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Graphs for Scientific computing

▶ Representing Physical systems on graph
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Outline

▶ Representation of physical systems on a graph

▶ Non-local calculus on a graph

▶ Reduced order modeling on a graph
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Graphs for Scientific computing

▶ A mathematical Graph is a collection of a vertices and edges.

▶ Graph-theoretic representation of physical system involves following abstraction:

▶ Physical solution as vertex
▶ Transition between solution as edge
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∇ · σ + f = 0, in Ω

u = u(p), on ∂Ωu

σn = σn(p), on ∂Ωσ .
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Mathematical Graph Physical System Physical Graph

▶ States Si , i = 1, . . .N obtained for parameter sets pi , boundary conditions u i ,σni ; (non)linear solution
step or change in a “transition quantity” over Sj → Si is Tij

▶ G(V ,E) can be constructed s.t. V = {Si}i=1,...N and E = {Tij}i,j=1,...N
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Axiomatic approach to Physical System using Graphs
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▶ G(V ,E) is connected if every Si can be reached from some Sj along edge Tij ;
unconnected if solution scheme or transition quantity leaves an isolated state

▶ Stationary systems as BVPS

▶ Reversibility of linear, non-dissipative systems =⇒ undirected graphs.
▶ All admissible states are accessible =⇒ fully connected graph.

▶ Numerical computation is facilitated by considering additional structures like edge weights. For instance, Low
dimensional embeddings (Encoders) can be used to study communities of proximal solutions.

1Solutions of a non-convex elastic model
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Dissipative dynamical systems represented as graphs

Si1 
Si2 

Sj1 Sk1 Sj2 

Sk2 
Sl1 

Tj2i2
Tk1i1

States parameterized by time; cannot be revisited; Tij represents the time
step [tj , ti ] and change in transition quantity

▶ Loss of time reversal symmetry =⇒ Directed graphs.

▶ Only one path to a state =⇒ Graphs are trees

▶ Second law defines “entropy quantities”:
ḟ (u) ≥ 0, or ḟ (u) ≤ 0, α̇B ≥ 0, or α̇B ≤ 0. States of
dissipative dynamical systems must contain entropy quantities

▶ Precipitate nucleation and growth driven by Allen-Cahn equation
(Teichert & KG, 2018)

▶ Graph for shape features of precipitate and the free energy.

x i = (ai , bi ,ci , t1i , . . . , t8i , cpi ), Si = (x i ,Π(x i ))

ai , bi , ci : bounding box for precipitate

t1 · · · t8 : Spline control points

cpi : Alloy concentration

Π : Total free energy of the state
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Choices of weights on a graph

x i = (ai , bi ,ci , t1i , . . . , t8i , cpi ), Si = (x i ,Π(x i ))

▶ Many possibilities for prescribing the graph weights.

▶ Physical laws induces some choices of weights:

Graph chemical potential: µi,j =
Πi − Πj

∥xi − xj∥

▶ Graph time of transition

∆τij ∼
∥xi − xj∥

|µi,j |

(1) Can we estimate weights in an unsupervised way?
(2) Can we estimate derivatives on graph?

µ =
∂Π

∂x
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Outline

▶ Representation of physical systems on a graph

▶ Non-local calculus on a graph

▶ Reduced order modeling on a graph
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Non Local Calculus on weighted graphs

▶ Representing data on graphs, G(V ,E)

▶ Each vertex has state (x , φ(x)) representing input/output data.
▶ Edges with weights, with possibly multiple edges between vertices.

▶ G. Gilboa, S. Osher, Multiscale Modeling & Simulation (2009),
introduced a non-local calculus on Graphs e.g.

▶ Non-local gradient operator,
▶ Inner product on scalars over vertices,
▶ Contraction of vectors on the vertices,
▶ Partial derivatives

▶ First order partial derivatives estimated as:

δφ

δxµ
(x) =

1

|Nx |
∑

(x,y)∈E

φ(y)− φ(x)

yµ − xµ
wµ(x , y)

▶ wµ are dimensionless weights
▶ Directed Edges: wµ(x , y) ̸= wµ(y , x)
▶ Multidimensional edge weights

▶ Edge Weights prescribed using simple functions like Gaussians1 and
Discrete weights2
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1M. Duschenes, K. Garikipati, arXiv:2105.01740

2M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206
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Error in the estimation of derivatives

▶ Can we find the weights, wµ such that e ∼ O(hk )

e(x) =

∣∣∣∣ δφδx −
∂φ

∂x

∣∣∣∣
Yes, with discrete weights1. Extendable to higher dimensions and higher order derivatives

Proof by construction – provides an algorithm for estimating these weights

▶ Key Idea (1D version): Expand non-local derivative definitions in a Taylor series about x̃ :

δφ

δx
(x̃) =

1

|Nx̃ |
∑

(x̃,x)∈E

φ(x)− φ(x̃)

x − x̃
wµ(x̃ , x)

=
∞∑
s=0

1

(s + 1)!

