Reduced Order Models Using Non-local Calculus on Unstructured Weighted Graphs

Siddhartha Srivastava, Matthew Duschenes, Elizabeth Livingston, Krishna Garikipati
Computational Physics Group
Departments of Mechanical Engineering and Mathematics Michigan Institute for Computational Discovery \& Engineering
University of Michigan, Ann Arbor
US National Congress on Theoretical and Applied Mechanics

Graphs for Scientific computing

- Representing Physical systems on graph

Computational Physics group (UM)

- Computations on graph

- Representation of physical systems on a graph
- Non-local calculus on a graph
- Reduced order modeling on a graph

Graphs for Scientific computing

- A mathematical Graph is a collection of a vertices and edges.
- Graph-theoretic representation of physical system involves following abstraction:
- Physical solution as vertex
- Transition between solution as edge

- States $\mathscr{S}_{i}, i=1, \ldots N$ obtained for parameter sets \boldsymbol{p}_{i}, boundary conditions $\overline{\boldsymbol{u}}_{i}, \boldsymbol{\sigma}_{n_{i}}$; (non)linear solution step or change in a "transition quantity" over $\mathscr{S}_{j} \rightarrow \mathscr{S}_{i}$ is $\mathscr{T}_{i j}$
- $G(V, E)$ can be constructed s.t. $V=\left\{\mathscr{S}_{i}\right\}_{i=1, \ldots N}$ and $E=\left\{\mathscr{T}_{i j}\right\}_{i, j=1, \ldots N}$

Axiomatic approach to Physical System using Graphs

- $G(V, E)$ is connected if every \mathscr{S}_{i} can be reached from some \mathscr{S}_{j} along edge $\mathscr{T}_{i j}$; unconnected if solution scheme or transition quantity leaves an isolated state
- Stationary systems as BVPS
- Reversibility of linear, non-dissipative systems \Longrightarrow undirected graphs.
- All admissible states are accessible \Longrightarrow fully connected graph.
- Numerical computation is facilitated by considering additional structures like edge weights. For instance, Low dimensional embeddings (Encoders) can be used to study communities of proximal solutions.

Solutions of a non-convex elastic model

Dissipative dynamical systems represented as graphs

States parameterized by time; cannot be revisited; $\mathscr{T}_{i j}$ represents the time step $\left[t_{j}, t_{i}\right.$] and change in transition quantity

- Loss of time reversal symmetry \Longrightarrow Directed graphs.
- Only one path to a state \Longrightarrow Graphs are trees
- Second law defines "entropy quantities":
$\dot{f}(\boldsymbol{u}) \geq 0, \quad$ or $\dot{f}(\boldsymbol{u}) \leq 0, \quad \dot{\alpha}^{B} \geq 0, \quad$ or $\dot{\alpha}^{B} \leq 0$. States of dissipative dynamical systems must contain entropy quantities
- Precipitate nucleation and growth driven by Allen-Cahn equation (Teichert \& KG, 2018)
- Graph for shape features of precipitate and the free energy.

$$
\begin{gathered}
x_{i}=\left(a_{i}, b_{i}, c_{i}, t_{1_{i}}, \ldots, t_{8_{i}}, c_{\mathrm{p}_{i}}\right), \quad \mathscr{S}_{i}=\left(x_{i}, \Pi\left(x_{i}\right)\right) \\
a_{i}, b_{i}, c_{i}: \text { bounding box for precipitate } \\
t_{1} \cdots t_{8}: \text { Spline control points } \\
c_{\mathrm{p}_{i}}: \text { Alloy concentration } \\
\Pi: \text { Total free energy of the state }
\end{gathered}
$$

Choices of weights on a graph

Most gradual
Steepest

$$
x_{i}=\left(a_{i}, b_{i}, c_{i}, t_{1_{i}}, \ldots, t_{8_{i}}, c_{\mathrm{p}_{i}}\right), \quad \mathscr{S}_{i}=\left(x_{i}, \Pi\left(x_{i}\right)\right)
$$

- Many possibilities for prescribing the graph weights.
- Physical laws induces some choices of weights:

$$
\text { Graph chemical potential: } \mu_{i, j}=\frac{\Pi_{i}-\Pi_{j}}{\left\|x_{i}-x_{j}\right\|}
$$

- Graph time of transition

$$
\Delta \tau_{i j} \sim \frac{\left\|\boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{x}_{\boldsymbol{j}}\right\|}{\left|\mu_{i, j}\right|}
$$

(1) Can we estimate weights in an unsupervised way?
(2) Can we estimate derivatives on graph?

