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Exciting new developments in networks 
science and computational graph-theory

Social networks  
(source: medium.com)

Brain network  
(source: Heuvel et.al. Journal of Neuroscience 2010)

Epidemiology/ Covid Spread 
(source: Goldenbogen et.al medRxiv. 2020)

Aircraft traffic/ scheduling 
(source: towardsdatascience,com)

Protein Folding 
(source: Zhou et.al. PNAS 2020)

Fluid flow optimization 
(source: Nair et.al JFM 2019)



What is a graph? 

• Graph is a collection of Vertices (blue) and Edges (green). Mathematically summarized as  

 

𝐺(𝑉, 𝐸)



Fracture mechanics as clustering

A cluster of nodes has similar properties – like 
spatial locations etc.

A completely “Fractured-surface” partitions an 
object into smaller object.



Duality of cut and flow

• Well established numerical methods:  
• (1955) Ford-Fulkerson’s Augmenting Path 
• (1970) Edmonds-Karp’s Shortest Path and Max 

capacity  
• (1983) Sleator-Tarjan’s Dynamic Trees 
• (1997) Goldberg-Rao’s Length Function 
• (2001) Boykov’s Graphcut 
• (2010) Quantum Annealing 

• Key idea of this work: “Griffith’s energy 
minimizing problems for fracture can be 
posed as a min-cut problem”

Max-Flow Min-Cut theorem
For any network graph and a selected source and 
sink node, the max-flow from source to sink = the 
min-cut necessary to separate source from sink



Crack propagation in multiple length scales

Can we inform macro-scale continuum constitutive models with statistical 
information produced at microscale ?


• Formalize multiscale fracture in Ising energy form

• Energy form amenable to classical computation

• Captures rich physics

Representative Paper:  
Srivastava S, Yaghoobi M and Sundararaghavan V(2020). “A graph-theoretic approach for multiscale modeling 
and prediction of crack propagation in polycrystalline materials.” Engineering Fracture Mechanics, 107406



Fractures at microstructure scale

Microscopic crack paths in WE43 alloy  
red line = Basal trace

At microscale, inhomogeneities play an 
important role in deciding fracture paths.

Transgranular fracture: Withing the grains, 
fracture follows preferred cleavage planes. 

Intergranular fracture: The energy of a grain 
boundary depends on the relative orientations of 
neighboring grains.

The final crack path is decided by the interplay 
between different surface energies and change 
in train energy

State

Energy

Cracked 
Surface

Grain Boundary

Single Crystal



Brittle fractures 

𝛽

2𝑎

Main crack

𝜎𝑇

𝜎𝑇

A mixed mode fracture can be studied as a tensile test 
of an inclined crack.  

Question: What is the angle , for a given:   

(i) Material properties:  

(ii) Loading condition:  

(iii) Main crack parameters:   

Answer:  minimizes the energy of the system 

For a unit length branched crack: 

First term is surface energy due to new surfaces 

Second term is the release of strain energy

𝛼
𝐸, 𝜈

𝜎𝑇

𝑎, 𝛽

𝜃

𝐸 = 2𝛾 − 𝐺(𝛼)

𝛼

Branched crack

?



Multiscale assumptions
• Crack, , propagates from the crack tip in a zig-zag 

direction towards the circumference. Path minimizes 
the total energy of the system, : 

                : Surface energy density 

• Crack propagation is initiated when the total energy is 
negative. 

Surface Energy is a microscopic object and energy 
release is a macroscopic object

Γ 

𝜀(Γ)

𝜀(Γ) = ∫
Γ

2𝛾𝑑𝑠  − 𝐺(�̄�)

𝛾

Tensile test, Mixed mode crack 



Graph representation of Fracture

• Want to label elements above crack line as ‘ ’ and below crack as ‘ ’. 
• Surface energy of fracture encoded in the red edges of the Embedded graph.

+1 −1

• Each element is treated as a vertex of graph 
• A connection (Yellow) is drawn between two elements if they share an edge (Blue).



• Evolution of the state is determined by following energy 

 = spin (+1/-1) on  vertex 
 = external field  
 = interaction strength between different lattice points 

𝐸(𝑆 ) =
𝑁

∑
𝑖

𝐻𝑖𝑆𝑖 + ∑
⟨𝑖𝑗⟩

𝐽𝑖𝑗𝑆𝑖𝑆𝑗 

𝑆𝑖 𝑖𝑡h

𝐻𝑖
𝐽𝑖𝑗

Graph labeling problem: Pairwise formulation

Direct energy minimization 
• First term enforces specific states at each node (Local behavior) 
• Second term enforces relative spin of each neighbor (Non-local behavior)

(𝐽 < 0) (𝐽 > 0)
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color 
vertices

Generalization to graph



Pairwise formulation for fracture problem

Modelling surface energy 
A crack between element A and B means they have different labels 

• Interaction term adds energy when A and B have different labels. Following 
function impose this condition: 

