A quantum annealing approach for learning Boltzmann machines as function approximators and/or samplers

Siddhartha Srivastava, Veera Sundararaghavan Multi-Scale Structural Simulations Laboratory University of Michigan, Ann Arbor

Outline

- Applications in machine learning
- Definition and properties
- Review of some classical training strategies
- Proposed training method using Quantum annealing
- New challenges and their resolution

Application: Labeled data generation

Handwritten numbers

Benedetti, Marcello, John Realpe-Gómez, and Alejandro Perdomo-Ortiz. "Quantum-assisted helmholtz machines: a quantum–classical deep learning framework for industrial datasets in near-term devices." *Quantum Science and Technology* 3.3 (2018): 034007.

Labeled training Data (mnist)

Application: Recovering missing data

Chemical vapor deposition (CVD) growth for a MoS2 monolayer

Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer." *Computational Materials Science* 173 (2020): 109429.

Application: Machine Learning architectures

Associative adversarial networks

Arici, Tarik, and Asli Celikyilmaz. "Associative adversarial networks." *arXiv preprint arXiv:1611.06953* (2016).

- Intermediate layer of the discriminator reads the visible layer of the RBM network (the associative memory).
- RBM Samples generate inputs for the generator network (as opposed to noise sampling).
- This layer that is visible to the associative memory represents a feature space that can capture latent factors of variations in the data

Boltzmann machine are probabilistic energybased graph models

- Graph models Nodes connected via edges (undirected)
- Energy based Each node takes 0/1 value
- Energy determined by an Ising-type energy

$$E(S) = \sum_{i \in Nodes} H_i S_i + \sum_{(i,j) \in Edges} J_{ij} S_i S_j$$

• **Probabilistic** – Each state is determined via Boltzmann distribution

$$p(S) = \frac{e^{-\beta E(S)}}{Z}, \qquad Z = \sum e^{-\beta E(S)}$$

 β is the inverse temperature

User can only read part of the nodes

- Nodes segregated into Visible and Hidden nodes
- $S = \begin{bmatrix} v, h \end{bmatrix}$
- Only data on the visible nodes can be read.
- Probability of visible nodes determined by marginalizing over hidden nodes

 $p(v;\theta) = \sum p([v,h])$

• This step allows to model complicated probability mass functions

Representing data-sets for visible nodes

1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0

Set of states with '0' on left and '1' on right

sizex = 10

Distinguish between Random and ordered phase sizex = 10size f(x) = 1

- Each row is a data, and each column is a node
- Left Sample set: Generative Learning
 Samples state (x) from this data set
- <u>Right Sample set</u> : Adding classification Samples state (x, f(x)) from this data set

Note that we may be interested in complete sampling or reconstruction

Estimation of gradients is challenging

• Optimize for Log-likelihood based cost (KL Divergence, Negative Log-likelihood)

$$\frac{\partial \left(-\log p(v^*)\right)}{\partial \theta} = \mathbb{E}_h \left(\frac{\partial E(v,h)}{\partial \theta} \middle| v^*\right) - \mathbb{E}_{v,h} \left(\frac{\partial E(v,h)}{\partial \theta}\right)$$

- Exact estimation prohibited due to exponentially large number of states
- Estimating expectation using Monte Carlo-based techniques takes time to equilibrate
- Another idea: Use "simpler" graph-structures

Restricted Boltzmann machine - Bipartite graph of hidden and visible layer

Contrastive Divergence / Negative Sampling

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." *Neural computation* 18.7 (2006): 1527-1554

Computational Complexity is determined by the topology of the graph

$$\frac{\partial \left(-\log p(v^*)\right)}{\partial \theta} = \mathbb{E}_h \left(\frac{\partial E(v,h)}{\partial \theta} \middle| v^*\right) - \mathbb{E}_{v,h} \left(\frac{\partial E(v,h)}{\partial \theta}\right)$$

Maximizing likelihood of a data state

Contrastive Divergence / Negative Sampling

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." *Neural computation* 18.7 (2006): 1527-1554

Idea: Start with a data (desired) state and check if you are moving away from it.

Negative Phase:

 $(2\pi (1))$ $2\pi (21)$

Computational Complexity is determined by the topology of the graph

• Ease of computation doesn't depend on just sparsity but the overall topology of graph, e.g., presence of cycles, multipartite graph etc.