∂s+1φ

∂xs+1
(x̃)

∑
x∈N (x̃)

(x − x̃)sw(x − x̃).

Then the weights can be found from solving the linear system of equations of the first k moments:∑
N (x̃)

(x − x̃)sw(x − x̃) = δ0s s = {0, . . . , k − 1} =⇒
δφ

δx
−
∂φ

∂x
=

∞∑
s=k

1

(s + 1)!

∂s+1φ

∂xs+1
(x̃)

∑
x∈N (x̃)

(x − x̃)sw(x − x̃)

︸ ︷︷ ︸
O(hk )

.

1M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206
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Error in the estimation of derivatives

▶ Key idea continued: Can these constraints be solved ?∑
N (x̃)

(x − x̃)sw(x − x̃) = δ0s s = {0, . . . , k − 1}

▶ Yes! Rewriting in matrix form:
↑ ↑ · · · ↑
1 (x − x̃) · · · (x − x̃)k−1

↓ ↓ · · · ↓


|N (x̃)|×k︸ ︷︷ ︸

V



T  ↑
w(x , x̃)

↓


|N (x̃)|×1︸ ︷︷ ︸

w

=

10
0


k×1︸ ︷︷ ︸

e1

w = (VVT )−1Ve1

Pseudo-inverse is well-defined as long as points, (x̃ , x1, · · · , x|N|) are distinct.

▶ Same idea (with some more tricks) can be applied for higher derivatives in a multidimensional setting.
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Numerical results: Error analysis

▶ Error in derivatives as a function of data length scale h

▶ Interpolation study with data from 2d polynomial of order 6 on a
2D grid.

▶ Modeled using a 3rd order Taylor-like expansion about training
points based on non-local derivatives.

φ(x , y) = φ(0) +
δφ

δx
(0)x +

δφ

δy
(0)y +

1

2

δ2φ

δx2
(0)x2 + · · ·

▶ Desired accuracy of O(h4) is imposed in the pointwise model error.

▶ The model is required to be trained with stencils corresponding to
following errors in partial derivatives.

elm(x , y) ∼ O(h5−l−m), l +m = {1, 2, 3}

for derivatives of order l ,m with respect to {x , y}
10−5 10−4 10−3 10−2 10−1

h

10−7

10−5
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10−1

101

E
rr

or

1

4

1
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1
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|ε10(0, 0)| ∼ O(4.22 · 101 h4.00)

|ε10(L, 0)| ∼ O(1.05 · 101 h4.00)

|ε10(L,L)| ∼ O(3.08 · 101 h3.89)

|ε02(0, 0)| ∼ O(1.68 · 101 h3.37)

|ε02(L, 0)| ∼ O(5.45 · 101 h2.86)

|ε02(L,L)| ∼ O(3.81 h2.99)

|ε30(0, 0)| ∼ O(1.74 · 101 h2.00)

|ε30(L, 0)| ∼ O(3.35 h2.00)

|ε30(L,L)| ∼ O(1.26 · 101 h1.89)
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Numerical results: Summary

▶ Provided data (x , φ(x)), and an order k:
▶ Construct a graph (define edges)
▶ Estimate weights

such that the non local derivative:

δφ

δxµ
(x) =

1

|Nx |
∑

(x,y)∈E

φ(y)− φ(x)

yµ − xµ
wµ(x , y)

has the property∣∣∣∣δφδx − ∂φ

∂x

∣∣∣∣ −→ O(hk)

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

(a) Uniform data with
constant integer spacing.
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(b) Unstructured data
with random spacing.

Figure: 2D graph with 3 order accurate scheme
for derivative along horizontal direction
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Outline

▶ Representation of physical systems on a graph

▶ Non-local calculus on a graph

▶ Reduced order modeling on a graph
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Reduced Order Model: Model of interest

▶ Gradient flow: ∂ϕ

∂t
= −Mϕ

Dψ

Dϕ
, ψ = f (ϕ) + λ|∇ϕ|2

▶ Specify Landau potential: f (ϕ) = −ϕ2(ξ2 − ϕ2)

▶ Specify local material parameters: Mϕ, λ, ξ, BCs, ICs, . . .