• Strength of the link   

• Total surface energy is evaluated as 

1 − 𝛿𝑠𝐴−𝑠𝐵

= 2𝛾(→𝑛 )Δ𝑠

∑
⟨𝑖,𝑗⟩

2𝛾(→𝑛 )Δ𝑠(1 − 𝛿𝑠𝑖−𝑠𝑗) 

Want to label elements above crack line as ‘ ’ and below crack as ‘ ’ such that they minimize +1 −1

𝜀(Γ) = ∫
Γ

2𝛾𝑑𝑠  − 𝐺(�̄�)



Modelling energy release 
Key idea: Find  such that  

              : Position, Label and Area of the element 
Can be done exactly if  
• labeling is legitimate i.e. represents a single boundary 

•  is a differentiable function 

𝑔(𝑥, 𝑙)

lim
𝐴𝑖→0 ∑

𝑖∈{1,…,𝑁𝑉}

𝑔(𝑥𝑖, 𝑙𝑖)𝐴𝑖 = − 𝐺(�̄�)

𝑥𝑖, 𝑙𝑖, 𝐴𝑖 𝑖𝑡h

𝐺

Pairwise formulation for fracture problem

𝜀(Γ) ≈ ∑
𝑖

𝑔(𝑥𝑖, 𝑙𝑖)𝐴𝑖 + ∑
⟨𝑖,𝑗⟩

2𝛾(→𝑛 )Δ𝑠(1 − 𝛿𝑠𝑖−𝑠𝑗)  Mode-1 fracture 
(𝛽 = 90∘)

Want to label elements above crack line as ‘ ’ and below crack as ‘ ’ such that they minimize +1 −1

𝜀(Γ) = ∫
Γ

2𝛾𝑑𝑠  − 𝐺(�̄�)



Method verification

Quantitative tests:   
• Isotropic surface energy:  

• Numerical prediction of average branched crack path angle, 
 within  error of analytical and  error of experiments. 

• Anisotropic surface energy:  
• For convex surface energy, within  error of analytical 

results. 
• For non-convex surface energy, fracture path shows smooth to 

rough transition in surface. 
Qualitative tests:   
• Effect of Grain Boundary 

• Fracture path prefers grain boundaries with lower 
intergranular surface. 

• Crack path is affected before hitting the grain boundary. 
• This is a consequence of the global minimization of crack 

labeling problem.  
 

�̄�, 2∘ 4∘

�̄�,   4∘
Forbidden regions for crack propagation



Fracture in isotropic materials

• Estimating the macroscopic angle,  

• Experiment*: plexiglass sheets with oblique cracks 
under tension.

• Analytical: Maximum energy release criteria

• Numerical prediction within  error from numerical 
and  error from experimental

�̄�Γ

2∘

4∘

* F. Erdogan and G. C. Sih. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. Journal of Basic Engineering, 85(4):519–525, 12 1963 



Mode-I failure with surface anisotropy

• Elastic properties are isotropic 

• Surface energy 

 In absence of external load, preferred direction is .  

Wulff construction for Quasistatic brittle crack in Mode-I [1]: 

Step 1: Plot polar plot of  (Inverse of surface energy) 

Step 2: Crack propagates along red line such that it intersects the 
blue line at a point with a vertical tangent. 

𝛾(𝛼) = 𝛾0(1 + 𝛿sin2(𝛼 − 𝜔))
𝛼 = 𝜔 

𝛾−1

[1] Takei, Atsushi, et al. "Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the wulff plot." Physical review letters 110.14 (2013): 144301.

Polar plot of Inverse surface energy



Mode-I failure with surface anisotropy
• Elastic properties are isotropic 
• Surface energy 

In absence of external load, bidirectional preference: 

Wulff construction is still valid if intersection is convex 
Cracks are not permitted in the non-convex regions 

Effect: 1. Transition from one cleavage plane to another cannot be done 
smoothly due to forbidden regions 
2. Switching between different preferred directions can reduce the 
macroscopic crack angle (white-dashed line)

𝛾(𝛼) = 𝛾0(1 + 𝛿sin22(𝛼 − 𝜔))

𝛼 = 𝜔,  𝜔 ± 90∘ 

[1] Takei, Atsushi, et al. "Forbidden directions for the fracture of thin anisotropic sheets: an analogy with the wulff plot." Physical review letters 110.14 (2013): 144301.

Forbidden regions for crack propagation



Long range effects of grain boundary
Qualitative Results (Mode-I): 

• As expected, fracture path prefers grain boundaries 
with lower intergranular surface. 

• Crack path is affected before hitting the grain 
boundary. 

• This is a consequence of the global minimization of 
crack labeling problem.  

• Experimental results and Phase field methods 
reveal similar bending of crack before hitting the 
grain boundary. However, the length scale of this 
effect in Phase field is far smaller.

