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A Solution Methods

This section describes the equilibrium of the model with no aggregate uncertainty as well as the details of the
KS, PARAM, XPA, REITER and WINBERRY solution methods. To maintain generality the bulk of the
section focuses on describing the algorithms or equilibrium concepts themselves. Therefore most numerical
details (grid sizes, optimization algorithms, etc) are deferred to a listing in Appendix B.

A.1 No Aggregate Uncertainty Model

The equilibrium definition of the steady-state model or model with no aggregate uncertainty is identical to the
equilibrium with aggregate uncertainty discussed in the main text with constant aggregate productivity A.
Unless otherwise specified, the steady-state model will be solved with A = 1. With a constant aggregate state
space, individual firm states are given by the far smaller state space (z, k), and solution of the no aggregate
uncertainty model simply involves repeatedly guessing values of the market-clearing price or consumption,
computing an ergodic cross-sectional distribution µ(z, k) based on the price-implied policies and adjustment
thresholds, and then checking consistency with the guessed price level. In the code available for this paper,
the price clearing is performed using bisection, and calculation of an ergodic cross-sectional distribution
given a price level follows the nonstochastic or histogram-based approach of Young (2010). In turn, this
approach requires a projection grid for value functions, a denser simulation grid for idiosyncratic capital,
and a discretized productivity process at the idiosyncratic level. For completeness, the equilibrium equations
are listed below:
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where I have that policies for labor have a closed-form and capital policies follow a threshold rule, given
optimal policies k
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and that µ(z, k) is the ergodic distribution implied by a discretization as in Young (2010) together with
application of the capital policies, adjustment cost thresholds, and idiosyncratic productivity transitions.
Once the equilibrium is obtained, it is trivial to compute aggregate capital as K =

R

kdµ(z, k).

A.2 Krusell Smith (KS)

The KS solution method used in the paper, following Khan and Thomas (2008) assumes that the set of
approximating moments m in the aggregate state space of the model is equal to the mean or aggregate
capital level K. Further, the solution method discretizes idiosyncratic and aggregate productivity processes
following Tauchen (1986). Conditional upon a discretized level of aggregate productivity A, the forecast
rules for price and next period’s aggregate capital level take a loglinear form:
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Recall that from the household problem this yields a forecast wage level ŵ = �
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. Given these choices, the

solution algorithm works as follows. First, guess an initial forecast rule system �̂(1) = (↵(1)
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Then, before the solution iteration takes place, draw a large number T of exogenous aggregate productivity
values based on the discretized Markov chain for A. Finally, in iteration s = 1, 2, ... do the following

1. Given forecast rule system �̂(s), solve the following system of equations via projection on some grid of
states (z, k;A,K)
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which determines value function V(s)(z, k;A,K). Note that expectations are computed via summation
over the appropriate portion of the discretized transition matrices ⇧z and ⇧A for idiosyncratic and
aggregate productivity, respectively, and that the solution to the Bellman equations can be achieved
with policy iteration, Howard acceleration of the Bellman equations, and continuous univariate op-
timization techniques in next period’s capital level k0, such as Brent optimization or golden section
search.

2. Given the value function solution from step 1, simulate the model. Simulation follows the nonstochastic
approach of Young (2010), and requires initialization of the cross-sectional distribution of capital and
productivity µ(z, k) over a dense, discrete grid of (z
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each period t, market-clearing prices p

t

must be determined without reference to the forecast price
level p̂(s) (which appears only through embedded expectations in the continuation value). The price
clearing algorithm, for a given guessed price value p̃ requires calculation of the excess demand or error
function, which is done as follows:
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where the optimization over labor is a static problem which yields an analytical reduced-form
for the right hand side expressions which can be optimized in capital k0 alone. Let optimal labor
and capital policies conditional upon adjustment be given by n

⇤(z
i

, k

j

) and k

0⇤(z
i

, k

j

). I have
suppressed dependence on the aggregate states (A,K) for the moment, which is constant through
the market-clearing process.
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• Compute implied output, investment, consumption, and labor from
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• Define the excess demand function or clearing error as 1
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• If excess demand is suitably small, the clearing algorithm stops. If not, repeat with an updated
value of p̃, using any preferred method such as bisection.
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), update the discretized distribution
µ

t+1(zi, kj) for the next period. Based on Young (2010), distributional transitions are calculated
through linear interpolation of capital policies and use of the idiosyncratic productivity transition
matrix
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, k1) is the non-adjustment next-period capital stock. Also, with
µ

t+1 in hand, next period’s simulated capital stock is computable as
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• Continue to simulate period t+ 1.

3. With the simulation from periods 1 to T completed given forecast rules �̂(s), discard some number T
erg

of periods as initialization, and update the forecast rules based on OLS regressions. Run the loglinear
OLS regressions of realized prices p

t

on aggregate capital stocks K

t

and realized next-period capital
stocks K

t+1 on current stocks K
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, where new coe�cients (↵̂
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) are obtained separately
for each level of aggregate productivity, and compute forecast rule errors as the maximum absolute
di↵erence between assumed coe�cients �̂(s) and the new estimated values. If the coe�cients have

converged to an acceptable tolerance, the model is solved. If not, then update �̂(s+1) using dampened

fixed-point iteration, i.e. set �̂(s+1) equal to a weighted average of �̂(s) and the newly estimated
coe�cients. Then continue to solution iteration s+ 1.
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A.3 Parameterized Distributions (PARAM)

This is a discussion of the computational algorithm due to Algan et al. (2008, 2010a) (henceforth AADH)
which relies upon higher-order reference moments, as well as assumed functional forms for the cross-sectional
distribution of idiosyncratic capital and productivity µ(z, k) in the solution of the model.

