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| Graphs for Scientific computing ...
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» Representation of physical systems on a graph
» Non-local calculus on a graph

» Reduced order modeling on a graph
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Graphs for Scientific computing ...

» A mathematical Graph is a collection of a vertices and edges.

» Graph-theoretic representation of physical system involves following abstraction:

> Physical solution as vertex
> Transition between solution as edge

V-o+f=0, in Q
u=1u(p), on 90,
on=on(p), on 9Q,.

Mathematical Graph Physical System Physical Graph

> States .#;, i =1,... N obtained for parameter sets p;, boundary conditions uj, on;; (non)linear solution
step or change in a “transition quantity” over .7; — .} is .7

» G(V,E) can be constructed s.t. V = {%}i=1,..n and E ={J}ij=1,.n
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Axiomatic approach to Physical System using Graphs ...

> G(V,E) is connected if every .#; can be reached from some .7; along edge .7j;;
unconnected if solution scheme or transition quantity leaves an isolated state

> Stationary systems as BVPS

> Reversibility of linear, non-dissipative systems = undirected graphs.
> All admissible states are accessible = fully connected graph.

» Numerical computation is facilitated by considering additional structures like edge weights. For instance, Low
dimensional embeddings (Encoders) can be used to study communities of proximal solutions.

Low T

Solutions of a non-convex elastic model
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Dissipative dynamical systems represented as graphs ...

@ S States parameterized by time; cannot be revisited; .7} represents the time
step [t;, t;] and change in transition quantity
jj’Z’iZ » Loss of time reversal symmetry —> Directed graphs.

GD > Only one path to a state = Graphs are trees

€D f(u) >0, orf(u) <0, &B >0, oraB <0. States of
dissipative dynamical systems must contain entropy quantities

> Second law defines “entropy quantities”:

> Precipitate nucleation and growth driven by Allen-Cahn equation

(Teichert & KG, 2018)
» Graph for shape features of precipitate and the free energy.
Xi:(ai)bi’chtl,‘:“~)t8,*>cp,')7 %Z(Xi’n(xi))
aj, bj, ¢; : bounding box for precipitate
t; - - tg : Spline control points , , . ,

cp; : Alloy concentration

i

M : Total free energy of the state
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xj = (aj, bj,ci, t1;, ..., tg;, ¢p;), 5 = (xi, (%))

» Many possibilities for prescribing the graph weights.

» Physical laws induces some choices of weights:

n—n;

Graph chemical potential: p;; = ﬁ
Xj — Xj

» Graph time of transition

lIxi — Xl

ATjj ~
! |/»Li,j

(1) Can we estimate weights in an unsupervised way?
(2) Can we estimate derivatives on graph?

_on
T ox

m
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Choices of weights on a graph ...
|

Most gradual Steepest

287
Ve
2169
N
2130
v

Graph chemical potential induces edges when supple-
mented by the maximum dissipation principle (alterna-
tively, steepest descent)
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» Non-local calculus on a graph

>
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Non Local Calculus on weighted graphs

> Representing data on graphs, G(V, E)

> Each vertex has state (x, ¢(x)) representing input/output data.
> Edges with weights, with possibly multiple edges between vertices.

> G. Gilboa, S. Osher, Multiscale Modeling & Simulation (2009),
introduced a non-local calculus on Graphs e.g.

> Non-local gradient operator,

> Inner product on scalars over vertices,
P> Contraction of vectors on the vertices,
> Partial derivatives

» First order partial derivatives estimated as:

dp v 1 e(y) —e(x)__
JX”( x) = ‘Nx| EWWH(X’}/)

> wH are dimensionless welghts
> Directed Edges: WH(x,y) # WH(y, x)
> Multidimensional edge weights

> Edge Weights prescribed using simple functions like Gaussians! and
Discrete weights?
Im. Duschenes, K. Garikipati, arXiv:2105.01740
The Computational Physics Group 2m, Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206
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Error in the estimation of derivatives ...
|

> Can we find the weights, W* such that e ~ O(h¥)

dp Oy

e(x) = ox  Ox

Yes, with discrete weights!. Extendable to higher dimensions and higher order derivatives

‘ Proof by construction — provides an algorithm for estimating these weights

> Key Idea (1D version): Expand non-local derivative definitions in a Taylor series about X:

1 P() = 9(R)
X) = > W (%, x)
[N%] X=X
(x,x)€EE
el 1 as+1
Z (%) Z (x = X)*w(x — X).
| 9xs+1

s= S + 1) Ox xEN(X)

Then the weights can be found from solving the linear system of equations of the first k moments:
e ~ Sp > 1 oty e -

D (x—X)W(x—X)=0d0s s={0,...,k—1} = S e Z D) axs+1( %) > (x—)W(x—x).

N(®) xeN(X)
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| Error in the estimation of derivatives ...
|

» Key idea continued: Can these constraints be solved ?

> (x—X)W(x—X)=dos s={0,...,k—1}
N()

> Yes! Rewriting in matrix form:

-
T S + 1 1
1 (x=%X) - (x=x)k1 w(x, X) = |0
v v IV ()] xk ol Pea
v w e
w= (VW) lve
Pseudo-inverse is well-defined as long as points, (X, x1, -+, xxr|) are distinct.

> Same idea (with some more tricks) can be applied for higher derivatives in a multidimensional setting.
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Numerical results: Error analysis ...