Intergranular surface energy



Validation: Effect of Grain Boundary

Experimental results and Phase field methods reveal similar bending of crack before hitting the grain boundary. 
However, the length scale of this effect in Phase field is far smaller

19



Modeling HCP materials

20
Representative Paper:  
Srivastava S, Yaghoobi M, Adams J.F, Greeley D, Spear A.D, Allison J.E, Jones W and Sundararaghavan V(2020). “Fatigue crack growth in 
WE43 Mg alloy: thin foil fatigue experiment and graph-theoretic approach.” Unpublished – Manuscript available on request

• HCP	crystals	is	characterized	by	the	
symmetry	group:		

• We introduce a 7-parameter model for 
surface energy:

{𝑅𝑧(𝜋/3), 𝑅𝑥(𝜋/2), − 𝐼}

𝛾 =  𝛾0 + (𝛾b − 𝛾0)𝑓1 + (𝛾pris − 𝛾0)𝑓2 + (𝛾pyr<a> − 𝛾0)𝑓3 + (𝛾pyr<c+a> − 𝛾0)𝑓4



Thin foil experiments
• Crystalline fractured surfaces may exhibit an out-of-plane normal.  

• Energy minimizing 3d normal can be pre-determined. 

• Dihedral angle relates 2D and 3D cleaved surface 

• Dihedral angle minimizes the net surface energy 

→𝑛 3𝐷(𝜓) = [0,0, 1]𝑇sin𝜓 + →𝑛 2𝐷cos𝜓,

𝜓𝐷 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜓∈(− 𝜋
2 , 𝜋

2 )𝛾(→𝑛 3𝐷(𝜓))sec𝜓



Experimental comparisons: Foil 1

																		Noncrystallographic																							Intergranular																							Basal																
																		Prismatic																																												Pyramidal<a>																						Pyramidal<c+a>																				

Fatigue cracks in alloys (Black line = Experiments)



Experimental comparisons: Foil 2

																		Noncrystallographic																							Intergranular																							Basal																
																		Prismatic																																												Pyramidal<a>																						Pyramidal<c+a>																				

Fatigue cracks in alloys (Black line = Experiments)



Experimental comparisons: Foil 3

																		Noncrystallographic																							Intergranular																							Basal																
																		Prismatic																																												Pyramidal<a>																						Pyramidal<c+a>																				

Fatigue cracks in alloys (Black line = Experiments)



Experimental comparisons: Foil 4

																		Noncrystallographic																							Intergranular																							Basal																
																		Prismatic																																												Pyramidal<a>																						Pyramidal<c+a>																				

Fatigue cracks in alloys (Black line = Experiments)



Learned statistics

																		Noncrystallographic																							Intergranular																							Basal																
																		Prismatic																																												Pyramidal<a>																						Pyramidal<c+a>																				
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Conclusion

• Developed a graph-labelling based approach to estimate microstructure crack path and tested it against 
analytical results.  

• Experimental validation show promising results for WE43 alloy. 

Computational complexity:  

• The theoretical complexity for approximating Labeling (Rate-determining step) is .  

• For practical mesh-sizes, estimating pairwise energy took most time (  1-2 mins on workstation). 

Theoretical extensions:  

• This approach is also extended to study elastodynamic fracture (in the sense of *). 

• Only the Graph-theoretic formulation for Minimum Energy (ME) criterion is  presented but the approach 
can be extended to other fracture criteria such as Strain Energy (SE) criteria – useful for ductile fracture.

O(𝑁 log𝑁 )

~

*L. B. Freund. Energy concepts in dynamic fracture, page 221–295. Cambridge Monographs on Mechanics. Cambridge University Press, 1990 



Effect of radial step-size

• Small radius gives back homogeneous solution for the grain 

• Large radius approaches macroscopic behavior



Elastodynamic extension to Griffith’s fracture 

Quasistatic                                                          Dynamic ← 𝜀(Γ) → 0−

→ Velocity
Total energy

Assumption*: Constant velocity & no kinetic energy
• Equilibrium crack in-plane strain mode - I failure 

with finite velocity (v) has an augmented energy 
release rate 

• In the limiting case of quasistatic fracture, the 
solution can be recovered from the finite  
velocity case as 

• Similar results are available for Mode-II fracture

Application: 1. Relates load and velocity of the 
crack
2. Predicted crack path depends on the load

~𝐺(𝑣, 𝛼) = 𝐴(𝑣)𝐺(𝛼)

lim
𝑣→0+

𝐴(𝑣) = 1

*L. B. Freund. Energy concepts in dynamic fracture, page 221–295. Cambridge Monographs on Mechanics. Cambridge University Press, 1990 



Computation on Quantum annealers
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Classical cost:  

• The theoretical complexity for 
approximating Labeling (Rate-determining 
step) is  

• For practical mesh-sizes, estimating 
pairwise energy took most time (  1-2 
mins on workstation) 

O(𝑁 log𝑁 )

~

Quantum Computation:  

• Current annealers can't support the 
required computational size.  

• If larger size annealers are made available 
in future, they can reduce complexity from 

 to O(𝑁 log𝑁) O(𝑁 ) 30
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