Reduced Order Models Using Non-local Calculus on Unstructured Weighted Graphs

Siddhartha Srivastava, Matthew Duschenes, Elizabeth Livingston, Krishna Garikipati Computational Physics Group

> Departments of Mechanical Engineering and Mathematics Michigan Institute for Computational Discovery & Engineering University of Michigan, Ann Arbor

US National Congress on Theoretical and Applied Mechanics

Graphs for Scientific computing

Representing Physical systems on graph

Computational Physics group (UM) Computations on graph

Nair's group (UNevada Reno)

Spielman's group (Yale)

- Representation of physical systems on a graph
- Non-local calculus on a graph
- Reduced order modeling on a graph

Graphs for Scientific computing

- A mathematical Graph is a collection of a vertices and edges.
- ▶ Graph-theoretic representation of physical system involves following abstraction:
 - Physical solution as vertex

Mathematical Graph

Transition between solution as edge

- ates \mathscr{S}_i i = 1, ..., N obtained for parameter sets \boldsymbol{p}_i boundary co
- States \mathscr{S}_i , i = 1, ..., N obtained for parameter sets p_i , boundary conditions $\overline{u}_i, \sigma_{n_i}$; (non)linear solution step or change in a "transition quantity" over $\mathscr{S}_j \to \mathscr{S}_i$ is \mathscr{T}_{ij}

Physical System

 $\nabla \cdot \boldsymbol{\sigma} + \boldsymbol{f} = \boldsymbol{0}, \quad \text{in} \quad \Omega$ $\boldsymbol{u} = \overline{\boldsymbol{u}}(\boldsymbol{p}), \quad \text{on} \quad \partial \Omega_{\boldsymbol{u}}$ $\boldsymbol{\sigma} \boldsymbol{n} = \boldsymbol{\sigma}_{\boldsymbol{n}}(\boldsymbol{p}), \quad \text{on} \quad \partial \Omega_{\boldsymbol{\sigma}}.$

▶ G(V, E) can be constructed s.t. $V = \{\mathscr{S}_i\}_{i=1,...N}$ and $E = \{\mathscr{T}_{ij}\}_{i,j=1,...N}$

Axiomatic approach to Physical System using Graphs

- ► G(V, E) is connected if every S_i can be reached from some S_j along edge S_{ij}; unconnected if solution scheme or transition quantity leaves an isolated state
- Stationary systems as BVPS
 - Reversibility of linear, non-dissipative systems \implies undirected graphs.
 - All admissible states are accessible \implies fully connected graph.
- Numerical computation is facilitated by considering additional structures like edge weights. For instance, Low dimensional embeddings (Encoders) can be used to study communities of proximal solutions.

Dissipative dynamical systems represented as graphs

States parameterized by time; *cannot be revisited*; \mathscr{T}_{ij} represents the time step $[t_i, t_i]$ and change in transition quantity

- ► Loss of time reversal symmetry ⇒ Directed graphs.
- Only one path to a state \implies Graphs are trees
- Second law defines "entropy quantities": $\dot{f}(\boldsymbol{u}) \geq 0$, or $\dot{f}(\boldsymbol{u}) \leq 0$, $\dot{\alpha}^B \geq 0$, or $\dot{\alpha}^B \leq 0$. States of dissipative dynamical systems must contain entropy quantities
- Precipitate nucleation and growth driven by Allen-Cahn equation (Teichert & KG, 2018)
- Graph for shape features of precipitate and the free energy.

$$\mathbf{x}_i = (\mathbf{a}_i, \mathbf{b}_i, \mathbf{c}_i, \mathbf{t}_{1_i}, \dots, \mathbf{t}_{8_i}, \mathbf{c}_{p_i}), \quad \mathscr{S}_i = (\mathbf{x}_i, \Pi(\mathbf{x}_i))$$

- a_i, b_i, c_i : bounding box for precipitate
- $t_1 \cdots t_8$: Spline control points
 - c_{p_i} : Alloy concentration
 - Π : Total free energy of the state

$$\mathbf{x}_i = (\mathbf{a}_i, \mathbf{b}_i, \mathbf{c}_i, \mathbf{t}_{1_i}, \dots, \mathbf{t}_{8_i}, \mathbf{c}_{p_i}), \quad \mathscr{S}_i = (\mathbf{x}_i, \Pi(\mathbf{x}_i))$$

- Many possibilities for prescribing the graph weights.
- Physical laws induces some choices of weights:

Graph chemical potential:
$$\mu_{i,j} = \frac{\prod_i - \prod_j}{\|\mathbf{x}_i - \mathbf{x}_j\|}$$

Graph time of transition

$$\Delta au_{ij} \sim rac{\|m{x_i} - m{x_j}\|}{|\mu_{i,j}|}$$

(1) Can we estimate weights in an unsupervised way?(2) Can we estimate derivatives on graph?

$$\mu = \frac{\partial \Pi}{\partial x}$$

The Computational Physics Group www.umich.edu/~compphys/

Graph chemical potential induces edges when supplemented by the maximum dissipation principle (alternatively, steepest descent)

Representation of physical systems on a graph

Non-local calculus on a graph

Reduced order modeling on a graph

Non Local Calculus on weighted graphs

- Representing data on graphs, G(V, E)
 - Each vertex has state $(\mathbf{x}, \varphi(\mathbf{x}))$ representing input/output data.
 - Edges with weights, with possibly multiple edges between vertices.
- ► G. Gilboa, S. Osher, Multiscale Modeling & Simulation (2009), introduced a non-local calculus on Graphs e.g.
 - Non-local gradient operator,
 - Inner product on scalars over vertices,
 - Contraction of vectors on the vertices,
 - Partial derivatives
- First order partial derivatives estimated as:

$$\frac{\delta\varphi}{\delta x^{\mu}}(x) = \frac{1}{|\mathcal{N}_{x}|} \sum_{(x,y)\in E} \frac{\varphi(y) - \varphi(x)}{y^{\mu} - x^{\mu}} \overline{w}^{\mu}(x,y)$$

- \overline{w}^{μ} are dimensionless weights
- Directed Edges: $\overline{w}^{\mu}(x, y) \neq \overline{w}^{\mu}(y, x)$
- Multidimensional edge weights
- Edge Weights prescribed using simple functions like Gaussians¹ and Discrete weights²

¹M. Duschenes, K. Garikipati, arXiv:2105.01740

▶ Can we find the weights, \overline{w}^{μ} such that $e \sim \mathcal{O}(h^k)$

www.umi

$$e(x) = \left| \frac{\delta \varphi}{\delta x} - \frac{\partial \varphi}{\partial x} \right|$$

Yes, with discrete weights¹. Extendable to higher dimensions and higher order derivatives

Proof by construction – provides an algorithm for estimating these weights

• Key Idea (1D version): Expand non-local derivative definitions in a Taylor series about \widetilde{x} :

$$\begin{split} \frac{\delta\varphi}{\delta x}(\widetilde{x}) &= \frac{1}{|\mathcal{N}_{\widetilde{x}}|} \sum_{(\widetilde{x},x)\in E} \frac{\varphi(x) - \varphi(\widetilde{x})}{x - \widetilde{x}} \overline{w}^{\mu}(\widetilde{x},x) \\ &= \sum_{s=0}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+1}\varphi}{\partial x^{s+1}}(\widetilde{x}) \sum_{x\in\mathcal{N}(\widetilde{x})} (x - \widetilde{x})^s \overline{w}(x - \widetilde{x}). \end{split}$$

Then the weights can be found from solving the linear system of equations of the first k moments:

$$\sum_{\mathcal{N}(\widetilde{x})} (x - \widetilde{x})^s \overline{w} (x - \widetilde{x}) = \delta_{0s} \quad s = \{0, \dots, k - 1\} \implies \frac{\delta \varphi}{\delta x} - \frac{\partial \varphi}{\partial x} = \sum_{s=k}^{\infty} \frac{1}{(s + 1)!} \frac{\partial^{s+1} \varphi}{\partial x^{s+1}} (\widetilde{x}) \sum_{x \in \mathcal{N}(\widetilde{x})} (x - \widetilde{x})^s \overline{w} (x - \widetilde{x}).$$
putational Physics Group
ch.edu/-compphys/ 1_{M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206} O(h^k) O(h

Key idea continued: Can these constraints be solved ?

$$\sum_{\mathcal{N}(\widetilde{x})} (x - \widetilde{x})^s \overline{w}(x - \widetilde{x}) = \delta_{0s} \quad s = \{0, \dots, k - 1\}$$