Just as in the KS algorithm, I first must discretize the aggregate and idiosyncratic productivity processes
following Tauchen (1986). Let the number of idiosyncratic (aggregate) productivity points be given by
n

z

(n
A

). Then, prior to the solution of the model, I first determine a set of aggregate moments m to
be included in the aggregate state space. Here, this will be the singleton of aggregate capital, the cross-
sectional mean K. Together with aggregate productivity, (A,K) therefore forms the aggregate state. Then,
determine a set of reference moments mref used to help pin down the shape of the cross-sectional distribution
of idiosyncratic capital and productivity. Here, this will be the first n

M

n

z

centered moments of the capital
distribution conditional upon each value of idiosyncratic productivity. Also, compute the exogenous ergodic
distribution of idiosyncratic productivity ⇡̃

z

for future use.
The reference moments are needed in this algorithm because, together with the aggregate capital state,

they jointly determine the coe�cients of the flexible exponential function form for the approximation to
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As discussed in AADH, a well-behaved convex minimization problem which is laid out below yields
a mapping between the n

z

n

M

moments of the cross-sectional distribution and coe�cient vectors ⇢

z

i

, i =
1, ..., n

z

, because the first-order conditions of this problem are identical to the moment conditions setting
distributional and reference moments equal to each other. I assume when manipulating or integrating this
distribution that idiosyncratic capital lies in the bounds [k, k̄].

To solve the model, start with an initial constant guess for these reference moments, from the distribution
in the steady-state model with no aggregate uncertainty. If desired, simulation can later provide a set
of reference moments which vary with the level of aggregate productivity, or these steady-state reference
moments themselves can be held fixed. Although I will outline both the repeated simulation and simulation-
free approaches below, the results reported in the paper hold the reference moments at their steady-state
levels. Finally, another option is also to use a regression forecast system from (A,K) ! m

ref , although
following AADH I forego that approach here.

1. Iterate over the reference moments or the reference moment forecasting system, which yields a constant
or variable mapping (A,K)! m

ref .

(a) Loop over the aggregate states (A,K), on the discretized grid for A and some projection grid for
K.

• For each (A,K) and implied m
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noting that the constants ⇢

z

i

a,K,0 are irrelevant for the minimization and are simply chosen
to ensure integration to 1. This is a well-behaved convex minimization problem and the
integral can be computed via any standard quadrature rule. Here and throughout, integrals
are computed via Simpson’s rule. It is important to note that any rule with fixed nodes
and weights is preferable to adaptive methods because fixed rules contribute to stability
in the minimization problem above. The minimization is implemented in this paper using
a robust and quick quasi-Newton routine with symmetric rank-one (SR1) updating of the
approximation to the inverse Hessian.

(b) Iterate over V(s)(z, k; a,K) to convergence.
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• Loop over the aggregate states (A,K). For each (A,K), use any nonlinear equation system
solver in p,K

0 to obtain p(A,K) and K

0(A,K). The method used in this paper is dampened
fixed-point iteration in the pair p,K 0.

– For each value of p,K 0, evaluate on the discretized grid for z and some spline projection
grid for k the following equations:

V

A

(s+1)(z, k;A,K) = max
k

0
,n

(

p

⇣

zAk

↵

n

⌫ � k

0 + (1� �)k � �

p

n

⌘

+�E
z

0
,A

0
V(s)(z

0
, k

0;A0
,K

0)

)

V

NA

(s+1)(z, k;A,K) = max
n

⇢

p

✓

zAk

↵

n

⌫ � �

p

n

◆

+ �E
z

0
,A

0
V(s)(z

0
, (1� �)k;A0

,K

0)

�

⇠

⇤(z, k;A,K) =
V

A

(s+1)(z, k;A,K)� V

NA

(s+1)(z, k;A,K)

�

V(s+1)(z, k;A,K) =
��
R

⇠

⇤(z,k;A,K)
0 ⇠dG(⇠) +G(⇠⇤(z, k;A,K))V A

(s+1)(z, k;A,K)

+ (1�G(⇠⇤(z, k;A,K)))V NA

(s+1)(z, k;A,K)

– Then, compute the errors to the system of equations in p and K

0 given by

1

p

=
n

z

X

i=1

⇡̃

z

i

Z

k̄

k



zAk

↵

n(z
i

, k;A,K)⌫

�G(⇠⇤(z
i

, k;A,K))(k0(z
i

, k;A,K)� (1� �)k)

�

P (k, ⇢zi
A,K

)dk

K

0 =
n

z

X

i=1

⇡̃

z

i

Z

k̄

k



G(⇠⇤(z
i

, k;A,K))k0(z
i

, k;A,K)
+(1�G(⇠⇤(z

i

, k;A,K)))(1� �)k

�

P (k, ⇢zi
A,K

)dk,

where above the calculation requires the ability to compute n(z
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, k;A,K) at a set of Simpson integration nodes in k. These can be computed by
recalculation of the right hand sides of the Bellman equations above at the quadrature
nodes in k, and this task is simplified by noting that capital policies depend only on
idiosyncratic productivity and that the labor demand optimization is static and can
be obtained in closed-form. Also, the densities P (k, ⇢zi

A,K

) must be evaluated using
moments which reflect both the reference moments for higher-order terms but also the
current mean level of aggregate capital. Therefore, the first moments of capital used in
the construction of P (k, ⇢zi

A,K

) are linearly shifted to deliver consistency with K as the
current aggregate state.

