A quantum annealing approach for learning Boltzmann machines as function approximators and/or samplers

Siddhartha Srivastava, Veera Sundararaghavan
Multi-Scale Structural Simulations Laboratory
University of Michigan, Ann Arbor

UNIVERSITY OF MICHIGAN

Outline

- Applications in machine learning
- Definition and properties
- Review of some classical training strategies
- Proposed training method using Quantum annealing
- New challenges and their resolution

Application: Labeled data generation

Handwritten numbers
Benedetti, Marcello, John Realpe-Gómez, and Alejandro Perdomo-Ortiz. "Quantum-assisted helmholtz machines: a quantum-classical deep learning framework for industrial datasets in near-term devices." Quantum Science and Technology 3.3 (2018): 034007.

Labeled training Data (mnist)

Application: Recovering missing data

R̄ēōn̄̄s̄trūc̄tē Dāta

Application: Machine Learning architectures

Associative adversarial networks
Arici, Tarik, and Asli Celikyilmaz. "Associative adversaria networks." arXiv preprint arXiv:1611.06953 (2016).

- Intermediate layer of the discriminator reads the visible layer of the RBM network (the associative memory).
- RBM Samples generate inputs for the generator network (as opposed to noise sampling).
- This layer that is visible to the associative memory represents a feature space that can capture latent factors of variations in the data

Boltzmann machine are probabilistic energybased graph models

- Graph models - Nodes connected via edges (undirected)

- Energy based - Each node takes 0/1 value
- Energy determined by an Ising-type energy

$$
E(S)=\sum_{i \in \text { Nodes }} H_{i} S_{i}+\sum_{(i, j) \in E d g e s} J_{i j} S_{i} S_{j}
$$

- Probabilistic - Each state is determined via Boltzmann distribution

$$
p(S)=\frac{e^{-\beta E(S)}}{Z}, \quad Z=\sum e^{-\beta E(S)}
$$

β is the inverse temperature

User can only read part of the nodes

- Nodes segregated into Visible and Hidden nodes
$S=[v, h]$
- Only data on the visible nodes can be read.
- Probability of visible nodes determined by marginalizing over hidden nodes

$$
p(v ; \theta)=\sum p([v, h])
$$

- This step allows to model complicated probability mass functions

Representing data-sets for visible nodes

\section*{| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
:---	:---	:---	:---	:---	:---	:---	:---	:---	$	$}	0	1	1	1	1	1	1	1	1	
:---	:---	:---	:---	:---	:---	:---	:---	:---	$	$	0	0	1	1	1	1	1	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	1	1	1	1	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	1	1	1	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	0	1	1	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	0	0	1	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	0	0	0	1	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	0	0	0	0	1	1
:---	:---	:---	:---	:---	:---	:---	:---	:---	:---		0	0	0	0	0	0	0	0	0	1
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Set of states with ' 0 ' on left and ' 1 ' on right

$$
\operatorname{size} x=10
$$

Random Phase

Distinguish between Random and ordered phase

$$
\operatorname{size} x=10
$$

$$
\operatorname{size} f(x)=1
$$

- Each row is a data, and each column is a node
- Left Sample set: Generative Learning

Samples state (x) from this data set

- Right Sample set : Adding classification

Samples state $(x, f(x))$ from this data set

Note that we may be interested in complete sampling or reconstruction

Estimation of gradients is challenging

- Optimize for Log-likelihood based cost (KL Divergence, Negative Log-likelihood)
$\frac{\partial\left(-\log p\left(v^{*}\right)\right)}{\partial \theta}=\mathbb{E}_{h}\left(\left.\frac{\partial E(v, h)}{\partial \theta} \right\rvert\, v^{*}\right)-\mathbb{E}_{v, h}\left(\frac{\partial E(v, h)}{\partial \theta}\right)$
- Exact estimation prohibited due to exponentially large number of states
- Estimating expectation using Monte Carlo-based techniques takes time to equilibrate
- Another idea: Use "simpler" graph-structures

Restricted Boltzmann machine - Bipartite graph of hidden and visible layer

Contrastive Divergence / Negative Sampling
Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554

Computational Complexity is determined by the topology of the graph

$$
\frac{\partial\left(-\log p\left(v^{*}\right)\right)}{\partial \theta}=\mathbb{E}_{h}\left(\left.\frac{\partial E(v, h)}{\partial \theta} \right\rvert\, v^{*}\right)-\mathbb{E}_{v, h}\left(\frac{\partial E(v, h)}{\partial \theta}\right)
$$

Maximizing likelihood of a data state

Contrastive Divergence / Negative Sampling

Hinton, Geoffrey E., Simon Osindero, and Yee-Whye Teh. "A fast learning algorithm for deep belief nets." Neural computation 18.7 (2006): 1527-1554

Idea: Start with a data (desired) state and check if you are moving away from it.

Computational Complexity is determined by the topology of the graph

- Ease of computation doesn't depend on just sparsity but the overall topology of graph, e.g., presence of cycles, multipartite graph etc.