» Error in derivatives as a function of data length scale h

£10(0,0)] ~ O(4.22- 10" 1t ’)

10! 0 ~ 0(1.05- 10

» Interpolation study with data from 2d polynomial of order 6 on a DI~ 0010 1% : ‘
2D gl’ld [”\‘N(}(‘})r; 10! Y,m’
lzoa( L, L)| ~ O(3.81 h*
> Modeled using a 3" order Taylor-like expansion about training mnwh(m?{ 100
points based on non-local derivatives. . ‘,')Jf(,)ff‘ SRR f
16%p > 2 _3
Plxy) = 2(0) + GO+ SOy + 5 TE O + St ' |
@
> Desired accuracy of O(h*) is imposed in the pointwise model error. .

107
» The model is required to be trained with stencils corresponding to

following errors in partial derivatives.
-7

=
em(x,y) ~ O(R~'=™), 1+ m={1,2,3} T S T S T T
h

for derivatives of order I, m with respect to {x, y}
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Numerical results: Summary .'.

> Provided data (x, ¢(x)), and an order k:

> Construct a graph (define edges)
> Estimate weights

R R

such that the non local derivative:

o) = o(x) _u
7W X
5Xu( x) = IJ\/’XI Z (x:¥) "".
(x,y)EE
has th + (a) Uniform data with (b) Unstructured data
as the property constant integer spacing. with random spacing.
dp Oy O _ _
Sx  Ox ( ) Figure: 2D graph with 3 order accurate scheme

for derivative along horizontal direction
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» Reduced order modeling on a graph

The Computational Physics Group
www.umich.edu/~compphys/ 10/14



W | Reduced Order Model: Model of interest .'.
|

» Gradient flow: @ ——M % =f AV

> Specify Landau potential: f(¢) = —¢?(£2 — ¢?)
> Specify local material parameters: My, A, &, BCs, ICs, ...

> Solve system for N trajectories

t =300

olx.t)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
E z x

(a) Initial condition. (b) Intermediate solution. (c) Equilibrium solution.

Figure: Field evolution of 1D Allen-Cahn dynamics with M¢ =103 and A =1 at 0, 150, and 300 time
steps. A Backward-Euler scheme is used with a time step of At = 1072,
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Reduced Order Model: Global Observables ...
|

Guided by the gradient flow of the local quantity ¢, we expect a global gradient-flow for the observable,
¢ = [ ¢lp>0dSQ to be retained:

0 D 1) g
Local: 22 — _m,2Y ., Giobar: 22 — —m, %Y _ ¢,
ot D¢ ot dp
> Extract global variables from all trajectories: D; = {¢x, ¥o2, \IJ, 5o }(j)

» Global model basis: M,,E, € span (gpk7<pvz F,F', @k, @y2, F, F, &Pk )

Volume averaged quantities: W :/ dQ ¢y, F :/ dQ f
Q Q

1
Phase averaged quantities: @) = 5/9 dQ 1(¢) ¢*, ook = %/9 dQ 1(¢) Vi ,---

o ow ow

Non local derivatives: s s ,
So’ Spgk Oy,
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Reduced Order Model: Operator Elimination via
stepwise regression

op oV
— =Mo——-&
ot dp
. . . 107
» Train model with a large basis:
My, E, € span
. = -3
wkvsovZ’FaFlv Sokysov27FaF/7m7'“) 10
» Drop the basis term that causes least change in S
loss 1075
P Repeat until loss increases drastically.
Parameters M, £y 107 .
P2 P2 4 p 3
4 Y O Teer | PP H e+ T ez Nierms t
P2 .
3 0 Yo+ 3+ T g2 Loss curves Best fit curve
2 0 e+ o34
1 0 ¥
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Representation of Physical System:
» Graph theory offers a framework for representation and analysis of large scale computed solutions.

» The axioms for Physical systems add more mathematical structure to graphs.
» Graph computational techniques can be used to study physical systems.
Non-local calculus on graphs:
» Constraining non-locality of operators ensures consistency of model.
P> Multi-dimensional weights on a directed graph
Reduced-order models:

» Reduced order models can be computed using physical ansatz and a basis of operators enriched with
non-local derivatives

P Algorithm available in the open-source package mechanoChemML:
https://pypi.org/project/mechanoChemML/

Relevant Publications:
» Graph representation: R. Banerjee, K. Sagiyama, G.H. Teichert, K. Garikipati, CMAME 2019

> Analysis with simple radial functions as weights: M. Duschenes, K. Garikipati, arXiv:2105.01740
> Analysis with discrete weights: M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2105.01740
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Curse of dimensionality

10%

Dimension p (unique, non-unique)

10? ce L A
@ 2 —A- 2
3 A 3

—A-
10! 4 4
@ 5 -A- 5

Number of polynomial terms ¢

10°

Order of stencil 7

Figure: Number of constraints when considering unique and non-unique terms due to
commutativity of multiplication of monomials in each term.
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Error in the estimation of higher order derivatives ...

» Second order derivatives in 1D

Pub) _Fux) _ §n 10 | g zx)samzx))}

5x? Ox? (s+1)! oxst+2 o

s=nr

+ i 1 M Z M Z 2/ (x)°aW(Z(x)) — Z Z'( (Z'(x)
N

s+ 1)1 Oxstl z - -
( ) (%) NO (x) NY (%)

oo o0 95+s'+2 (% oy _ s ,
PN iy e | 2 A | S L) |

NO) N ()

Non-commuting second term

M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206
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