$$
\mu=\frac{\partial \Pi}{\partial x}
$$

Graph chemical potential induces edges when supplemented by the maximum dissipation principle (alternatively, steepest descent)

Outline

- Representation of physical systems on a graph
- Non-local calculus on a graph
- Reduced order modeling on a graph

Non Local Calculus on weighted graphs

- Representing data on graphs, $G(V, E)$
- Each vertex has state $(\boldsymbol{x}, \varphi(\boldsymbol{x}))$ representing input/output data.
- Edges with weights, with possibly multiple edges between vertices.
- G. Gilboa, S. Osher, Multiscale Modeling \& Simulation (2009), introduced a non-local calculus on Graphs e.g.
- Non-local gradient operator,
- Inner product on scalars over vertices,

- Contraction of vectors on the vertices,
- Partial derivatives
- First order partial derivatives estimated as:

$$
\frac{\delta \varphi}{\delta x^{\mu}}(x)=\frac{1}{\left|\mathcal{N}_{x}\right|} \sum_{(x, y) \in E} \frac{\varphi(y)-\varphi(x)}{y^{\mu}-x^{\mu}} \bar{w}^{\mu}(x, y)
$$

- \bar{w}^{μ} are dimensionless weights
- Directed Edges: $\bar{w}^{\mu}(x, y) \neq \bar{w}^{\mu}(y, x)$
- Multidimensional edge weights
- Edge Weights prescribed using simple functions like Gaussians ${ }^{1}$ and Discrete weights ${ }^{2}$

[^0]- Can we find the weights, \bar{w}^{μ} such that $e \sim \mathcal{O}\left(h^{k}\right)$

$$
e(x)=\left|\frac{\delta \varphi}{\delta x}-\frac{\partial \varphi}{\partial x}\right|
$$

Yes, with discrete weights ${ }^{1}$. Extendable to higher dimensions and higher order derivatives
Proof by construction - provides an algorithm for estimating these weights

- Key Idea (1D version): Expand non-local derivative definitions in a Taylor series about \widetilde{x} :

$$
\begin{aligned}
\frac{\delta \varphi}{\delta x}(\widetilde{x}) & =\frac{1}{\left|\mathcal{N}_{\widetilde{x}}\right|} \sum_{(\widetilde{x}, x) \in E} \frac{\varphi(x)-\varphi(\widetilde{x})}{x-\widetilde{x}} \bar{w}^{\mu}(\widetilde{x}, x) \\
& =\sum_{s=0}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+1} \varphi}{\partial x^{s+1}}(\widetilde{x}) \sum_{x \in \mathcal{N}(\widetilde{x})}(x-\widetilde{x})^{s} \bar{w}(x-\widetilde{x}) .
\end{aligned}
$$

Then the weights can be found from solving the linear system of equations of the first k moments:

$$
\sum_{\mathcal{N}(\widetilde{x})}(x-\widetilde{x})^{s} \bar{w}(x-\widetilde{x})=\delta_{0 s} \quad s=\{0, \ldots, k-1\} \Longrightarrow \frac{\delta \varphi}{\delta x}-\frac{\partial \varphi}{\partial x}=\sum_{s=k}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+1} \varphi}{\partial x^{s+1}}(\widetilde{x}) \sum_{x \in \mathcal{N}(\widetilde{x})}(x-\widetilde{x})^{s} \bar{w}(x-\widetilde{x})
$$

Error in the estimation of derivatives

- Key idea continued: Can these constraints be solved ?

$$
\sum_{\mathcal{N}(\tilde{x})}(x-\widetilde{x})^{s} \bar{w}(x-\widetilde{x})=\delta_{0 s} \quad s=\{0, \ldots, k-1\}
$$

- Yes! Rewriting in matrix form:

$$
\begin{gathered}
(\underbrace{\left[\begin{array}{cccc}
\uparrow & \uparrow & \cdots & \uparrow \\
1 & (x-\widetilde{x}) & \cdots & (x-\widetilde{x})^{k-1} \\
\downarrow & \downarrow & \cdots & \downarrow
\end{array}\right]_{|\mathcal{N}(\widetilde{x})| \times k}}_{\mathbf{V}})^{[} \underbrace{\left[\begin{array}{c}
\uparrow \\
\bar{w}(x, \widetilde{x}) \\
\downarrow
\end{array}\right]_{|\mathcal{N}(\widetilde{x})| \times 1}}_{\overline{\mathbf{w}}}=\underbrace{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]_{k \times 1}}_{\mathbf{e}_{1}} \\
\overline{\mathbf{w}=\left(\mathbf{V} \mathbf{V}^{T}\right)^{-1} \mathbf{V} \mathbf{e}_{\mathbf{1}}}
\end{gathered}
$$

Pseudo-inverse is well-defined as long as points, $\left(\widetilde{x}, x_{1}, \cdots, x_{|\mathcal{N}|}\right)$ are distinct.

