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Application: Labeled data generation

Labeled training Data (mnist)



Chemical vapor deposition (CVD) 
growth for a MoS2 monolayer 

Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2 
synthesis on a quantum annealer."  Computational Materials 
Science 173 (2020): 109429.

Incomplete Data
Reconstructed Data

Application: Recovering missing data



Associative adversarial networks  
Arici, Tarik, and Asli Celikyilmaz. "Associative adversarial 

networks." arXiv preprint arXiv:1611.06953 (2016).

Application: Machine Learning architectures

• Intermediate layer of the 
discriminator reads the visible layer of 
the RBM network (the associative 
memory). 

• RBM Samples generate inputs for the 
generator network (as opposed to 
noise sampling).  

• This layer that is visible to the 
associative memory represents a 
feature space that can capture latent 
factors of variations in the data



Boltzmann machine are probabilistic energy-
based graph models

• Graph models – Nodes connected via edges (undirected) 

• Energy based – Each node takes 0/1 value 

• Energy determined by an Ising-type energy 

• Probabilistic – Each state is determined via Boltzmann distribution 

    is the inverse temperature

𝐸(𝑆) = ∑
𝑖∈𝑁𝑜𝑑𝑒𝑠

𝐻𝑖𝑆𝑖 + ∑
(𝑖,𝑗)∈𝐸𝑑𝑔𝑒𝑠

𝐽𝑖𝑗𝑆𝑖𝑆𝑗

𝑝(𝑆) =
𝑒−𝛽𝐸(𝑆)

𝑍
,             𝑍 = ∑ 𝑒−𝛽𝐸(𝑆)
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User can only read part of the nodes

• Nodes segregated into Visible and Hidden nodes 

• Only data on the visible nodes can be read. 

• Probability of visible nodes determined by marginalizing 
over hidden nodes 

• This step allows to model complicated probability mass 
functions

𝑆 = [𝑣, h]

𝑝(𝑣; 𝜃) = ∑ 𝑝([𝑣, h])
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Representing data-sets for visible nodes
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size𝑥 = 10

• Each row is a data, and each column is a node 

• Left Sample set: Generative Learning 

 Samples state  from this data set 

• Right Sample set : Adding classification 

 Samples state  from this data set 

Note that we may be interested in complete 
sampling or reconstruction 

(𝑥)

(𝑥, 𝑓(𝑥))

size𝑥 = 10
size𝑓(𝑥) = 1

Set of states with ‘0’ 
on left and ‘1’ on right

Distinguish between 
Random and ordered phase
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Estimation of gradients is challenging
• Optimize for Log-likelihood based cost (KL Divergence, Negative Log-likelihood) 

𝜕(−log𝑝(𝑣∗))
𝜕𝜃

= 𝔼h( 𝜕𝐸(𝑣, h)
𝜕𝜃

𝑣∗) − 𝔼𝑣,h( 𝜕𝐸(𝑣, h)
𝜕𝜃 )

• Exact estimation prohibited due to exponentially large number of states 
• Estimating expectation using Monte Carlo-based techniques takes time to equilibrate 
• Another idea: Use “simpler” graph-structures 
 Restricted Boltzmann machine - Bipartite graph of hidden and visible layer 

Contrastive Divergence / Negative Sampling 
Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning 
algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554
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Computational Complexity is determined by 
the topology of the graph

Idea: Start with a data (desired) state and check if you are moving away from it.

Contrastive Divergence / Negative Sampling 
Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning 
algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554

Positive Phase:  

Negative Phase:  

𝔼h( 𝜕𝐸(𝑣, h)
𝜕𝜃

𝑣∗) ≡
𝜕𝐸(𝑣∗, h)

𝜕𝜃

𝔼𝑣,h( 𝜕𝐸(𝑣, h)
𝜕𝜃 )     ≡

𝜕𝐸(~𝑣, h)
𝜕𝜃

𝜕(−log𝑝(𝑣∗))
𝜕𝜃

= 𝔼h( 𝜕𝐸(𝑣, h)
𝜕𝜃

𝑣∗) − 𝔼𝑣,h( 𝜕𝐸(𝑣, h)
𝜕𝜃 )

Maximizing likelihood of a data state



Computational Complexity is determined by 
the topology of the graph

• Ease of computation doesn’t depend on just sparsity but the overall topology of graph, e.g., presence of 
cycles, multipartite graph etc.  

