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1 Introduction

This report investigates a modeling formalism for a class of discrete-time hybrid systems that is amenable

to servo-level control design techniques, known as mixed logical dynamical systems (MLD) [1]. During this

course we discussed hybrid automata as one potential modeling framework for hybrid systems [2]. However, a

key limitation of this modeling approach is that control design is generally not straightforward or computer-

implementable, for either supervisory or servo-level control. As a result, we studied MLD systems for this

project, using Bemporad and Morari [1] as our principle reference. The key advantage of the MLD modeling

format is that it is amenable to numerical optimization routines for control optimization problems. In this

report we apply both the hybrid automata and MLD modeling paradigms to systems from our own individual

research projects. Once the individual systems are in MLD form, we then apply optimal control using mixed

integer quadratic programming (MIQP).

The concept of MLD is introduced by Bemporad and Morari in [1] where the basic idea is that logical

rules can be represented by a series of linear inequalities. As a result, a hybrid system integrating continuous

dynamics with logical rules can be represented by the set of linear equations given in (1)-(3).

x(t + 1) = Atx(t) + B1tu(t) + B2tδ(t) + B3tz(t) (1)

y(t) = Ctx(t) + D1tu(t) + D2tδ(t) + D3tz(t) (2)

E2tδ(t) + E3tz(t) ≤ E1tu(t) + E4tx(t) + E5t (3)

where t ∈ Z, x =





xc

xl



 , xc ∈ R
nc , xl ∈ {0, 1}nl , n = nc + nl

is the state of the system, whose components are distinguished between continuous xc and binary xl;

y =





yc

yl



 , yc ∈ R
pc , yl ∈ {0, 1}pl , p = pc + pl

is the output vector,

u =





uc

ul



 , uc ∈ R
mc , ul ∈ {0, 1}ml ,m = mc + ml

is the command input, collecting both continuous commands uc and binary commands ul (i.e. assuming

values within a discrete set can be modeled as 0-1 commands). Finally, the variables δ ∈ {0, 1}rl and z ∈ R
rc

represent, respectively, auxiliary logical and continuous variables.

It can be shown that the class of MLD system covers the following important classes of systems [1], [3], [4]:

• Linear hybrid systems

• Finite state machines, automata, and Petri nets

• Nonlinear dynamic systems, where the nonlinearity can be expressed through combinational logic
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• Constrained linear systems

• Linear systems

The list above demonstrates that the MLD modeling framework is both powerful and general. Since

MLD systems can represent discrete-time linear hybrid systems, it is powerful enough to represent timed

automata with digital clocks. This concept is demonstrated through the following example, where a timed

automata with guards is converted into the MLD framework.

Consider the simple timed automaton with guards Gtg in Fig. 1. The system remains in state xl = 0,

but enters state xl = 1 once every ten time units. Using the notation in class and in [2], Gtg could produce

the following run:

(0, 0)
3
−→ (0, 3)

a
−→ (1, 0)

b
−→ (0, 0)

8
−→ (0, 8)

a
−→ (1, 0)

b
−→ (0, 0) . . . (4)

The corresponding timed string for run (4) is:

(a, 4), (b, 5), (a, 14), (b, 15), (a, 24), (b, 25), . . . (5)

In this run event a occurs when the clock equals 4, before the invariant condition in state xl = 0 is violated.

At this point, the system enters state xl = 1 for one time unit and then returns to state xl = 0. From then

on, event a only occurs after the invariant condition is violated (i.e. once every ten time units).

As mentioned in class, Gtg can be interpreted as a hybrid automaton, where the underlying dynamic

system is time: c(t + 1) = c(t) + 1. Similar to the example given in Section 3.6 of [1], the timed automaton

with guards can be converted into MLD form. In this case, there exists one input and two states: u(t) is a

binary input where u(t) = 1 forces event transition a, c(t) is continuous valued and represents the clock’s

current value, and xl is binary and represents the current discrete state.

Figure 1: Simple timed automaton with guards Gtg, with two discrete states represented by the binary
variable xl.