• Error on the value function iteration is given by ||V(s+1) � V(s)||, which can be defined as
desired. The solution used in this paper is based on the max absolute percentage di↵erence.
If the value function has converged, exit the value function iteration process. If not, go
iteration s+ 1.

(c) At this point, a decision must be made. If the reference moments used in the solution are to be
held fixed at their steady-state values, the model is now solved. However, if the reference moments
are to be updated with simulation, then simulation must be performed as part of the solution
itself. In either case, simulation proceeds as follows, noting that a set of exogenous productivity
draws A

t

for T periods have been made outside of the solution loop. Given converged values
V , simulate the economy for a large number of periods, in each period imposing market clearing
to obtain p,K

0. For each period, do the following, taking advantage of the functional forms
assumed for the cross-sectional density.

• Start period t with a set of coe�cients ⇢zi
t

and moments m
t

(the first n
z

n

M

moments of the
idiosyncratic capital density conditional upon idiosyncratic productivity) which jointly pin
down the cross-sectional density in (z,K) for the period. Then using the value function from
above and the same fixed point iteration approach, compute the equilibrium p,K

0 consistent
with both the value function and the cross-sectional distributions for the current period.
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• Compute the value of all reference moments for the next period t + 1. These are higher-
order centered moments of the cross-sectional distribution of capital next period, and can
be computed directly via quadrature, given the policies and cross-sectional distribution
coe�cients of period t.

• Now that the reference moments are set for period t + 1, along with the aggregate capital
state, compute the coe�cients of the cross-sectional distribution associated with period t+1
using the exact same minimization step as above.

(d) After simulation is completed for all T periods, and a certain number T
erg

of initial periods are
discarded, you have two options. If the reference moments are held constant at their steady-
state values, you simply have an unconditional simulation of the model. If a fixed-point on the
reference moments is desired, then update the reference moments in the outer loop now. The ap-
propriate method depends on your assumptions for the reference moments. If you have assumed
one unconditional constant set of reference moments not varying with aggregates, compute the
unconditional average of each reference moment over the simulation. If you have assumed refer-
ence moments which vary with aggregate productivity, then compute the conditional average of
each reference moment given the value of aggregate productivity. If you have assumed a reference
moment forecasting system, update this system with OLS. Return to step (a) if the reference
moments have not converged based on some criterion, say max absolute di↵erence.

A.4 Explicit Aggregation (XPA)

First discretize the aggregate productivity process A and solve the steady-state model for each aggregate
productivity value A

k

, k = 1, ..., n
A

. For each level, save values of equilibrium price and capital stocks
p

SS(A
k

),KSS(A
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). Also, discretize the idiosyncratic productivity process and store the exogenous ergodic
distribution ⇡̃

z

of discretized idiosyncratic productivity for future use.
Set up the aggregate state space to include (A,K) and posit forecast rules for market-clearing prices

and next-period capital identical to the KS case. Then, solve the model exactly as in the case of the KS
algorithm, with two modifications:

(2’) Replace KS simulation step (2) with an “explicit aggregation” step. In particular, loop over aggregate
states (A,K), where A varies over its discretized grid and K varies over the same projection grid used
to compute the value functions.

• At each point (A,K), compute market-clearing prices via a solution routine like bisection over
price p, with implied output, investment, consumption, and next-period aggregate capital given
a guess p̃ defined by
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• Note that the end of this iteration generates a dataset (A,K) ! (p,K 0) as (A,K) varies over
the discretization and projection grids.

(3’) Replace KS update step (3) with a forecast update rule step using the dataset defined by explicit
aggregation step (2’).
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• First, update the current vector of forecast rule coe�cients �̂(s) by estimating
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A

bias correction terms

x

Bias

p

(A) = ↵̂

p

(A) + �̂

p

(A) log(KSS(A))� log(pSS(A))

x

Bias

K

(A) = ↵̂

K

(A) + �̂

K

(A) log(KSS(A))� log(KSS(A))

and adjust the new forecast rule coe�cients’ constant terms with

↵̂

p

(A) ↵̂

p

(A)� x

Bias

p

(A)

↵̂

K

(A) ↵̂

K

(A)� x

Bias

K

(A).

• Then, check the estimated coe�cients against the old coe�cients �̂(s). If they are within some
tolerance according to max absolute deviations, the model is solved and exit the routine. If the
forecast rules have not converged, use dampened fixed-point iteration to update the forecast rule
system �̂(s+1) based on rule (s) and the newly estimated system.

Note that the di↵erencing o↵ of xBias(A) is an attempt to correct for the Jensen’s inequality bias induced
by substitution of aggregate states into idiosyncratic policies. The bias results from lack of variation in the
cross-section of idiosyncratic capital when recovering market-clearing prices and next-period capital stocks.
However, the steady-state model prices and capital stocks do incorporate cross-sectional integration over a
distribution of idiosyncratic capital presumably similar to the distributions within the model with aggregate
uncertainty. The modification by the term x

Bias(A) requires that the estimated forecast system be able to
exactly reproduce as a fixed point the steady-state prices and aggregate capital stocks pSS(A) and K

SS(A),
conditional upon aggregate productivity.

Note also that after the model is solved, simulation is completed exactly as in the KS algorithm, using
the Young (2010) nonstochastic or histogram-based approach, and requiring market-clearing in each period
with integration over the full cross-sectional distribution of idiosyncratic capital.