Less complex Moderately complex

RBM[1]
Deep 

RBM[1]
Representation Capability 

 Computation complexity

Limited 
BM[2] BM

[1] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and statistics, (2009) 
[2] Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer." Computational Materials Science (2020)

• In general, adding edges to a network increases representation capability but also the cost of 
computation



Tradeoffs between representability and 
computational cost

• Gradient based approximations for general BM is 
difficult due to calculation of expectations 

• Use Contrastive Divergence techniques for simpler 
graphs – RBM 

• But General BM is more representable than RBM 

• The solution to this problem is an effective low-cost 
sampler for Boltzmann machine 

 Quantum Annealer
Generative training with 4 hidden nodes
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Quantum Annealing

• The annealing procedure evolves energy on super-conducting qubits 

+  

• Adiabatic theorem: If this process is done slowly and band gap is positive at every 
point then state equilibrates to the ground state of blue Hamiltonian 

• Ground state of Blue Hamiltonian same as that of classical spin energy

𝐸(𝑡) = 𝐴(𝑡)∑
𝑖

𝑆𝑥
𝑖 + 𝐵(𝑡)( ∑

𝑖

𝐻𝑖𝑆𝑧
𝑖 ∑

<𝑖,𝑗>

𝐽𝑖𝑗𝑆𝑧
𝑖 𝑆𝑧 

𝑗 )

𝐸(𝑆 ) =
𝑁

∑
𝑖

𝐻𝑖𝑆𝑖 + ∑
⟨𝑖𝑗⟩

𝐽𝑖𝑗𝑆𝑖𝑆𝑗 

Benefits:  
1. Finds the minimum in a single computation  
2. Savings in energy consumption by reduced computation time
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Quantum Annealing

What does Quantum annealing give? 

• Independent samples based on Boltzmann 
distribution

• Currently available hardware like D-Wave where 
parameters are tunable using analog controls 

• Employs Quantum Annealing with short simulation time 
(~ ) and finite temperature (~ ) 

• Adiabatic theorem no longer valid. 

20𝜇𝑠 15𝑚𝐾
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Generative learning

Data Set

Estimate statistics from QA Samples 

• Cost function is chosen to be KL Divergence: 

• Approximate gradients and even Hessian (in terms of Covariances) for a little 
premium on cost 

• Use Stochastic Gradient/Newton method for optimization

𝐷𝐾𝐿 = ∑
𝑉𝑖𝑠𝑖𝑏𝑙𝑒 𝑑𝑎𝑡𝑎

𝑞log
𝑞
𝑝

 

𝑞 = (#Data)−1,  p = Model probability
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Generative learning

Data Set
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Classification of state (Discriminative 
learning)

Ph
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e 
0
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e 
1

State  (𝑥, 𝑓(𝑥))

Graph decomposed as:  
(a) Visible Input (Pink) 
(b) Visible output (Blue) 
(c) Hidden (grey)
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Including classification cost

• Optimize for 𝑝(𝑓(𝑥) |𝑥)

Ph
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e 
0

Ph
as

e 
1

Negative Conditional Log-Likelihood 
𝒩 = ∑

[𝑥,𝑓(𝑥)]∈{𝑣1,…,𝑣𝐷}

log𝑝(𝑓(𝑥) |𝑥; 𝜃, 𝛽) 𝐶𝑜𝑠𝑡 = 𝛼𝐷𝐾𝐿 +
(1 − 𝛼)

𝐷
𝒩

18



Including classification cost

80/20 split of Training/Testing Data
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New challenge: Temperature ( ) is unknown𝛽

Observation:   

Linear Regression: 

log 𝑝 = − 𝛽𝐸 − log𝑍

𝛽∗ = −
∑ (𝐸 − 𝔼(𝐸 ))(log𝑝 − 𝔼(log𝑝))

∑ (𝐸 − 𝔼(𝐸 ))2 

• Annealing temperature is unknown and dependent on 
the simulated graph.  

• Need to evaluate  to implement model in different 
machines

𝛽

𝛽∗

Trained BM may not have the best 
performance at the Training temperature ( )    𝛽∗
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Approximating the cost at different  𝛽

𝛽∗
Use Taylor expansion: 

• Coefficients estimated using sample statistics 
• Similar results for NCLL cost 

𝐷𝐾𝐿(𝛽) = 𝐷∗
𝐾𝐿 +

𝜕𝐷𝐾𝐿

𝜕𝛽 𝛽∗(𝛽 − 𝛽∗) +
1
2

𝜕2𝐷𝐾𝐿

𝜕𝛽2 (𝛽 − 𝛽∗) + … 𝛽𝑂

Application: Normalize parameters for best performance 
temperature 

𝜃 →
𝜃𝛽𝑂

𝛽∗
,            𝛽𝑂 = optimal temperature 

We have resolved the issue of transferability of the BM to 
different computing devices. 
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Summary for Boltzmann Machine
State of the art: Present training methods utilize topological 
features of a graph for reducing computational complexity 

Advantage of current work: Training via QA samples works on 
a general BM. Sparse BMs enjoy additional computational 
advantages by allowing embedding of larger graphs in the 
hardware 

Resolution of possible problems: The issue of transferability 
of BM is resolved 

A MATLAB library is now available which implements this 
training method 

Future work: As a next step, we will apply this method for 
problems concerning Process-Structure-Property (PSP) 
linkages in materials science

vs
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