The basic idea behind transforming timed automaton Gtg to MLD form is that the invariant conditions
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represent logic rules that can be represented by linear inequalities [1]. Since the transformation process is

quite tedious and involved, we leveraged the HYSDEL (HYbrid Systems DEscription Language) software

package [4] to convert the system to MLD form. The resulting MLD system is given by the following

expression:

x(t + 1) = z(t) (6)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 (7)

where

E1 =
[

0 0 0 0 0 0 −1 0 1
]T

E2 =
[

0 0 −1 11 −11 1 −1 −1 1
]T

E3 =
[

0 0 −1 1 −1 1 0 0 0
]T

E4 =
[

−1 1 0 0 −1 1 0 0 0
]T

E5 =
[

9 0 −1 11 −1 1 0 0 0
]T

(8)

In this form, x(t) represents the digital clock value and δ(t) is equivalent to discrete state xl in timed

automaton Gtg. The auxiliary variable z(t) in combination with the linear inequality in (7) captures the

invariant condition and event transition function.

To verify that the MLD system shown in (6)-(8) produces the same output as timed automaton Gtg,

consider the response shown in Fig. 2. The top subplot displays the exogenous control input forcing transition

a. This distinguishes the occurrence of event a due to an external input or the invariant condition in state

xl = 0. The middle subplot demonstrates that the MLD system does in fact produce the same run and timed

string as given in (4) and (5). Moreover, the bottom subplot illustrates how the digital clock progresses.

Namely, it increments by one and then resets to zero once every ten seconds. As a result, the MLD system

shown in (6)-(8) is equivalent to timed automaton Gtg.

After having a system in the MLD format, which consists of linear equations and inequalities, its possible

to find an optimal control input sequence (consisting both the discrete ul and continuous uc input variables)

which minimizes a quadratic objective function and satisfies linear constraints in states (x), inputs (u),

outputs (y) and auxiliary variables (z and δ) using MIQP techniques. This fact is what we shall leverage in

the remainder of this report to develop servo-level control algorithms for hybrid systems.

The remainder of this report is organized as follows: Section 2 discusses an On-Off controller for an

autonomous MEMS system. Section 3 investigates a switched capacitor circuit for battery charge equaliza-

tion. Both sections use the MLD paradigm for modeling and MIQP to solve a corresponding optimal control

problem. Finally, Section 4 presents a summary of the results and conclusions for this report.
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Figure 2: Response of MLD system corresponding to timed automaton Gtg. Note that the response is the
same as the timed string in (5).

2 An Optimal On-Off Controller with Switching Costs for an au-

tonomous MEMS system

2.1 Motivation

Autonomous operation of micro-electromechanical systems (MEMS) requires strict attention to power con-

sumption during servo control, so that MEMS components can be effectively operated with miniature power

sources. Many MEMS devices rely on piezoelectric or electrostatic actuators to produce motion, where power

consumption is primarily related to a capacitive load. In these situations, On-Off control can be an impor-

tant method for performing servo control within a limited power budget compared to analog amplifiers [5]

or pulse-width-modulation (PWM)(a reduction in switching frequency saves energy relative to PWM [6]).

The goal of this work is to minimize energy loss while driving a system to a desired state with an On-Off

controller when significant energy losses are incurred to switch between ‘on’ an ‘off’ inputs. This problem

is inspired by the need for a controller to produce efficient motions of a microrobotic leg joint driven by

piezoelectric actuators. In this application, energy is lost when the actuator is charged or discharged as well

as through leakage resistances in the actuator or driving circuit when the controller input is ‘on’. As practical

position sensors are not yet available for the prototype structures, control would be applied in open-loop,

using sequences of ‘on’ and ‘off’ inputs predetermined using the MIQP methods.
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Table 1: The nominal values for the parameters used in simulation
Parameters J (kg.m2) b (N.m.s/rad) k (N.m/rad) G(N.m/V ) R (Ω) C (F ) Umax(V ) Ts(sec)
Value 1.4 ∗ 10−12 3.4 ∗ 10−11 3.2 ∗ 10−6 8 ∗ 10−8 3 ∗ 109 1 ∗ 10−9 40 0.0001

2.2 System Description

The prototype system to be analyzed consists of a rigid micro-robotic leg rotating about an elastic flexure

and one link in the structure is shown schematically in Fig. 3. The system is represented by the following

differential equations, with nominal values for the parameters given in Table 1.