A.5 Projection Plus Perturbation (REITER)

The REITER solution method is based on three steps, and provides a perturbation approximation to the
full rational expectations equilibrium. The first step is to solve the steady-state version of the model, with
no aggregate uncertainty and aggregate productivity held fixed at a value of A = 1. The steady-state
solution is identical to the one used, for example, as an input into the PARAM solution. The second step
is to set up a system of nonlinear equations defining the model’s equilibrium, which is covered in the first
subsection below. The final step is to linearize and solve the system using standard numerical di↵erentiation
and solution techniques, covered in the second subsection below.

A.5.1 Nonlinear System of Equations in the Discretized Model

First establish a grid of n
z

idiosyncratic productivity points and a Markov transition matrix ⇧z

ij

= P(z
t+1 =

z

j

|z
t

= z

i

) following Tauchen (1986). Then, establish a grid of n
k

idiosyncratic capital stock nodes k
i

, which
will function as knot points for cubic spline interpolation of the value functions. Finally, a denser simulation
grid of n

d

idiosyncratic points will be used to store the distribution. The following system of nonlinear
equations can be linearized around the steady-state of the model.
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Together, the above system represents a total of n
s

= 2n
z

n

k

+n

z

n

d

+n

z

+5 equations in the n
s

⇥1 vector

of endogenous variables X

t

=
⇣

(V A

t

)0, (V NA

t

)0, (k
0⇤
t

)0, µ0
t

, log(p
t�1), log(Yt�1), log(It�1), log(Nt�1), log(At

)
⌘0
,

together with the exogenous shock process "

t

. I write this nonlinear rational expectations system corre-
sponding to the discretized model as F (X

t

, X

t�1, ⌘t, "t) = 0, where F (·) is the left hand side minus the
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right hand side of each of the n

s

equations above. Note that I know this equation is satisfied exactly at the
steady-state value of X

t

= X

t�1 = X

SS and ⌘

t

= 0, "
t

= 0 corresponding to no aggregate uncertainty and
A

t

= 1. The vectors X
t

are n

s

⇥ 1 while the vector ⌘
t

is n
⌘

⇥ 1, where n

⌘

= 2n
z

n

k

+ n

z

.
A few practical comments are in order. First, in general the approximation nodes used for interpolation

of the value functions in k will be di↵erent (and less dense) than the discrete values of k used to store the
cross-sectional distribution µ

t

above. The value "

t

is the exogenous shock to aggregate productivity. The
vector ⌘

t

is the stacked set of expectational errors using Sims (2002) notation which must be applied to
the expectations in the Bellman and Euler equations above, and these expectational errors depend upon
aggregates only as the idiosyncratic uncertainty reflected in the discretization of idiosyncratic productivity
is already taken into account through the summation with respect to the transition matrix ⇧z.

Also, note that when the system above is evaluated, the values of adjustment V

A

t

and non-adjusment
V

NA

t

are used to construct the total value function V

t

. Afterwards, this function is approximated using
cubic splines, and the derivatives of the value function required for the Euler equation pinning down the
optimal value of capital tomorrow are computed by analytically di↵erentiating the spline approximation.
The Euler equation for the optimal capital choice k

0⇤
t�1(zi, kj) conditional upon adjustment only ranges over

the productivity index i for z
i

because the fixed nature of adjustment costs implies that tomorrow’s optimal
capital choice doesn’t depend upon today’s capital k

j

.
The functions f , y, and n above represent the reduced-form expressions for revenue net of labor costs,

output, and labor input at firms, conditional upon the analytic solution to the static labor optimization
problem.

A.5.2 Linearizing the System

I then numerically di↵erentiate F with respect to each of its arguments, at the steady-state, to obtain the
system of n

s

equations below

F1(Xt

�X

SS) + F2(Xt�1 �X

SS) + F4⌘t + F5"t = 0,

where F1 = @F

@X

t

(n
s

⇥ n

s

), F2 = @F

@X

t�1
(n

s

⇥ n

s

), F3 = @F

@⌘

t

(n
s

⇥ n

⌘

), and F4 = @F

@"

t

(n
s

⇥ 1) are the
approximated derivative matrices evaluated at the steady-state of the model. This system of equations can
be solved using a large variety of solution methods for linear rational expectations models. In the calculations
performed in this paper, the Sims (2002) algorithm as applied by the gensys software in MATLAB available
on Chris Sims’ website is used to solve the linear model, and the numerical di↵erentiation is carried out by
forward di↵erentiation from the steady-state with relative step size 1E�6.

For concreteness, note that the linear solution to the model is simply a set of coe�cient matrices A

(n
s

⇥ n

s

) and B (n
s

⇥ 1) such that locally around the steady-state the model satisfies

(X
t

�X

SS) = A(X
t�1 �X

SS) +B"

t

.

Immediately, the traditional local impulse responses IRF

t

, t = 1, ..., T
IRF

(n
s

⇥ 1 vectors) to a shock to
aggregate productivity can be computed as

IRF

t

= A

t�1
B,

and the model can be simulated by drawing N(0,�2
A

) shocks and substituting directly into the solution
equation above.

At this point, it’s important to note that by numerically di↵erentiating the system F I am assuming that
although nonlinearity and threshold decision rules exist and are preserved at the microeconomic level, the
dependence of these micro-level decisions, as embedded in the value functions and distributional transition
weights above, on aggregate shocks to productivity is smooth. In the context of the Khan and Thomas
(2008) model with stochastic adjustment costs, the resultantly smooth value functions and policies make
such an assumption sensible. However, models with discrete choices and fixed, nonstochastic adjustment
costs, such as those in Bloom et al. (2016), which can not be expected to see policies vary smoothly with
aggregate shocks would not allow for a reasonable application of the REITER approach. Finally, for the
levels of discreteness chosen in this paper’s solution, the linear system is solved directly, but for a denser and
infeasible levels of discretization model reduction techniques can be applied which still allow for the model’s
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solution with standard linear rational expectations system solvers. These reduction techniques are laid out
in Reiter (2010a).

