitigate the impact of di¤ering shocks. In each case, the estimated

discretization coe¢ cients in panel (a) stabilize to a narrow band once the grid becomes "�ne

enough."

Panel (b) shows the same average coe¢ cients from collocation, along with the estimates

from the discretization case with 7:5 million grid points for comparison. Qualitatively, the

average discretization and collocation coe¢ cients all have the same (positive) sign. However,

there are clear quantitative di¤erences between the discretization coe¢ cients and those from

collocation. Moreover, there is little evidence to suggest that the collocation coe¢ cients

discretization with value function iteration, though this discrepancy disappears with a large number of
collocation nodes and quadrature nodes. In turn, this implies that value function iteration combined with
interpolation (to allow �rms to move o¤ the grid) during simulation would be the worst of both worlds.
15The vertical dotted lines in the collocation �gures highlight where changes were made to the number of

nodes other than real price. The Appendix contains the combinations used.
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converge as one adds more Chebyshev nodes, especially for the money growth coe¢ cient.16

This suggests that a quantitative analysis of the properties of this state-dependent pricing

model may indeed be sensitive to the solution technique.

Impulse response analysis comes to a similar conclusion. Figure 8 plots generalized

impulse responses (see Koop et al. 1996) for in�ation and the output gap from a one standard

deviation (1:6% annualized) shock to money growth in time period 0 for the discretization

and collocation cases. Qualitatively, both discretization and collocation produce similar

responses, though there are modest quantitative di¤erences.

V.5 Micro Moments

SDP models have risen in popularity as economists have sought to construct models to

match salient micro pricing facts. Thus the micro moments emanating from the models� and,

implicitly, the structural parameters needed to produce those moments� are of quantitative

importance. Figures 9 and 10 display two common statistics in this literature: the average

duration between price changes, and the average (absolute) size of price changes. These

moments are primarily determined by the size of the menu cost � and the standard deviation

of productivity shocks ��, which are calibrated as in Table 1.

As the �gures show, the micro pricing moments converge quite quickly as more dis-

cretization grid points are added; similar convergence is not apparent for feasible numbers

of collocation nodes. While the moments generated by all the methods are broadly similar,

statistically signi�cant quantitative di¤erences do arise. By implication, estimation of struc-

16These conclusions hold in statistically signi�cant ways, though we omit the two standard error bands
from the collocation cases to simplify the �gures. For both the discretization and the collocation cases, a
solution techniques�moments will converge to the "truth" implied by that technique as the number of grid
points/nodes goes to in�nity. Given the time demands of collocation (Figure 5), we were unable to �nd such
convergence for feasible numbers of collocation nodes.
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tural parameters � and �� via a moment-matching exercise would thus be a¤ected by the

choice of solution technique.

V.6 Robustness

Alternative parameterizations of the model are clearly possible. In one, we consider the

case of strategic neutrality among price setters. The results generally echo those above: the

solution techniques yield qualitatively similar results along the dimensions considered, but

quantitative di¤erences remain.

In another parameterization, we increased the amount of real rigidity in the model by

increasing the elasticity of substitution to � = 11 and the inverse labor supply elasticity to

� = 1, generating a reduced-form real rigidity parameter around 0:13� a substantial amount

of strategic complementarity but within the range of plausible values suggested by Woodford

(2003). Despite using the same procedures to solve and simulate the model as outlined

above, the discretization and collocation techniques now generate di¤erences quantitatively

and qualitatively. This �nding is well represented by Figure 11, which plots generalized

impulse responses for the two solution methods.

The reasons for this discrepancy primarily reside with the collocation method, and in

particular with the polynomial interpolants and approximants used to simulate the model.17

These polynomials make model simulation practical, since the alternative� explicit evalu-

ation of the right-hand sides of (11), (12), and (13)� takes more than 20 times longer to

perform for every evaluation. But in this case with substantial real rigidity, the interpolants

and approximants become imprecise and generate spurious results. This sensitivity to pa-

17Recall from Section III that we use the polynomial interpolants V K (S) and V C (S) for collocation for
V , and the approximants V K =

P
�Ki
� i (S) and V

C =
P
�Ci
� i (S) for collocation for V

K and V C .
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rameter calibration is an important drawback to the collocation method. The Appendix

contains more details.

Collocation also su¤ers from a lack of robustness in the solution techniques used for

(14). We solve for � using a fairly standard application of Newton�s method; we also con-

sidered quasi-Newton and function iteration methods, but none of these proved superior

or even feasible in terms of accuracy and computing time. Using Newton�s method comes

with the substantial cost of local convergence, however, and with problems characterized

by high-dimensionality from a large number of collocation nodes it can fail to produce a

coe¢ cient solution� as clearly evidenced by the missing observations in the above �gures.