Jθ̈ + bθ̇ + kθ = Gu(t) (9)

where,

θ: Angle of rotation u: Input voltage

J : Rotational inertia of leg b: Damping coefficient

k: Spring constant G: Actuator gain

The system can be represented in state space format with state vector x =





x1

x2



 where: x1 = angle of

rotation, θ, x2 = angular velocity, θ̇.





ẋ1

ẋ2



 =





0 1

−k/J −b/J









x1

x2



 +





0

G/J



u (10)

Figure 3: Single mass system
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The system can be discretized in terms of index k to the form

x ((k + 1)Ts) = Adx(kTs) + Bdu(kTs) (11)

where Ad and Bd are state and input matrices formed by continuous to discrete conversion of the system in

(10) using a zero order hold with sampling time Ts.

Under On-Off control, the input u(kT ) is limited to one of two levels, zero or Umax and it can be

represented as a hybrid automaton as shown in Fig.4. Inputs to the system can thus be rewritten in terms

of binary inputs u1,2,...,n where

u(kTs) = Umaxuk (12)

uk ∈ {0, 1}

It can be seen that the system in already in MLD format by the above modification of u.

Figure 4: Hybrid system representation of the MEMS system

The objective function consists of two parts, JC and JR, corresponding to capacitive and resistive energy

losses in the system, respectively. A piezoelectric actuator acts as a capacitor when voltage is applied, and

the first part of the objective function includes energy lost from the system during charging of the actuator

capacitor and when the charged actuator is discharged. Mathematically, when ’on’-state magnitude Umax is

taken to be the ’on’ voltage applied to the actuators, this energy is expressed as

JC =
n

∑

k=1

1

2
CU2

max (uk − uk−1)
2

+ u2

0
(13)

where C is the capacitance of the piezoelectric actuator. In more a more general system, the quantity

CU2

max/2 could be replaced by an arbitrary “cost-to-switch”.
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The second part of the objective function includes energy lost to resistive dissipation due to leakage in

the On-Off drive circuit or through the piezoelectric actuator,

JR =
n

∑

k=0

U2

max

R
Tsuk (14)

where R is the resistance of the system. Again, in a more general case of On-Off control, the quantity

U2

max/R could be replaced with an arbitrary “cost-to-hold” in the ‘On’ position. So the objective function

is J = JC + JR.

Now the goal of this problem is to obtain an optimal on/off sequence which minimizes J and takes

system from an initial state x0 to an ǫ neighborhood of a desired final state xd in a desired n time steps. Its

represented mathematically in (15).

xf (n) =

n−1
∑

j=0

An−j−1

d Bdu(j) + Anx(0) (15)

xf (n) ± ǫ = xd

2.3 Results

The optimal on/off sequence and corresponding states for a sample case is shown in Fig.5. The initial state is

at origin and the final desired state is xd =





1.5

0



 , ǫ =





0.01

1000



 and the number of time steps is n = 30.

In the example the importance is given to reach the desired angle at desired time but a large deviation in

angular velocity is allowed. In some cases it may be too restrictive to put a small bound on both the final

states since there may not be a on/off sequence existing which satisfy both of them.

The result shows that the system can reach the neighborhood of the desired state in desired time with

two switchings. Its intuitive to think that its possible to reach the desired state in desired time with a single

switching. However, the constraint that the system can switch only during certain discrete points in time

(since a digital controller with sampling time Ts is used in the real system) requires the system to switch

more than once. For example there may be a combination of switching that exists such that the ‘on’ events

are stacked together takes the final state to less than xd − ǫ however adding one more ‘on’ event may take

it over xd + ǫ. In order to validate the result the objective function corresponding to all the possible input

combinations satisfying the constraints are compared. The input sequence with the minimum objective

function among them indeed matches with the result shown in Fig.5 verifying the MIQP.