A.6 Parameterization Plus Perturbation (WINBERRY)

The WINBERRY solution developed and first implemented in Winberry (2015) represents a combination of
the REITER and PARAM algorithms. The core approach to the model solution, perturbation around the
steady-state solution with respect to aggregate productivity, remains from the REITER method. However, by
contrast with the REITER approach, the WINBERRY algorithm summarizes the cross-sectional distribution
µ using only a set of reference moments together with the flexibly parameterized densities from the PARAM
algorithm. Because of this parsimoniously parameterized storage convention, the dimensionality of the
endogenous vector characterizing the economy in the WINBERRY method is in general significantly smaller
than in REITER. Given its conceptual similarity to REITER, I simply reproduce the system of equations
characterizing the WINBERRY solution here. Instructions for linearizing this system carry over directly
over from the REITER subsection above.

First establish a grid of n

z

idiosyncratic productivity points and a Markov transition matrix ⇧z

ij

=
P(z

t+1 = z

j

|z
t

= z

i

) following Tauchen (1986). Let ⇡̃z

i

, i = 1, ..., n
z

be the ergodic distribution of z. Then,
record a set of n

z

n

M

reference moments of the steady-state solution with no aggregate uncertainty, defined
as

m

z

i

1
SS =

1

⇡̃

z

i

Z

k

kdµ

SS(z
i

, k), i = 1, ..., n
z

m

z

i

j

SS =
1

⇡̃

z

i

Z

k

(k �m

z

i

1 )jdµSS(z
i

, k), i = 1, ..., n
z

, j = 2, ..., n
M

.

These moments m

z

i

j

are simply the first n

M

centered moments of the cross-sectional distribution µ

SS

conditional upon each value of micro productivity z

i

. Together with the parameterized set of densities

P (k, ⇢zi) = ⇢

z

i

0 exp
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⇢

z
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1 (k �m

z
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1 ) + ⇢
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⇥

(k �m
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1 )2 �m
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+...+ ⇢

z
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n

M

⇥

(k �m

z
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1 )nM �m

z

i

n

M

⇤

�

,

these moments define the cross-sectional distribution of capital conditional upon a given discretized level of
productivity z

i

. Then, record a set of grid of n
k

idiosyncratic capital stock nodes k
i

, which will function as
knot points for cubic spline interpolation of the value functions. The following system of nonlinear equations
can be linearized around the steady-state of the model.
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Together, the above system represents a total of n
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together with the exogenous shock process "
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. I write this nonlinear rational expectations system correspond-
ing to the discretized model as F (X
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t�1, ⌘t, "t) = 0, where F (·) is the left hand side minus the right hand
side of each of the n
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Some practical comments are in order. First, given values of mz

i

t�1, the coe�cients ⇢zi
t�1 completing the

definition of the parameterized densities P (k, ⇢zi
t�1) above can computed just as in the PARAM algorithm

as the solution to the convex minimization problem

min
⇢
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i

,i=1,...,n
z

n
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Z

k̄

k

P (k, ⇢zi
t�1)dk,

whose first-order conditions correspond to the n

M

moment conditions for each value of z
i

. With those
distributional coe�cients in hand, all integrals on the right hand side can be computed using standard
quadrature techniques.
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Table B1: Some Choices for the Numerical Solutions

Object Value Type or Location Used
k nodes for V spline interpolation 10 Loglinear [0.1,8.0]
k points for distribution histogram 50 Loglinear [0.1,8.0]
K points for V linear interpolation 10 Linear [1.25,2.0]
A points in discretization 5 Loglinear [0.94,1.0562]
z points in discretization 5 Loglinear [0.9176,1.0897]
V or k0, ⇠⇤ tolerance 0.0001 All methods
Forecast rule coe�cient tolerance 0.001 KS, XPA methods
Howard accelerations 50 KS, XPA methods
Number of reference moments 4 PARAM & WINBERRY method densities
Quadrature nodes in k 36 PARAM method integration
Quadrature nodes in k 100 WINBERRY method integration
Nondiscarded simulation periods T � Terg 2000 All methods
Number of IRF simulations 2000 All methods
IRF simulations length 50 All methods
IRF shock period 25 All methods

Note: The table indicates specific methods, tolerances, grid sizes and densities, and simulation lengths used in the
numerical implementation of the solution techniques discussed in the paper. The code used to produce the results in
this paper is available on Stephen Terry’s website.

B General Numerical Choices

To complement the general discussion of each solution algorithm, it is also useful to list some practical choices
made in the projection, optimization, and discretization of the model, with further information available in
Table B1.

• The mean or aggregate level of capital K is used as the approximating moment m for the cross-
sectional distribution µ(z, k) for the three solution methods requiring such an approximation (KS,
PARAM, and XPA).

• In all solution techniques, idiosyncratic and aggregate productivity processes z and A are discretized
according to Tauchen (1986) and along grids spanning two standard deviations of the unconditional
process standard deviation around the process steady-state.

• Value functions are approximated as cubic splines in idiosyncratic capital k with a natural spline
endpoint condition, and using linear interpolation in aggregate capital K. For the KS, XPA, and
no-aggregate uncertainty models, the firm problem is solved using policy iteration with Howard ac-
celeration of the value function, while in the PARAM method value function iteration is performed.
Derivatives of value functions, where required, are computed as the derivatives of the corresponding
spline approximations.