These issues are exacerbated by the presence of discrete choices implying nondi¤erentiabil-

ities at certain points of the state space, and they are also present in the underlying �rm

optimization for ~pj in (11) and (13), which is carried out using a univariate version of New-

ton�s method augmented with an initial grid search over the real price space to obtain more

accurate starting points for �nding ~pj. For the larger-scale problem (14), we also investigated

a version of our technique which adaptively increases the number of real price nodes using

previous solutions as subsets of new starting points, but this also fails to produce solutions

for certain numbers of nodes and calibrations.18 Alternative solution techniques, perhaps

including derivative-free methods other than function iteration, might robustly produce co-

e¢ cient solutions for a larger set of nodes and calibrations, but they would require increased

computational time that would only add to the already lengthy time required to solve and

simulate using collocation.19

18The techniques we consider are commonly used for solving problems of this type; see Aruoba et al.
(2006) or Miranda and Fackler (2002).
19See Midrigan (2008) for an application of a simplex-based solution method to an SDP model.
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VI Analysis

The common theme to emerge from the above �ndings is that the discretization and collo-

cation methods generally provide qualitatively similar results, but the quantitative results

di¤er in statistically signi�cant ways. This latter point is important for economists using

these models to calibrate or estimate structural parameters. Given this fact, which solution

technique is preferable?

In our view, the weight of the evidence ranks discretization ahead of collocation. This

conclusion is based on several facts. First, moments in the discretization technique appear

to converge (Figures 6, 7, 9, and 10) without requiring extraordinarily large numbers of grid

points and/or computational time. We do not �nd the same convergence in the collocation

moments for feasible numbers of nodes. Second, even with a fairly �ne grid (e.g., 7:5 million

grid points), the time savings from discretization are staggering (Figure 5) and favor this as

the more practical choice for economists doing estimation or repeated simulations. Third,

the relative simplicity of discretization and its robustness to alternative numbers of nodes

and calibrations make it a more reliable solution method than collocation. Aside from the

issues documented in Section V.6 with the polynomial interpolants for the case of substantial

real rigidity, the nonlinear root-�nding methods used to solve (14) or for ~pj can su¤er from

a lack of robustness and fail to solve the model.

Our �ndings favoring discretization for SDP models can be compared with the results of

two related papers. Aruoba et al. (2006) compare a broad range of computational methods

for solving a smooth neoclassical growth model with a lower-dimensional state space and

report results generally favoring collocation. We validate their warning that these results are
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likely not generalizable to problems with nondi¤erentiabilities such as ours. Hatchondo et al.

(2008) compare discretization and collocation in a model of sovereign default and conclude

that both qualitative and quantitative di¤erences exist due to inaccuracies associated with

discretization. Our problem di¤ers from theirs in two important ways. First, their state-

space is lower-dimensional, thus avoiding some of the constraints that we encounter using

collocation. Second, we analyze moments that stabilize with discretization grids of around

7:5 million points. Even allowing for the larger dimension of our states, this implies much

denser coverage than the 30 thousand discretization grid points Hatchondo et al. (2008) are

constrained to due to memory limitations.

Finally, two economic points are worth noting. The �rst of these concerns the forecasting

rule (10). In theory, the combination of real rigidity� or strategic complementarity, which

makes �rms� decisions dependent on the actions of others� and state-dependent pricing

produces conditions for multiple equilibria, and these conditions may be worsened by the

use of a forecasting rule, since the latter could act as a sunspot to coordinate �rms�actions.

Fortunately, this does not appear to be the case. The idiosyncratic shocks in the model�

needed to match the size of price changes in empirical data� help to decouple �rms�desired

actions (Caballero and Engel 1993). At the same time, the forecasting rule does not appear

to be powerful enough to dominate the intrinsic dynamics of the model. While we lack

analytical proof, multiple simulations begun from distinct starting points for the forecasting

rule consistently converge to the same �nal forecasting rule coe¢ cients.

The second point concerns real rigidity, menu costs, and the size of the idiosyncratic

productivity shocks. In the model, �rms face speci�c factor markets for labor when � > 0�

which, as Woodford (2003) notes, can be a powerful source of real rigidity while at the same
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time adding realism to a business cycle model, since factor prices cannot instantaneously

adjust across all �rms within an economy. In general, the greater is the real rigidity in the

economy, the larger must be menu costs and productivity shocks in order to make the model

consistent with the empirical data on the frequency and size of price changes. This implies

that in the baseline calibration, menu costs must average 2:1% of revenues and productivity

shocks require a standard deviation of 22:5% to be consistent with micro pricing evidence.