Through this result it is learned that the tools discussed in the previous section can be used to find

an optimal sequence of events satisfying a set of linear constraints and minimizing a quadratic objective

function.
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Figure 5: Optimal response of the system

3 Switched Capacitor Circuits for Battery Charge Equalization

3.1 Introduction

This case study concerns health management in battery packs, namely how battery charge capacity and

power capacity degrade over time. Battery packs, and energy storage in general, is becoming an increasingly

important topic with regard to creating new energy infrastructures. For example, the automotive industry

plans to significantly increase production of electrified (i.e. hybrid electric, plug-in hybrid electric, and

battery electric) vehicles within the next several decades. These vehicles require high-voltage and high-

energy storage devices, such as lithium-ion battery packs, in which cells are typically arranged in series.

However, a key issue with lithium-ion battery packs is reliability (i.e. discrepancies between expected and

actual performance) and lifetime. More specifically, as the vehicle powertrain charges and discharges the

pack, individual cells may achieve different voltage and charge levels due to varying temperatures, internal

electrochemical characteristics, and aging effects [7], [8]. If the individual charge and voltage levels are

unknown to the battery control algorithm, then imbalances can produce capacity and power fade if individual

cells are over/undercharged or under/overdischarged [9], [10]. Hence, the overall goal of this case study is to

develop control algorithms that minimize health degradation by appropriately equalizing charge or voltage

within a series string of battery cells.

Several approaches have been previously proposed to equalize voltage in battery packs, using either active

or passive methods. Ideally, we prefer a method that dissipates a minimal amount of energy and requires no

active sensing or actuation. One such method is known as switched capacitor circuits [7], [8], demonstrated
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conceptually in Fig. 6. In this circuit small capacitors (relative to the battery cell charge capacity) are

straddled between individual battery cells arranged in series. The key idea behind this circuit structure is

that the capacitors can “shuttle” charge between cells to equalize voltage. This is performed by switching the

capacitor connection sites between two different modes at a constant frequency, regardless of the individual

cell state of charge values. This concept is demonstrated in Fig. 7, where the capacitors connect to the

positive battery cell terminals in Mode A and to the the negative terminals in Mode B. The advantages of

this approach is that no closed loop sensing, processing, or actuation is required - the strategy is open loop.

Moreover, the additional circuitry is both cost effective and simple to implement.

Figure 6: Switched capacitor circuit used to equalize charge in a series string of battery cells.

Figure 7: Switching logic for charge equalization. Note that the control policy is open loop, in the sense that
it requires no sensing.
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This case study has three main objectives. First, we shall develop mathematical models of this hybrid

system using three modeling formalisms: standard state equations, hybrid automata [2], and mixed logical

dynamical (MLD) systems [1]. Second, we will analyze and validate the models through open loop simulations

to demonstrate the equivalence between the modeling frameworks. Thirdly, we will formulate the charge

equalization optimal control problem, which can be solved using MIQP.

3.2 Mathematical Modeling

Consider a circuit with two battery cells connected in series with a single switched capacitor, as shown in

Fig. 8. The current source I models energy flowing into the pack (charging) or flowing out of the pack

(discharging), which we consider as an external disturbance. The resistor R lumps together internal battery

resistance, switching resistance, and the equivalent series resistance of the capacitor. Finally, each battery

cell we model as a large capacitor (relative to the switched capacitor) with capacitance C1 and C2 [7], [8].

The model parameters are reported in Table 2. The circuit may operate in two modes denoted by Mode

A and Mode B. Within each mode, the circuit operates as a continuous dynamic system with three state

variables, corresponding the voltages on the two batteries and capacitor, denoted V1, V2, and V3, respectively.