• The idiosyncratic capital policies within the Bellman equations, when optimization is required, are
determined using Brent optimization.

• Price-clearing is performed during simulation using bisection (XPA, no aggregate uncertainty) or
hybrid bisection/inverse quadratic interpolation (KS). Within the model solution step, joint search
for clearing price and next period aggregate capital is performed using dampened fixed point iteration
(PARAM).

• Minimization of the density-based objective determining distributional coe�cients during simulation
and solution of the PARAM and WINBERRY models is performed using a standard quasi-Newton
algorithm with symmetric rank-one (SR1) updates to the inverse Hessian approximation.
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Figure B.1: Allowing for Maintenance Investment

Note: The figure plots a representative 50-year portion of selected business cycle aggregates drawn from the uncon-
ditional simulation of the model in the baseline KS solution with no maintenance investment allowed (in black) and
the KS solution with maintenance investment allowed (in red). The exogenous discretized aggregate productivity
process over this period is plotted in the left panel of Appendix Figure C.3 and is held constant across methods.

• Within the PARAM and WINBERRY solutions, integration over the cross-sectional densities is per-
formed using fixed Simpson quadrature rules.

B.1 Maintenance Investment

The model extension allowing for maintenance investment follows Khan and Thomas (2008) in allowing for
a capital adjustment within some small bounds without payment of fixed adjustment costs ⇠. Firms are
allowed to costlessly choose capital stocks in some range around the basic non-adjustment level: k0 2 B(k) ⌘
[(�b+ 1� �)k, b+ (1� �)k]. When b = 0, this nests the baseline. When b is positive but small this extension
allows the model to match low observed investment inaction rates together with the observed proportion
of investment spikes in the micro data. To verify that my simplified choice b = 0 in the baseline model
does not meaningfully drive overall macro dynamics, I solve the model using the KS solution for b = 0.011,
roughly following the calibration in Khan and Thomas (2008). The description of the algorithm and model
environment is almost exactly identical to the description of the baseline KS solution above, with only the
following five modifications required:

1. Firms in the non-adjustment case have flexible choice over capital policies kNA(z, k;A,K) as well as
static labor choices n⇤(z, k;A,K) which are unchanged by future investment levels, which result from
the solution to a modified Bellman equation for V NA:
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Table B2: Microeconomic Investment-Rate Moments with Maintenance Investment

KS KS-MAINT
i
k 0.0947 0.0929

�

�

i
k

�

0.2597 0.2491
P( ik = 0) 0.7693 0.0239

P( ik � 0.2) 0.1724 0.1630
P( ik  �0.2) 0.0280 0.0263

P( ik > 0) 0.1890 0.7521
P( ik < 0) 0.0417 0.2479

Note: The rows of the table report the mean value of the indicated microeconomic moment of the cross-sectional
distribution of investment rates i

k in an unconditional simulation of the baseline KS solution with no maintenance
investment (first column) and the extended version of the KS solution with maintenance investment allowed (second
column). The first row reports the level of investment rates, the second row the cross-sectional standard deviation of
investment rates, the third column the probability of investment inaction (defined as investment rates less than 1%
in magnitude in the maintenance investment case), the fourth (fifth) columns the probability of positive (negative)
investment spikes larger in magnitude than 20%, and the sixth (seventh) columns the probability of strictly positive
(negative) investment rates requiring payment of fixed adjustment costs. All statistics are computed from a 2000-
year unconditional simulation of the model, after first discarding an initial 500 years. The exogenous aggregate
productivity series is held constant across methods.
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With the rest of the KS solution algorithm identical to the baseline case, and aggregate productivity
shocks held constant, Figure B.1 plots a representative 50-year portion of the unconditional simulation of
the model comparing the maintenance investment (b > 0) and baseline (b = 0) cases. The distinction makes
little di↵erence for aggregate dynamics. However, Table B2 demonstrates that, consonant with the intended
purpose of this extension in Khan and Thomas (2008), the micro-level investment rate moments indicate
substantially lower rates of pure investment inaction.
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Figure B.2: Allowing for Continuous Shocks

Note: The figure plots a representative 50-year portion of selected business cycle aggregates drawn from the uncondi-
tional simulation of the model in a continuous aggregate productivity shock version of the KS solution (in black) and
the REITER solution (blue). The underlying continuous exogenous aggregate productivity process is held constant
across methods.

B.2 Continuous versus Discrete Aggregate Productivity

The analysis in the main text describes comparisons across solution methods in the context of discretized
aggregate productivity shocks. These shocks are the fundamentals in the projection-based methods, while
for the perturbation-based solutions I impose a set of continuous productivity shocks which duplicate the
exogenous discretized aggregate productivity path.

This portion of the appendix lays out an extension to the KS solution of the model to allow for continuous
aggregate productivity. There is no conceptual change to the algorithm required. However, I first provide
a bit more detail on the calculation of expectations in the baseline discretized KS case before extending to
the continuous shocks case. Model solution in the KS algorithm requires repeated calculation of expected
values of the Bellman equation in future periods of the form

E (V (z0, k0;A0
,K

0)|z,A) ,

where today’s exogenous states z and A are taken as given and some values for endogenous capital values
k

0 and K

0 are known.
The baseline strategy is to implement discrete approximations to the stochastic processes for z and

A according to Tauchen (1986), which results in grids and transition matrices {z̃1, ..., z̃n
z

}, ⇧z (for micro
productivity), {Ã1, ..., Ãn

A

}, ⇧A (for aggregate productivity) such that P(z
t+1 = z̃

j

|z
t

= z̃
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) = ⇧z

ij

and

P(A
t+1 = Ã

j

|A
t

= Ã

i
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. Given current values z = z̃

i

and A = Ã

j

, in the baseline case the expectations
of next period value is computed using the transition matrices for exogenous processes z and A together with
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By contrast, the continuous shock case allows for continuous or unmodified evolution of the aggregate
productivity process
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A

} in aggregate productivity itself. If today’s exogenous micro productivity process
satisfies z = z̃

i

and values for k0, A, and K

0 are given, then

E (V (z0, k0;A0
,K

0)|z,A) ⇡
n

z

X

i

0=1

n

A

X

j

0=1

⇡

z

ii

0 ⇡̃
A

j

0

2

6

6

6

4

(1� !