Moderately complex

 In general, adding edges to a network increases representation capability but also the cost of computation

[1] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and statistics, (2009)
 [2] Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer." Computational Materials Science (2020)

Tradeoffs between representability and computational cost

- Gradient based approximations for general BM is difficult due to calculation of expectations
- Use Contrastive Divergence techniques for simpler graphs – RBM
- But General BM is more representable than RBM
- The solution to this problem is an effective low-cost sampler for Boltzmann machine
 - **Quantum Annealer**

Generative training with 4 hidden nodes

Quantum Annealing

• The annealing procedure evolves energy on super-conducting qubits

$$E(t) = A(t) \sum_{i} S_{i}^{x} + B(t) (\sum_{i} H_{i} S_{i}^{z} + \sum_{\langle i,j \rangle} J_{ij} S_{i}^{z} S_{j}^{z})$$

- Adiabatic theorem: If this process is done slowly and band gap is positive at every point then state equilibrates to the ground state of blue Hamiltonian
- Ground state of Blue Hamiltonian some as that of classical spin energy $E(S) = \sum_{i} H_i S_i + \sum_{i} J_{ii} S_i S_i$

$$= \sum_{i} H_{i} S_{i} + \sum_{\langle ij \rangle} J_{ij}$$

Benefits:

- 1. Finds the minimum in a single computation
- 2. Savings in energy consumption by reduced computation time

Quantum Annealing

- Currently available hardware like D-Wave where parameters are tunable using analog controls
- Employs Quantum Annealing with <u>short simulation time</u> (~ 20µs) and <u>finite temperature (~15mK)</u>
- Adiabatic theorem no longer valid.

What does Quantum annealing give?

 Independent samples based on Boltzmann distribution

Tunable interaction (J) between qubits Tunable field (H) on the qubit

Generative learning

Estimate statistics from QA Samples

1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0

Data Set

• Cost function is chosen to be KL Divergence:

$$D_{KL} = \sum_{Visible \ data} q \log \frac{q}{p}$$

- $q = (\#\text{Data})^{-1}$, p = Model probability
- Approximate gradients and even Hessian (in terms of Covariances) for a little premium on cost
- Use Stochastic Gradient/Newton method for optimization

Generative learning

1	1	1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	1	1	1
0	0	1	1	1	1	1	1	1	1
0	0	0	1	1	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1
0	0	0	0	0	1	1	1	1	1
0	0	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0

Data Set

Classification of state (Discriminative learning)

Graph decomposed as:(a) Visible Input (Pink)(b) Visible output (Blue)(c) Hidden (grey)

State (x, f(x))

Including classification cost

Including classification cost

80/20 split of Training/Testing Data

New challenge: Temperature (β) is unknown

- Annealing temperature is unknown and dependent on the simulated graph.
- Need to evaluate β to implement model in different machines

<u>Observation</u>: $\log p = -\beta E - \log Z$

Linear Regression:

$$\beta^* = - \frac{\sum \left(E - \mathbb{E}(E)\right) \left(\log p - \mathbb{E}\left(\log p\right)\right)}{\sum \left(E - \mathbb{E}(E)\right)^2}$$

Trained BM may not have the best performance at the Training temperature (β^*)

Approximating the cost at different β

Application: Normalize parameters for best performance temperature

$$\theta \to \frac{\theta \beta^O}{\beta^*}, \qquad \beta^O = \text{optimal temperature}$$

Use Taylor expansion:

$$D_{KL}(\beta) = D_{KL}^* + \frac{\partial D_{KL}}{\partial \beta} \Big|_{\beta^*} (\beta - \beta^*) + \frac{1}{2} \frac{\partial^2 D_{KL}}{\partial \beta^2} (\beta - \beta^*) + \dots$$

- Coefficients estimated using sample statistics
- Similar results for NCLL cost

We have resolved the issue of transferability of the BM to different computing devices.

Summary for Boltzmann Machine

State of the art: Present training methods utilize topological features of a graph for reducing computational complexity

Advantage of current work: Training via QA samples works on a general BM. Sparse BMs enjoy additional computational advantages by allowing embedding of larger graphs in the hardware

Resolution of possible problems: The issue of transferability of BM is resolved

A MATLAB library is now available which implements this training method

Future work: As a next step, we will apply this method for problems concerning Process-Structure-Property (PSP) linkages in materials science

	Clique	NAE3SAT	NAE3SAT	3-Regular	3D Lattice	Native
		(r=3)	(r = 2.1)		w/defects	
2000Q	64	90	102	304	512	2030
Advantage	124	242	286	784	2354	5455

Thank you