Hence, the circuit dynamics can be written as a piecewise affine system [11], shown in (16) and (17).

Mode A:











V̇1(t)

V̇2(t)

V̇3(t)











=











− 1

RC1

0 1

RC1

0 0 0

1

RC
0 − 1

RC





















V1(t)

V2(t)

V3(t)











+











− 1

C1

− 1

C2

0











I(t) (16)

Mode B:











V̇1(t)

V̇2(t)

V̇3(t)











=











0 0 0

0 − 1

RC2

1

RC2

0 1

RC
− 1

RC





















V1(t)

V2(t)

V3(t)











+











− 1

C1

− 1

C2

0











I(t) (17)

Table 2: Model Parameters
Parameter Description Value

C1, C2 Battery Cell Capacitance 25F
C Capacitance 470mF
R Resistance 0.1Ω

Note that this system contains no continuous control input. Instead, we only have control authority over

which mode (or discrete state) the system currently exists in. With this is mind, it is helpful to think about

the system within the hybrid automata framework [2], as demonstrated by Fig. 9. Here, the hybrid automata

Gh contains two discrete states denoted A and B, and two discrete events denoted a and b. Discrete states

A and B correspond to modes A and B, respectively. Events a and b designate the event of commanding
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Figure 8: The switched capacitor circuit is limited to operate in two modes: All switches up (Mode A) and
all switches down (Mode B). Within each mode, the circuit operates as a continuous dynamic system.

the system to enter the desired mode. Within each discrete state, the system contains a continuous linear

dynamic system that is unique to that mode and corresponds to the dynamic equations in (16) and (17).

Modeling the switched capacitor system as a hybrid automata elucidates that discrete event transitions a

and b are controllable events that are forced according to our control design. This is known in the literature

as “controlled switching” [12]. However, formulating and solving servo-level control problems, particularly

for hybrid systems, is a topic not discussed in this course. Given this fact and the discussion presented in

Section 1, we shall now reformulate the model into MLD format for control design purposes.

Figure 9: Hybrid automata representation of the switched capacitor circuit.

As discussed in Section 1, the MLD format integrates continuous dynamic with logic into a system of

linear difference equations and linear inequalities (1)-(3). Moreover, hybrid automata can be converted into

MLD form given that certain technical conditions are satisfied (e.g. see [1]). As before, we leveraged the
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HYSDEL hybrid system modeling software package [4] to generate the MLD system, since learning the

transformation procedure is beyond the scope of this project. Also, the continuous time model (16) and (17)

was converted into discrete-time using a 5ms time step. Moreover, we set the current source I equal to zero,

for simplicity, and defined the system outputs to be equal to the state variables (i.e. y = Cx, where C is the

3x3 identity matrix). The resulting MLD system is given by:

x(t + 1) = z(t)

E3z(t) ≤ E1u(t) + E4x(t) + E5

(18)

where the Ei, i = 1, 3, 4, 5 matrices are appropriately defined.

It is important to emphasize that u denotes a binary control input (i.e. u ∈ {0, 1}) corresponding to

forcing the system into Mode A or B. It does not represent a continuous control input. Since each state

variable xi, i = 1, 2, 3 is governed by different dynamics depending on the mode, each xi is assigned a

corresponding continuous auxiliary variable zi, which explains the dynamic equation in (18). The linear

inequality is considerably more involved. The main idea is that each state variable evolves according to two

sets of dynamic equations, which can be uniquely identified by four linear inequalities. This produces a total

of 12 linear inequalities shown in (18). To obtain further insight on the MLD transformation, refer to [1].

3.3 Model Analysis and Equivalence

In order to gain insight on how the switched capacitor equalization circuit works, we performed several

closed loop simulations. The goal, here, is to provide a general analysis of the switched capacitor circuit

and evaluate the equivalence between each modeling framework. Readers seeking more details on switched

capacitor circuit modeling may refer to the literature (e.g. [7], [8], [13]).