K

m

0(K 0))(1� !

A

l

0(j0)(A))V
i

0
l

0(j0)m0(k0)+

!

K

m

0(K 0)(1� !

A

l

0(j0)(A))V
i

0
l

0(j0)m0+1(k
0)+

(1� !

K

m

0(K 0))!A

l

0(j0)(A)V
i

0
l

0(j0)+1m0(k0)+

!

K

m

0(K 0)!A

l

0(j0)(A)V
i

0
l

0(j0)+1m0+1(k
0)

3

7

7

7

5

where [Ã0
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is the linear interpolation/extrapolation weight for aggregate productivity next period. The other notation
is similar to the discretized case.

With the approximation to the expectation of the value function next period defined in practical terms,
the rest of the KS method is almost identical to before, although the exogenous set of aggregate productivity
values used for simulation and update of prediction rules is given by a continuous simulation of the process.16

Also, note that the prediction rules are modified to flexibly depend on a continuous A via the two unified
rules
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Figure B.2 plots a representative 50-year period of the simulation of the continuous KS solution and the
baseline REITER solution with the same continuous exogenous process for A.

C Simulated IRFs with Nonlinear Discretized Models

As noted in the main text, nonlinear impulse response analysis must take into account variation in the initial
conditions and size of the imposed shocks, and following Koop et al. (1996) I take the following approach to
compute the average conditional response to a one-standard deviation aggregate productivity shock:

1. Fix a large number N of simulations, a per-simulation length T

IRF

, and a shock-period T

shock

.

16In practice, I hold nA and the projection grid for A equal to the nA and discretized grid for A used in the baseline
Tauchen (1986) discretization of A. I also simulate continuous standard normal draws for "0A ⇠ N(0, 1) by using
standard uniform draws and the Box-Muller transform.
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Figure C.3: Exogenous Productivity Series: Unconditional Simulation and Impulse Response

Note: The left panel of the figure plots a representative 50-year portion of the exogenous aggregate productivity series
drawn from unconditional simulation of the model. This aggregate productivity series underlies portions of the plots
in Figures 1, 5, B.1, D.4, and D.5. The right panel of the figure plots the exogenous positive one-standard deviation
shock to aggregate productivity underlying the simulation-based generalized impulse responses following Koop et al.
(1996) and plotted in Figure 3.
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is the ergodic distribution of the discretized aggregate productivity process A.
As noted in Appendix B, to compute the impulse responses plotted in the main text, I set T

IRF

= 50,
T

shock

= 25, and N = 2000, and I hold exogenous draws u
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, s
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constant across simulation methods. I also
set n

A

= 5.
One final comment is in order regarding the REITER and WINBERRY solutions. Because these ap-

proaches yields linearized solutions the simulation-based analysis of Koop et al. (1996) is unnecessary. Al-
though for completeness and comparability I perform the simulation-based impulse response with the RE-
ITER and WINBERRY methods, a much simpler alternative, invariant to shock scaling or initial conditions,
is available. In particular, when writing the solution as X
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Table D1: A Range of Shock Sizes
% Absolute Di↵erences: KS vs. REITER

Output Investment Labor Consumption
�A: Rel. to Baseline Mean Max Mean Max Mean Max Mean Max

5% 0.0977 0.1234 0.2648 0.4293 0.0405 0.0810 0.0576 0.0786
25% 0.0860 0.1716 0.2481 0.7624 0.0453 0.1749 0.0529 0.1272

Baseline (100%) 0.2195 0.5627 0.7400 9.2213 0.0964 0.4834 0.1658 0.4402
150% 0.8174 1.3791 1.9267 21.8248 0.3084 1.0287 0.5523 1.0712
200% 0.8254 1.6006 2.9494 53.7001 0.3130 1.4937 0.6256 1.5183

Note: The table reports the mean and maximum percentage di↵erence between the indicated business cycle aggregate
in the KS and REITER solutions over a 2000-year unconditional simulation of the model. Across rows, the standard
deviation �A of aggregate productivity shocks varies. The underlying innovations or shocks to aggregate productivity
are held constant as the scaling of these shocks varies across comparisons.

which is a vector of responses of each endogenous variable to an innovation in "

At

. For comparability,
although this choice has little quantitative significance, I rely upon the Koop et al. (1996) concept for the
perturbation-based methods in Figure 3 rather than the direct calculations based on the linear solutions.

D Extended Versions of the Model

Changing only the value of �
A

in the baseline model, Table D1 reports the mean and maximum percentage
di↵erences between the various business cycle aggregates in the resulting KS and REITER solutions over a
2000-year unconditional simulation of the model. Now, I proceed to describe the two extensions discussed
in Section 5, namely size-dependent taxation and micro uncertainty fluctuations.