▶ Solve system for N trajectories
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(a) Initial condition.
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(b) Intermediate solution.
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(c) Equilibrium solution.

Figure: Field evolution of 1D Allen-Cahn dynamics with Mϕ = 10−3 and λ = 1 at 0, 150, and 300 time

steps. A Backward-Euler scheme is used with a time step of ∆t = 10−2.
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Reduced Order Model: Global Observables

Guided by the gradient flow of the local quantity ϕ, we expect a global gradient-flow for the observable,
φ =

∫
ϕIϕ>0dΩ to be retained:

Local:
∂ϕ

∂t
= −Mϕ

Dψ

Dϕ
−→ Global:

δφ

δt
= −Mφ

δΨ

δφ
− Eφ

▶ Extract global variables from all trajectories: Dj = {φk , φ∇2 ,Ψ, δΨδφ , . . . }
(j)

▶ Global model basis: Mφ, Eφ ∈ span
(
φk , φ∇2 ,F ,F ′, φ̄k , φ̄∇2 , F̄ , F̄ ′, δΨ

δφk
, · · ·

)
Volume averaged quantities: Ψ =

∫
Ω

dΩ ψ , F =

∫
Ω

dΩ f , · · ·

Phase averaged quantities: φk =
1

Ω

∫
Ω

dΩ I (ϕ) ϕk , φ∇k =
1

Ω

∫
Ω

dΩ I (ϕ) ∇kϕ , · · ·

Non local derivatives:
δΨ

δφk
,

δΨ

δφ∇k

,
δΨ

δφ∇k

, · · ·

12 / 14



The Computational Physics Group
www.umich.edu/~compphys/

Reduced Order Model: Operator Elimination via
stepwise regression

δφ

δt
= −Mφ

δΨ

δφ
− Eφ

▶ Train model with a large basis:
Mφ, Eφ ∈ span(
φk , φ∇2 ,F ,F ′, φ̄k , φ̄∇2 , F̄ , F̄ ′, δΨ

δφk
, · · ·

)
▶ Drop the basis term that causes least change in

loss

▶ Repeat until loss increases drastically.

Parameters Mφ Eφ
4 γ

φ∇2
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−
γφφ + γφ3+φ3+ + γ

φ∇2
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1 0 γφφ
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Conclusion

Representation of Physical System:

▶ Graph theory offers a framework for representation and analysis of large scale computed solutions.

▶ The axioms for Physical systems add more mathematical structure to graphs.

▶ Graph computational techniques can be used to study physical systems.

Non-local calculus on graphs:

▶ Constraining non-locality of operators ensures consistency of model.

▶ Multi-dimensional weights on a directed graph

Reduced-order models:

▶ Reduced order models can be computed using physical ansatz and a basis of operators enriched with
non-local derivatives

▶ Algorithm available in the open-source package mechanoChemML:
https://pypi.org/project/mechanoChemML/

Relevant Publications:

▶ Graph representation: R. Banerjee, K. Sagiyama, G.H. Teichert, K. Garikipati, CMAME 2019

▶ Analysis with simple radial functions as weights: M. Duschenes, K. Garikipati, arXiv:2105.01740

▶ Analysis with discrete weights: M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2105.01740
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Curse of dimensionality
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Figure: Number of constraints when considering unique and non-unique terms due to
commutativity of multiplication of monomials in each term.

M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206
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Error in the estimation of higher order derivatives

▶ Second order derivatives in 1D

δ2u(x)

δx2
−
∂2u(x̃)

∂x2
=

∞∑
s=r2

1

(s + 1)!

∂s+2u(x̃)

∂xs+2

 ∑
N (2)(x̃)

z(x̃)sa(2)(z(x̃))



+
∞∑
s=r1

1

(s + 1)!

∂s+1u(x̃)

∂xs+1

 ∑
N (2)(x̃)

a(2)(z(x̃))

z(x̃)

 ∑
N (1)′ (x)

z ′(x)
s
a(1)(z ′(x))−

∑
N (1)′

(x̃)

z ′(x̃)
s
a(1)(z ′(x̃))




+
∞∑
s=r1

∞∑
s′=0

1

(s + 1)!(s′ + 1)!

∂s+s′+2u(x̃)

∂xs+s′+2

 ∑
N (2)(x̃)

z(x̃)s
′
a(2)(z(x̃))

 ∑
N (1)′

(x)

z ′(x)
s
a(1)(z ′(x))


 ,

Non-commuting second term

M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206
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