A representative simulation of the switched capacitor system is provided in Fig. 10. Here, the voltages

were initialized as x(0) = [3.6V 3.5V 0V]T and the switching frequency is held constant at 20Hz. This simu-

lation demonstrates that both cells eventually converge to the same voltage values, despite being initialized

100mV apart. The reason why is that in Mode A cell 1 attempts to charge the capacitor to its own voltage.

Since this voltage is higher than cell 2, the capacitor discharges into cell 2 once it enters Mode B. The bottom

plot of Fig. 10 summarizes the end result. Continuously switching the capacitor causes cell 1 to produce a

positive current and cell 2 to produce a negative current. This corresponds to discharging and charging each

cell, respectively, which eventually equalizes the cells’ voltages.

To validate that both the piecewise affine model (PWA) (16), (17) and MLD model (18) produce equiv-

alent systems, we performed the exact same simulation described above on each model. To make the

comparison fair, we discretized the PWA model using a 5ms sampling time. The results are provided in Fig.

11, where the voltage responses for each model match exactly. Hence, the two models are equivalent. The
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implication of this result is that the MLD modeling formalism enables the use of numerical optimization

routines to solve optimal control problems, as discussed in the subsequent sections.
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Figure 10: Open loop simulation of switched capacitor circuit using a constant 20Hz switching frequency.
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3.4 Optimal Control Problem Formulation

Recall that this case study’s goal is to develop control algorithms that minimize battery health degradation

through battery charge equalization. This can be formulated into a mathematical program by defining the

following quadratic performance index, which penalizes the voltage difference between each cell, squared:

J =

T−1
∑

t=0

xT (t)Qxx(t) =

T−1
∑

t=0

[V1(t) − V2(t)]
2

(19)

where

Qx =











1 −1 0

−1 1 0

0 0 0











(20)

is subject to the MLD system dynamics (18) and the limits 2.0V ≤ V1(t) ≤ 4.3V , 2.0V ≤ V2(t) ≤ 4.3V ,

0V ≤ V3(t) ≤ 5V . By defining the following vectors

Ω =











u(0)
...

u(T − 1)











Ξ =











z(0)
...

z(T − 1)











Θ =





Ω

Ξ



 (21)

we can derive the following equivalent formulation, in mixed integer quadratic programming (MIQP) form:

min 1

2
ΘT S1Θ

s.t. F1Θ ≤ F2 + F3x0

(22)

where the matrices S1, F1, F2, F3 are defined appropriately. Note that the optimization variable Θ has parts

that are binary (Ω), and continuous (Ξ). However, each component of vector Θ does not represent an

individual degree of freedom, since the system dynamics constrain the relationship between the inputs and

continuous auxiliary variables. Also, the important optimization parameters include the time horizon T and

initial condition x0.

4 Summary and Conclusions

This project investigates an extension of the hybrid system modeling formalisms discussed in class, known

as mixed logical dynamical systems (MLD) [1]. The MLD framework introduces a modeling paradigm for a

class of hybrid systems that integrates logic rules with dynamics as a set of difference equations and linear

inequalities. The advantage of this format is that optimal control problems may be easily formulated and
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solved using efficient optimization routines such as mixed integer quadratic programming (MIQP). This fact

is particularly appealing since it is generally difficult to perform control design on the hybrid automata

models discussed in class.

In this report, we first introduce the MLD structure and discuss its modeling power. Then we demonstrate

the connection between timed automata with guards (the simplest type of hybrid automaton) and MLD

systems through a simple example. In the remainder of the report we apply the MLD modeling approach

to systems from our own individual research projects. The first case study examines ‘On-Off’ controllers

that minimize energy consumption in autonomous MEMS structures. The second case study investigates

battery health management using switched capacitor circuits. Both case studies leverage the MLD format

to perform optimal control design using mixed integer quadratic programming. The key contribution of this

project is to bridge the hybrid modeling formalisms discussed in class to control design procedures that are

numerically implementable. Moreover, the investigation provided new tools that are extremely useful for our

own research projects.
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