D.1 Size-Dependent Taxation

This extension to the baseline model allows for a system of distortionary size-dependent taxes and subsidies
on the labor inputs of firms which are classified as large or small relative to a fixed reference level of
idiosyncratic capital k⇤. This system of subsidies and taxes varies over the cycle according to the following
equation

log(1 + ⌧(A)) = �

⌧

log(A).

When �

⌧

= 0 and at steady-state, this extension nests the baseline model. The system of taxes and transfers
is funded by lump-sum transfers to representative households which balance the fiscal authority’s budget
in each period. Since households own all of the firms in the economy and receive both the taxes/subsidies
as well as the funding lump-sum transfers within the period, no changes need to be made to the clearing
conditions of the economy. Furthermore, I simply re-interpret the wage w from the description of the baseline
model as equal to the household marginal rate of substitution between consumption and leisure.

Because there is no additional aggregate state variable which needs to be tracked in the KS solution,
and because the baseline is nested at the steady-state input into the REITER method, implementation
requires only a minor set of modifications in practice. In particular, for all locations in which the wage w

was previously referenced in the firm investment and labor decisions, insert instead the following net wage
after the application of the size-dependent tax or subsidy.

!(A, k) =

⇢

w(1� ⌧(A)), k � k

⇤

w(1 + ⌧(A)), k < k

⇤ ,

In the case described in the main text, I solve the model with the round value of k⇤ = 1.5, approximately
in the middle of the cross-sectional capital distributions plotted in Figure 2, as well as values for �

⌧

equal
to 10%, 25%, and 33%. Figure D.4 plots a representative 50-year period of the resulting unconditional
simulation of the extended model for both the KS and REITER cases.

18



1 10 20 30 40 50

-0.6

-0.4

-0.2

Lo
g

Output
33%
25%
10%
Baseline

1 10 20 30 40 50
-3

-2.5

-2

-1.5
Investment

1 10 20 30 40 50
Year

-1.2
-1.15
-1.1
-1.05

-1

Lo
g

Labor

1 10 20 30 40 50
Year

-0.9

-0.85

-0.8

-0.75

-0.7
Consumption

Figure D.4: Size-Dependent Taxation: Business Cycle Simulation

Note: The figure plots a representative 50-year portion of selected business cycle aggregates drawn from the uncon-
ditional simulation of the model in the KS (solid lines) and REITER (dashed lines) solutions. Each set of lines is
based on a di↵erent level of the cyclical elasticity �⌧ of size-dependent taxation which is described in the main text.
The baseline case of �⌧ = 0 is in black, �⌧ = 10% in red, �⌧ = 25% in green, and �⌧ = 33% in blue. The exogenous
discretized aggregate productivity process over this period is plotted in the left panel of Appendix Figure C.3 and is
held constant across all comparisons here.

D.2 Micro Uncertainty Fluctuations

The extension to the baseline model allowing for fluctuations in micro uncertainty links the volatility of
micro productivity shocks to the realization of aggregate productivity in the next period via the equations

log(z0) = ⇢

z

log(z) + s(A0)�
z

"

z

, "

z

⇠ N(0, 1)

log(s(A)) = ��
s

log(A).

When �

s

= 0 and at steady-state this extension nests the baseline model.
For the same reasons as in the size-dependent extension above, implementation requires only a minor

set of modifications in practice to the baseline algorithms. In particular, only the expectations on the right
hand side of Bellman equations and the distributional transitions must be modified to take into account the
dependence of micro-level volatility next period on the realization of the aggregate productivity state A.

In the KS extension, there are a finite number n
A

of possible realizations of micro-level volatility in the
next period. The transition to each separate aggregate productivity, and hence micro-level volatility, state
is governed by the transition matrix for discretized A: ⇧A. This logic can be used to define any relevant
joint discretized transition probability for z and A via
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Figure D.5: Micro Uncertainty Fluctuations: Business Cycle Simulation

Note: The figure plots a representative 50-year portion of selected business cycle aggregates drawn from the uncon-
ditional simulation of the model in the KS (solid lines) and REITER (dashed lines) solutions. Each set of lines is
based on a di↵erent level of the parameter �s described in the main text and governing the countercyclicality of micro
volatility. The baseline case of �s = 0 is in black, �s = 25 in red, �s = 50 in green, and �s = 100 in blue. The
exogenous discretized aggregate productivity process over this period is plotted in the left panel of Appendix Figure
C.3 and is held constant across all comparisons here.

where the conditional transition matrix ⇧zA

0
j is obtained just as in Tauchen (1986) by integration over

intervals under the standard normal error term in the equation log(z
t+1) = ⇢

z

log(z
i

) + �

z

s(A
j

0)"
z

. This
formula can be used to compute all expectations on the right hand side of Bellman equations in the KS
solution. The matrices ⇧zA

t+1 alone are used to compute distributional transitions from t to t + 1 in the
simulation of the model, given a realization of aggregate productivity A

t+1. All of the relevant transition
probabilities can be pre-computed and stored.

In the REITER extension, simply replace all appearances of the micro-level transition matrix ⇧z with
⇧z(A

t+1), where ⇧z(A
t+1)ij = P (z

t+1 = z

j

|z
t

= z

i

, A

t+1) is obtained just as in Tauchen (1986) by integra-
tion over intervals under the standard normal error term in the equation log(z

t+1) = ⇢

z

log(z
i

)+�

z

s(A
t+1)"z.

This discretization must be recomputed for each evaluation of the nonlinear system F defined in the REITER
solution description above.

Figure D.5 plots a representative 50-year period of the resulting unconditional simulation of the extended
model for both the KS and REITER cases with the choices �

s

equal to 25, 50, and 100.
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