- Same idea (with some more tricks) can be applied for higher derivatives in a multidimensional setting.

Numerical results: Error analysis

- Error in derivatives as a function of data length scale h
- Interpolation study with data from 2d polynomial of order 6 on a 2D grid.
- Modeled using a $3^{\text {rd }}$ order Taylor-like expansion about training points based on non-local derivatives.

$$
\varphi(x, y)=\varphi(\mathbf{0})+\frac{\delta \varphi}{\delta x}(\mathbf{0}) x+\frac{\delta \varphi}{\delta y}(\mathbf{0}) y+\frac{1}{2} \frac{\delta^{2} \varphi}{\delta x^{2}}(\mathbf{0}) x^{2}+\cdots
$$

- Desired accuracy of $\mathcal{O}\left(h^{4}\right)$ is imposed in the pointwise model error.
- The model is required to be trained with stencils corresponding to following errors in partial derivatives.

$$
e_{l m}(x, y) \sim \mathcal{O}\left(h^{5-I-m}\right), \quad I+m=\{1,2,3\}
$$

for derivatives of order I, m with respect to $\{x, y\}$

Numerical results: Summary

- Provided data $(x, \varphi(x))$, and an order k :
- Construct a graph (define edges)
- Estimate weights
such that the non local derivative:

$$
\frac{\delta \varphi}{\delta x^{\mu}}(x)=\frac{1}{\left|\mathcal{N}_{x}\right|} \sum_{(x, y) \in E} \frac{\varphi(y)-\varphi(x)}{y^{\mu}-x^{\mu}} \bar{w}^{\mu}(x, y)
$$

has the property

$$
\left|\frac{\delta \varphi}{\delta x}-\frac{\partial \varphi}{\partial x}\right| \longrightarrow \mathcal{O}\left(h^{k}\right)
$$

(a) Uniform data with constant integer spacing.

(b) Unstructured data with random spacing.

Figure: 2D graph with 3 order accurate scheme for derivative along horizontal direction

Outline

- Representation of physical systems on a graph
- Non-local calculus on a graph
- Reduced order modeling on a graph

Reduced Order Model: Model of interest

- Gradient flow:

$$
\frac{\partial \phi}{\partial t}=-M_{\phi} \frac{D \psi}{D \phi}, \quad \psi=f(\phi)+\lambda|\nabla \phi|^{2}
$$

- Specify Landau potential: $f(\phi)=-\phi^{2}\left(\xi^{2}-\phi^{2}\right)$
- Specify local material parameters: M_{ϕ}, λ, ξ, BCs, ICs, \ldots
- Solve system for N trajectories

Figure: Field evolution of 1D Allen-Cahn dynamics with $M_{\phi}=10^{-3}$ and $\lambda=1$ at 0,150 , and 300 time steps. A Backward-Euler scheme is used with a time step of $\Delta t=10^{-2}$.

Guided by the gradient flow of the local quantity ϕ, we expect a global gradient-flow for the observable, $\varphi=\int \phi I_{\phi>0} d \Omega$ to be retained:

$$
\text { Local: } \frac{\partial \phi}{\partial t}=-M_{\phi} \frac{D \psi}{D \phi} \quad \longrightarrow \quad \text { Global: } \frac{\delta \varphi}{\delta t}=-M_{\varphi} \frac{\delta \Psi}{\delta \varphi}-\mathcal{E}_{\varphi}
$$

- Extract global variables from all trajectories: $\mathcal{D}_{j}=\left\{\varphi_{k}, \varphi_{\nabla^{2}}, \Psi, \frac{\delta \psi}{\delta \varphi}, \ldots\right\}^{(j)}$
- Global model basis: $M_{\varphi}, \mathcal{E}_{\varphi} \in \operatorname{span}\left(\varphi_{k}, \varphi_{\nabla^{2}}, F, F^{\prime}, \bar{\varphi}_{k}, \bar{\varphi}_{\nabla^{2}}, \bar{F}, \bar{F}^{\prime}, \frac{\delta \psi}{\delta \varphi_{k}}, \cdots\right)$