These numbers that would appear to be implausibly large by most accounts: for instance,

the industrial manufacturer in Zbaracki et al. (2004) paid literal menu costs of 0:04% of

revenues, and Levy et al. (1997) document that supermarkets�menu costs amount to 0:7%

of revenues.20 That �rm-speci�c labor markets are di¢ cult to reconcile within SDP models is

consistent with similar �ndings for diminishing returns to labor (� < 1) in Golosov and Lucas

(2007) and for kinked demand curves in Klenow and Willis (2006), supporting Nakamura

and Steinsson�s (2007) conjecture that real rigidity must emanate from other sources.

VII Conclusion

This paper solves and simulates a New Keynesian model with state-dependent sticky prices

using two alternative methods: discretization and collocation. We compare and contrast

the solution techniques along a variety of dimensions, including macro (business cycle) mo-

ments, micro (pricing) moments, impulse responses, and computational aspects. In general,

we �nd that the models yield qualitatively similar results that can di¤er from each other

20Dotsey and King (2005) highlight a similar �nding with regard to the size of menu costs (around 5:5%
of revenues to generate durations around 4 quarters). However, their SDP model di¤ers signi�cantly: idio-
syncratic shocks come in the form of randomized menu costs, rather than idiosyncratic productivity and a
constant menu cost as in this paper. In addition, they focus only on the duration between price changes
rather than their size as well.
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quantitatively in statistically signi�cant ways.

However, we also document some important shortcomings that can arise with the col-

location method� such as imprecision in polynomial interpolants, the inability of locally

convergent root-�nding solution methods to handle large numbers of nodes and alternative

calibrations, and the notable failure of moments to quickly converge as more nodes are added

to the problem� which do not a¤ect the discretization technique. We illustrate one example

in which these shortcomings can produce spurious results under collocation, causing qual-

itative and quantitative discrepancies between the methods. Partly on this basis, we view

the evidence as supporting discretization over collocation for state-dependent pricing models

using simulation techniques.

An open question at this point is the extent to which these results hold for state-

dependent pricing models that replace forecasting rules with simulation-free or linearization

techniques� as well as the similarities and di¤erences between these alternative ways of

closing the model. We pursue this issue further in ongoing research.

VIII Appendix

The �gures in the text present results from discretization grids varying in size from 100

thousand to 25 million points and results from collocation with 252 to 1625 nodes. Table A1

shows the exact number of points and nodes for each state variable for each combination.

To relax the assumption of strategic complementarity across price setters, we re-calibrate

the model for strategic neutrality. Doing so requires common factor markets (� = 0, hence

the utility function is linear in labor) and constant returns to labor (� = 1). The elasticity

of substitution is calibrated as in Golosov and Lucas (2007), � = 7. Matching data on
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the micro pricing moments requires � = 0:02075 and �� = 0:07025. Along virtually all

dimensions, the discretization and collocation methods produce results in line with those

for the baseline real rigidity case. Direct simulation comparisons remain similar; collocation

requires less memory but more time to solve and simulate the model; and average coe¢ cients

from (10) and micro pricing moments are qualitatively similar but quantitatively di¤erent in

statistically signi�cant ways. As with the case of additional real rigidity in Section V.6, we

present a generalized impulse response in Figure A1 as a convenient summary of the above.

Section V.6 presents an alternative calibration with substantial real rigidity that deliv-

ers quantitatively and qualitatively di¤erent results across methods. As plotted in Figure

A2, the baseline calibration approximations for V K yield accurate �rm decisions because

polynomials do not distort the relationship between V K and V C , as seen in panels (a) and

(b). When there is substantial real rigidity, the variation in V K is large, as indicated by the

di¤erent vertical axes in panels (c) and (d). Errors in the approximations absorb this change,

and �rms sometimes choose to keep their prices unchanged when the polynomial representing

V K inaccurately rises above V C . These incorrect decisions lead directly to more �rm-level

price rigidity and the qualitative di¤erences evident in Figure 11.