Less complex

Moderately complex

- In general, adding edges to a network increases representation capability but also the cost of computation

| RBM[1] | Deep
 RBM[1] | Limited
 BM[2] |
| :---: | :---: | :---: |$\quad \xrightarrow{\text { BM }} \quad \xrightarrow{\text { Representation Capability }}$

[1] Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and statistics, (2009)
[2] Liu, Jeremy, et al. "Boltzmann machine modeling of layered MoS2 synthesis on a quantum annealer." Computational Materials Science (2020)

Tradeoffs between representability and computational cost

- Gradient based approximations for general BM is difficult due to calculation of expectations
- Use Contrastive Divergence techniques for simpler graphs - RBM
- But General BM is more representable than RBM
- The solution to this problem is an effective low-cost sampler for Boltzmann machine

Quantum Annealer

Generative training with 4 hidden nodes

Quantum Annealing

- The annealing procedure evolves energy on super-conducting qubits

$$
E(t)=A(t) \sum_{i} S_{i}^{x}+B(t)\left(\sum_{i} H_{i} S_{i}^{z}+\sum_{<i, j>} J_{i j} S_{i}^{z} S_{j}^{z}\right)
$$

- Adiabatic theorem: If this process is done slowly and band gap is positive at every point then state equilibrates to the ground state of blue Hamiltonian
- Ground state of Blue Hamiltonian same as that of classical spin energy

$$
E(S)=\sum_{i} H_{i} S_{i}+\sum_{\langle i j\rangle} J_{i j} S_{i} S_{j}
$$

Benefits:

1. Finds the minimum in a single computation
2. Savings in energy consumption by reduced computation time

Quantum Annealing

- Currently available hardware like D-Wave where parameters are tunable using analog controls
- Employs Quantum Annealing with short simulation time $(\sim 20 \mu s)$ and finite temperature ($\sim 15 m K$)
- Adiabatic theorem no longer valid.

What does Quantum annealing give?

- Independent samples based on Boltzmann distribution

Generative learning

Estimate statistics from QA Samples

\section*{| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

0	1	1	1	1	1	1	1	1	1

0	0	1	1	1	1	1	1	1	1

0	0	0	1	1	1	1	1	1	1

0	0	0	0	1	1	1	1	1	1

0	0	0	0	0	1	1	1	1	1

0	0	0	0	0	0	1	1	1	1

0	0	0	0	0	0	0	1	1	1

0	0	0	0	0	0	0	0	1	1

0	0	0	0	0	0	0	0	0	1

0	0	0	0	0	0	0	0	0	0

Data Set

- Cost function is chosen to be KL Divergence:

$$
D_{K L}=\sum_{\text {Visible data }} q \log \frac{q}{p}
$$

$q=(\# \text { Data })^{-1}, \mathrm{p}=$ Model probability

- Approximate gradients and even Hessian (in terms of Covariances) for a little premium on cost
- Use Stochastic Gradient/Newton method for optimization

Generative learning

1	1	1	1	1	1	1	1	1

0	1	1	1	1	1	1	1	1	1

0	0	1	1	1	1	1	1	1	1

0	0	0	1	1	1	1	1	1	1

0	0	0	0	1	1	1	1	1	1

0	0	0	0	0	1	1	1	1	1

0	0	0	0	0	0	1	1	1	1

0	0	0	0	0	0	0	1	1	1
0	0	0	0	0	0	0		1	

0	0	0	0	0	0	0	0	1	1

0	0	0	0	0	0	0	0	0	1

0	0	0	0	0	0	0	0	0	0

Data Set

Classification of state (Discriminative learning)

State $(x, f(x))$

Graph decomposed as:
(a) Visible Input (Pink)
(b) Visible output (Blue)
(c) Hidden (grey)

Including classification cost

- Optimize for $p(f(x) \mid x)$

Including classification cost

80/20 split of Training/Testing Data

New challenge: Temperature (β) is unknown

- Annealing temperature is unknown and dependent on the simulated graph.
- Need to evaluate β to implement model in different machines

Observation: $\log p=-\beta E-\log Z$

Linear Regression:

$$
\beta^{*}=-\frac{\sum(E-\mathbb{E}(E))(\log p-\mathbb{E}(\log p))}{\sum(E-\mathbb{E}(E))^{2}}
$$

Trained BM may not have the best

performance at the Training temperature (β^{*})

Approximating the cost at different β

Application: Normalize parameters for best performance temperature
$\theta \rightarrow \frac{\theta \beta^{O}}{\beta^{*}}, \quad \beta^{O}=$ optimal temperature
Use Taylor expansion:
$D_{K L}(\beta)=D_{K L}^{*}+\left.\frac{\partial D_{K L}}{\partial \beta}\right|_{\beta^{*}}\left(\beta-\beta^{*}\right)+\frac{1}{2} \frac{\partial^{2} D_{K L}}{\partial \beta^{2}}\left(\beta-\beta^{*}\right)+\ldots$

- Coefficients estimated using sample statistics
- Similar results for NCLL cost

We have resolved the issue of transferability of the $B M$ to different computing devices.

Summary for Boltzmann Machine

State of the art: Present training methods utilize topological features of a graph for reducing computational complexity

Advantage of current work: Training via QA samples works on a general BM. Sparse BMs enjoy additional computational advantages by allowing embedding of larger graphs in the hardware

Resolution of possible problems: The issue of transferability of $B M$ is resolved

A MATLAB library is now available which implements this training method

	Clique	NAE3SAT $(r=3)$	NAE3SAT $(r=2.1)$	3-Regular	3D Lattice w/defects	Native
2000Q	64	90	102	304	512	2030
Advantage	124	242	286	784	2354	5455

Future work: As a next step, we will apply this method for problems concerning Process-Structure-Property (PSP) linkages in materials science

Thank you

