FINANCIAL AND UNCERTAINTY SHOCKS

Marco Brianti (Boston College Lockdown)

discussed by

Stephen J. Terry (Boston University Lockdown)

Green Line Macro Meeting May 2020

The Difficulty in Macro

"The difficulty in macroeconomics is that virtually every variable is endogenous."

- Narayana Kocherlakota, 2009

So how do we figure out what happened?

- ► Was it a TFP shock?
- A financial shock?
- A demand shock?
- An uncertainty shock?
- ...or something else?

The answer matters from an academic standpoint (because macroeconomists can't let stuff like this go) and from a policy standpoint (because the optimal response may differ).

WHAT'S SO HARD?

Why is it hard to tell one shock apart from another?

Shocks are Unobservable

Unless it's COVID-19, you can't put a macro shock under a microscope and spot it directly.

 \rightarrow So you typically need a theoretical model to back them out based on the structure and observable data.

Shocks Can Mimic One Another

E.g., GDP may move similarly in response to different shocks.

 \rightarrow That's the problem Marco tackles head on.

MARCO'S PROBLEM

Financial and uncertainty shocks are tricky little devils.

Financial shocks increase borrowing costs, resulting in

- Iower investment
- Iower debt issuance
- Iower GDP
- higher credit spreads

Uncertainty shocks increase risk, resulting in

- Iower investment
- Iower debt issuance
- Iower GDP
- higher credit spreads

Uh oh...

MARCO'S SOLUTION

He finds an outcome that moves differently in response to financial vs uncertainty shocks.

In Marco's model **liquidity**, which you can think of as something like cash reserves at firms,

- goes down after financial shocks as firms draw down their reserves, but
- goes up after uncertainty shocks as firms increase their savings buffers.

In principle, liquidity can therefore disentangle the shocks.

A time-honored, respectable approach!

Even the crazy I.O. people do this type of thing. E.g., if quantity declines, observing price helps to disentangle supply vs demand.

WHAT MARCO DOES

Builds a model

Builds a VAR identification strategy

Analyzes empirical uncertainty vs financial shocks

MARCO'S MODEL

- Households save, supply labor, and own everything
- Intermediaries convert household savings to firm lending
- Continuum of firms borrow in debt, hold cash reserves, invest, and potentially default
- Financial shocks gum up intermediation
- Uncertainty shocks increase iid TFP dispersion and default risk
- + other RBC model details
- \rightarrow Stuff aggregates, solvable in Dynare

 \rightarrow Liquidity increases after uncertainty shocks, but liquidity declines after financial shocks (relative to total assets)

WHAT MARCO DOES

Builds a model

Builds a VAR identification strategy

Analyzes empirical uncertainty vs financial shocks

MARCO'S VAR STRATEGY

$$Y_t = A + BY_{t-1} + \eta_t, \quad \eta_t = C\varepsilon_t$$

- How do you figure out C and hence ε_t ?
- Informally, how do you get around the fact that "shocks can move endogenous variables similarly?"
- Marco chooses C so that
 - Financial shocks decrease liquidity and increase spreads
 - Uncertainty shocks increase liquidity and spreads
 - Financial and uncertainty shocks are orthogonal

 \rightarrow intuitively, just a clever formalization of the simple idea "look at shifts in liquidity to tell the two macro shocks apart"

 \rightarrow very nicely validated against the theoretical model, in which it works like a charm for simulated data

What Marco Does

Builds a model

Builds a VAR identification strategy

Analyzes empirical uncertainty vs financial shocks

FINANCIAL VS UNCERTAINTY SHOCKS IN THE DATA

- Takes his model-validated VAR for a spin in US data
- Both financial and uncertainty shocks are contractionary
- Financial shocks explain more variation in output
- Uncertainty shocks are deflationary or "demand like" while financial shocks are inflationary

 \rightarrow Monetary policymakers shouldn't treat the two shocks in the same manner.

My Thoughts

A really great paper

Dispersion, credit spreads, & disaggregated data

Tightening up the implications

A REALLY GREAT PAPER

- Marco attacks a classic, big picture problem in macro.
- Quite satisfying to see the strong toolkit combining
 - 1. a highly coherent model,
 - 2. a novel, validated VAR strategy,
 - 3. and tight empirical results.
- Marco also sweats the details, showing the care that you'd desire and expect in a well executed job market paper.
- It was a pleasure to read, and I learned a lot.

Seriously, this is a very nicely done paper.

My Thoughts

A really great paper

Dispersion, credit spreads, & disaggregated data

Tightening up the implications

LEVERAGE MORE VARIATION

- Cross-sectional dispersion also directly varies with uncertainty shocks in your model, so you shouldn't stop at liquidity ratios.
- Time series are always short, so you can exploit micro variation on the right hand side and not just the left hand side.

Some data I had lying around...

- Mergent FISD + TRACE: primary and secondary market micro data on the universe of US corporate bonds
- Compustat: US listed firm financial micro data, annual

A four-digit industry \times year panel

- \blacktriangleright "Uncertainty" pprox cross-sectional standard deviation of sales growth
- "Financial distress" pprox mean credit spread
- Mean liquidity ratio
- Spans 286 four-digit industries over 2002-2018 with 3,523 industry-years

LEVERAGE MORE VARIATION

	(1)	(2)	(3)
Dep. Var	Liquidity Ratio	Liquidity Ratio	Liquidity Ratio
Uncertainty	4.724***	4.769***	4.251***
	(1.33)	(1.33)	(1.266)
Spread	-0.986***	-1.191**	-0.800*
	(0.377)	(0.508)	(0.436)
Year FE?		Х	Х
2-Digit Sector FE?			Х
Industry-Years	3523	3523	3523
Years	2002-18	2002-18	2002-18
Industries	286	286	286
Within R2	0.151	0.154	0.135

Note: Liquidity ratio outcome in percentage points, i.e., 1=1%. Uncertainty and spread measures normalized to unit standard deviation. Standard errors clusterd at the industry level.

Your story goes through, but you've got 3,523 industry-years rather than 140 quarters!

My Thoughts

A really great paper

Dispersion, credit spreads, & disaggregated data

Tightening up the implications

TIGHTENING UP THE "SO WHAT?"

- In order to exert this much effort to identify uncertainty vs financial shocks, you need a compelling reason.
- Nick Bloom, Susanto, and Pablo's obsessions with uncertainty aren't nearly enough on their own...
- Your empirical results on inflation, and the suggestive link to monetary policy, are a very nice start.
- But the lack of nominal rigidities in your neoclassical makes the link a bit strained.
- There's plenty of time left, why not just add the New Keynesian bit to the existing structure?
- Everything would likely go through perfectly, but your conclusion would be tighter.

Awesome paper, nicely done!!