In principle, larger numbers of collocation nodes N can solve problems with the colloca-

tion method by providing more precise approximations. Figure A3 presents results under the

baseline calibration. Varying N , we measure both the global maximum absolute percentage

di¤erence between the left- and right-hand sides of the Bellman equation and computational

time. Values above the plotted line indicate that relative gains to the precision of the value

function V are greater than the increase in required time. The reduced benchmark for this
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exercise is a case with 320 nodes.21 When performing collocation on V directly, the tradeo¤

is less favorable due to the inability of a smooth polynomial to replicate the function�s sharp

points where the �rm switches between keeping and changing its price. When performing

collocation on V K and V C , the use of two polynomials for V makes capturing these kinks

trivial, and it is less costly to reduce error. Note, however, that even with more real price

nodes we never obtain relative increases of precision of more than 30.
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Table 1: Calibrations 
 

β 0.99 discount rate 
σ 1 inverse intertemporal elasticity of substitution 
φ  0.5 inverse labor supply elasticity 
θ 5 elasticity of substitution 
α 2/3 returns to labor 
ρa 0.35 persistence of productivity 
σξ 0.225 standard deviation of productivity shocks 
Φ 0.156 menu cost, in terms of labor 
μ 0.006 steady state money growth 
ρ 0.37 persistence of money growth 
σε 0.0048 standard deviation of money growth shocks 
τc 0.005 tolerance for the forecasting rule 
n 5000 number of firms 
T 96 simulation length (quarters) 
S 25 simulations for computing forecasting coefficients 
s 100 simulations for moment computations 
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Figure 1: Collocation Precision 
 

(a): Collocation using V 
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(b): Collocation using VK, VC
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Notes: Collocation results use 448 Chebyshev nodes. In panel (a), LHS is the 
left-hand side of equation (11), and RHS is the right-hand side. In panel (b), 
LHS is the maximum of the left-hand sides of equations (12) and (13), and RHS 
is the maximum of the right-hand sides. 
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Figure 2: Comparing Value Functions 
 

60

60.2

60.4

60.6

60.8

61

61.2

61.4

61.6

61.8

62

0.74 0.82 0.89 0.97 1.04 1.12 1.19

Real price

V
al

ue

Discretization

Collocation (VK,VC)

Collocation (V)

  
Notes: Discretization uses 7.5 million grid points, while collocation cases use 
448 Chebyshev nodes. Productivity, money growth, and output are all constant 
at their steady state values. 
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Figure 3: Simulation with Identical Shocks 
 

(a): Inflation (annualized) 
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(b): Output gaps 
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Notes: Plotted are series for inflation and the output gap for one 96-quarter sim-
ulation with the same exogenous processes for money growth and productivity 
across the methods. Discretization uses 7.5 million grid points, while collocation 
cases use 448 Chebyshev nodes. 
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Figure 4: Maximum Memory Usage 
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(b): Collocation 
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Notes: In panel (a), K=thousand and M=million. In panel (b), coll. denotes collocation on either the value function (V) or for 
the value to keeping (VK) and the value to changing (VC). Disc. (7.5M) denotes discretization with 7.5 million grid points.  

 

 



 

Figure 5: Time to Solve and Simulate Models 
                 

(a): Discretization 
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(b): Collocation 
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Notes: In panel (a), K=thousand and M=million. In panel (b), coll. denotes collocation on either the value function (V) or for 
the value to keeping (VK) and the value to changing (VC). Disc. (7.5M) denotes discretization with 7.5 million grid points.  

 
 

 



 

Figure 6: Regression Coefficient on Lagged Output 
                                              

(a): Discretization 
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(b): Collocation 
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Notes: Plotted are the average b1 coefficients across 100 simulations from regressions of m0 1 1 2ln lnY b b Y b= −+ + Δ  on 96 
quarters of simulated data. In panel (a), the dashed lines are two standard error bands, K=thousand and M=million. In panel 
(b), coll. denotes collocation on either the value function (V) or for the value to keeping (VK) and the value to changing (VC). 
Disc. (7.5M) denotes discretization with 7.5 million grid points. 

 



 

Figure 7: Regression Coefficient on Money Growth 
                                                  

(a): Discretization 
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(b): Collocation 
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Notes: Plotted are the average b2 coefficients across 100 simulations from regressions of m0 1 1 2ln lnY b b Y b= −+ + Δ  on 96 
quarters of simulated data. In panel (a), the dashed lines are two standard error bands, K=thousand and M=million. In panel 
(b), coll. denotes collocation on either the value function (V) or for the value to keeping (VK) and the value to changing (VC). 
Disc. (7.5M) denotes discretization with 7.5 million grid points. 

 



 

Figure 8: Generalized Impulse Responses 
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(b): Inflation (annualized) 
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Notes: Responses of the output gap and inflation to a one standard deviation shock to money growth at time 0. Disc. denotes 
discretization with 7.5 million grid points. Coll. denotes collocation on either the value function (V) or for the value to 
keeping (VK) and the value to changing (VC) with 448 Chebyshev nodes. 