Volume averaged quantities: $\psi=\int_{\Omega} d \Omega \psi, \quad F=\int_{\Omega} d \Omega f, \ldots$
Phase averaged quantities: $\varphi_{k}=\frac{1}{\Omega} \int_{\Omega} d \Omega I(\phi) \phi^{k}, \quad \varphi_{\nabla^{k}}=\frac{1}{\Omega} \int_{\Omega} d \Omega I(\phi) \nabla^{k} \phi, \ldots$
Non local derivatives: $\frac{\delta \Psi}{\delta \varphi_{k}}, \quad \frac{\delta \Psi}{\delta \varphi_{\nabla^{k}}}, \quad \frac{\delta \Psi}{\delta \varphi_{\nabla_{k}}}, \quad \ldots$

Reduced Order Model: Operator Elimination via

 stepwise regression$$
\frac{\delta \varphi}{\delta t}=-M_{\varphi} \frac{\delta \Psi}{\delta \varphi}-\mathcal{E}_{\varphi}
$$

- Train model with a large basis:

$$
\begin{aligned}
& M_{\varphi}, \mathcal{E}_{\varphi} \in \operatorname{span} \\
& \left(\varphi_{k}, \varphi_{\nabla^{2}}, F, F^{\prime}, \bar{\varphi}_{k}, \bar{\varphi}_{\nabla^{2}}, \bar{F}, \bar{F}^{\prime}, \frac{\delta \psi}{\delta \varphi_{k}}, \cdots\right)
\end{aligned}
$$

- Drop the basis term that causes least change in loss

Loss curves

Representation of Physical System:

- Graph theory offers a framework for representation and analysis of large scale computed solutions.
- The axioms for Physical systems add more mathematical structure to graphs.
- Graph computational techniques can be used to study physical systems.

Non-local calculus on graphs:

- Constraining non-locality of operators ensures consistency of model.
- Multi-dimensional weights on a directed graph

Reduced-order models:

- Reduced order models can be computed using physical ansatz and a basis of operators enriched with non-local derivatives
- Algorithm available in the open-source package mechanoChemML: https://pypi.org/project/mechanoChemML/

Relevant Publications:

- Graph representation: R. Banerjee, K. Sagiyama, G.H. Teichert, K. Garikipati, CMAME 2019
- Analysis with simple radial functions as weights: M. Duschenes, K. Garikipati, arXiv:2105.01740
- Analysis with discrete weights: M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2105.01740

Curse of dimensionality

Dimension p (unique, non-unique)
.... 1 - 1
-. $2-2$
-. 3 - A- 3
-•• 4 - - A- 4
-. 5 - $\mathbf{A - 5}$

Figure: Number of constraints when considering unique and non-unique terms due to commutativity of multiplication of monomials in each term.

Error in the estimation of higher order derivatives

- Second order derivatives in 1D

$$
\begin{aligned}
\frac{\delta^{2} u(x)}{\delta x^{2}}-\frac{\partial^{2} u(\widetilde{x})}{\partial x^{2}} & =\sum_{s=r_{2}}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+2} u(\widetilde{x})}{\partial x^{s+2}}\left[\sum_{\mathcal{N}^{(2)}(\widetilde{x})} z(\widetilde{x})^{s} a^{(2)}(z(\widetilde{x}))\right] \\
& +\sum_{s=r_{1}}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+1} u(\widetilde{x})}{\partial x^{s+1}}\left[\sum_{\mathcal{N}^{(2)}(\widetilde{x})} \frac{a^{(2)}(z(\widetilde{x}))}{z(\widetilde{x})}\left[\sum_{\mathcal{N}^{(1)^{\prime}}(x)} z^{\prime}(x)^{s} a^{(1)}\left(z^{\prime}(x)\right)-\sum_{\mathcal{N}^{(1)^{\prime}}(\widetilde{x})} z^{\prime}(\widetilde{x})^{s} a^{(1)}\left(z^{\prime}(\widetilde{x})\right)\right]\right] \\
& +\sum_{s=r_{1}}^{\infty} \sum_{s^{\prime}=0}^{\infty} \frac{1}{(s+1)!\left(s^{\prime}+1\right)!} \frac{\partial^{s+s^{\prime}+2} u(\widetilde{x})}{\partial x^{s+s^{\prime}+2}}\left[\sum_{\mathcal{N}^{(2)}(\widetilde{x})} z(\widetilde{x})^{s^{\prime}} a^{(2)}(z(\widetilde{x}))\left[\sum_{\mathcal{N}^{(1)^{\prime}}(x)} z^{\prime}(x)^{s} a^{(1)}\left(z^{\prime}(x)\right)\right]\right]
\end{aligned}
$$

Non-commuting second term

[^1]
[^0]: ${ }^{1}$ M. Duschenes, K. Garikipati, arXiv:2105.01740

[^1]: M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206