 



 

Figure 9: Average Duration between Price Changes 
                                                     

(a): Discretization 
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(b): Collocation 
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Notes: Plotted are the average duration between price changes across 100 sets of 96 quarters of simulated data. In panel (a), 
the dashed lines are two standard error bands (which nearly coincide with the observations), K=thousand and M=million. In 
panel (b), coll. denotes collocation on either the value function (V) or for the value to keeping (VK) and the value to changing 
(VC). Disc. (7.5M) denotes discretization with 7.5 million grid points. 

 



 

Figure 10: Average Size of Price Changes 
                                             

(a): Discretization 
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(b): Collocation 
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Notes: Plotted are the average absolute size of price changes across 100 sets of 96 quarters of simulated data. In panel (a), the 
dashed lines are two standard error bands (which nearly coincide with the observations), K=thousand and M=million. In 
panel (b), coll. denotes collocation on either the value function (V) or for the value to keeping (VK) and the value to changing 
(VC). Disc. (7.5M) denotes discretization with 7.5 million grid points. 

 



 

Figure 11: Generalized Impulse Responses, Substantial Real Rigidity 
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(b): Inflation (annualized) 
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Notes: Responses of the output gap and inflation to a one standard deviation shock to money growth at time 0. Disc. denotes 
discretization with 7.5 million grid points. Coll. denotes collocation on either the value function (V) with 448 Chebyshev 
nodes or for the value to keeping (VK) and the value to changing (VC) with 900 Chebyshev nodes. 

 

 



 

Table A1: Discretization Grid Points and Collocation Nodes 
 

Discretization Collocation
Total number 
of grid points 

Real price 
(pj/P) 

Productivity 
(aj) 

Money 
growth (Δm) 

Output 
(Y) 

Total number 
of nodes 

Real price 
(pj/P) 

Productivity 
(aj) 

Money 
growth (Δm) 

Output 
(Y) 

100K 349 9 5 7 252 7 4 3 3 
200K 349 13 5 9 324 9 4 3 3 
400K 349 15 7 11 396 11 4 3 3 
750K 349 23 7 13 468 13 4 3 3 
1.5M 349 29 9 17 540 15 4 3 3 
3M 349 35 11 23 612 17 4 3 3 
5M 349 41 13 27 720 20 4 3 3 

7.5M 349 45 15 31 315 7 5* 3 3 
10M 349 51 17 35 405 9 5* 3 3 
15M 349 55 19 41 495 11 5* 3 3 
20M 349 63 21 43 585 13 5* 3 3 
25M 349 67 23 47 765 17 5* 3 3 

     900 20 5* 3 3 
     448 7 4 4 4 
     576 9 4 4 4 
     704 11 4 4 4 
     832 13 4 4 4 
     960 15 4 4 4 
     1088 17 4 4 4 
     1344 21 4 4 4 
     560 7 5* 4 4 
     720 9 5* 4 4 
     880 11 5* 4 4 
     1040 13 5* 4 4 
     1360 17 5* 4 4 
     875 7 5 5 5 
     1125 9 5 5 5 
     1375 11 5 5 5 
     1625 13 5 5 5 

42

Notes: The total number of grid points is an approximation; K=thousand, M=million. For collocation, there are 3 quadrature 
nodes for money growth for all cases. For collocation approximating VK and VC, * denotes the use of 4 quadrature nodes; all 
other cases use 3 quadrature nodes for productivity. 

 



 

Figure A1: Generalized Impulse Responses, Strategic Neutrality 
 

(a): Output gaps 
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(b): Inflation (annualized) 
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Notes: Responses of the output gap and inflation to a one standard deviation shock to money growth at time 0. Disc. denotes 
discretization with 7.5 million grid points. Coll. denotes collocation on either the value function (V) or for the value to 
keeping (VK) and the value to changing (VC) with 448 Chebyshev nodes. 

 

 



 

Figure A2: Interpolant versus Actual Values 
 

(a): Baseline, Collocation using V 
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(b): Baseline, Collocation using VK, VC
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(c): Substantial real rigidity, Collocation using V 
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(d): Substantial real rigidity, Collocation using VK, VC
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Notes: For collocation using V, interpolant is KV . For collocation using VK and VC, interpolant is the left-hand side of (12). 

 



 

Figure A3: Accuracy of Approximation with Additional Collocation Nodes 
 

(a): Collocation using V 
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(b): Collocation using VK, VC
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Notes: Relative precision represents the ratio of the global maximum absolute percentage difference between the left- and 
right-hand sides of the Bellman equation under a benchmark number of collocation nodes to the same metric with a different 
number of nodes. Relative time represents the ratio of computing time required with an alternative number of nodes to 
computing time in the benchmark. 
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