Yes! Rewriting in matrix form:

$$\left(\underbrace{\begin{bmatrix}\uparrow&\uparrow&\cdots&\uparrow\\1&(x-\widetilde{x})&\cdots&(x-\widetilde{x})^{k-1}\\\downarrow&\downarrow&\cdots&\downarrow\end{bmatrix}}_{|\mathcal{N}(\widetilde{x})|\times k}\right)^{T}\underbrace{\begin{bmatrix}\uparrow\\\overline{w}(x,\widetilde{x})\\\downarrow\\\downarrow\end{bmatrix}}_{|\mathcal{N}(\widetilde{x})|\times 1} = \underbrace{\begin{bmatrix}1\\0\\0\end{bmatrix}_{k\times 1}}_{\mathbf{e}_{1}}$$

$$\overline{\mathbf{w}} = (\mathbf{V}\mathbf{V}^{\mathcal{T}})^{-1}\mathbf{V}\mathbf{e_1}$$

Pseudo-inverse is well-defined as long as points, $(\widetilde{x}, x_1, \cdots, x_{|\mathcal{N}|})$ are distinct.

Same idea (with some more tricks) can be applied for higher derivatives in a multidimensional setting.

- Error in derivatives as a function of data length scale h
- Interpolation study with data from 2d polynomial of order 6 on a 2D grid.
- Modeled using a 3rd order Taylor-like expansion about training points based on non-local derivatives.

$$\varphi(x,y) = \varphi(\mathbf{0}) + \frac{\delta\varphi}{\delta x}(\mathbf{0})x + \frac{\delta\varphi}{\delta y}(\mathbf{0})y + \frac{1}{2}\frac{\delta^2\varphi}{\delta x^2}(\mathbf{0})x^2 + \cdots$$

- Desired accuracy of $\mathcal{O}(h^4)$ is imposed in the pointwise model error.
- The model is required to be trained with stencils corresponding to following errors in partial derivatives.

$$e_{lm}(x,y) \sim \mathcal{O}(h^{5-l-m}), \quad l+m = \{1,2,3\}$$

for derivatives of order I, m with respect to $\{x, y\}$

Numerical results: Summary

- Provided data $(x, \varphi(x))$, and an order k:
 - Construct a graph (define edges)
 - Estimate weights

such that the non local derivative:

$$rac{\delta arphi}{\delta x^\mu}(x) = rac{1}{|\mathcal{N}_x|} \sum_{(x,y)\in \mathcal{E}} rac{arphi(y) - arphi(x)}{y^\mu - x^\mu} \overline{w}^\mu(x,y)$$

has the property

$$\left| \frac{\delta \varphi}{\delta x} - \frac{\partial \varphi}{\partial x} \right| \longrightarrow \mathcal{O}(h^k)$$

(a) Uniform data with constant integer spacing.

(b) Unstructured data with random spacing.

Figure: 2D graph with 3 order accurate scheme for derivative along horizontal direction

Representation of physical systems on a graph

Non-local calculus on a graph

Reduced order modeling on a graph

Reduced Order Model: Model of interest

• Gradient flow:
$$\frac{\partial \phi}{\partial t} = -M_{\phi} \frac{D\psi}{D\phi}, \qquad \psi = f(\phi) + \lambda |\nabla \phi|^2$$

- Specify Landau potential: $f(\phi) = -\phi^2(\xi^2 \phi^2)$
- Specify local material parameters: M_{ϕ} , λ , ξ , BCs, ICs, ...
- Solve system for N trajectories

Figure: Field evolution of 1D Allen-Cahn dynamics with $M_{\phi} = 10^{-3}$ and $\lambda = 1$ at 0, 150, and 300 time steps. A Backward-Euler scheme is used with a time step of $\Delta t = 10^{-2}$.

Local:
$$\frac{\partial \phi}{\partial t} = -M_{\phi} \frac{D\psi}{D\phi} \longrightarrow \text{Global:} \frac{\delta \varphi}{\delta t} = -M_{\varphi} \frac{\delta \Psi}{\delta \varphi} - \mathcal{E}_{\varphi}$$

• Extract global variables from all trajectories: $\mathcal{D}_j = \{\varphi_k, \varphi_{\nabla^2}, \Psi, \frac{\delta \Psi}{\delta \varphi}, \dots \}^{(j)}$

► Global model basis: $M_{\varphi}, \mathcal{E}_{\varphi} \in \text{span}\left(\varphi_k, \varphi_{\nabla^2}, F, F', \ \bar{\varphi}_k, \bar{\varphi}_{\nabla^2}, \bar{F}, \bar{F}', \frac{\delta \Psi}{\delta \varphi_k}, \cdots\right)$

Volume averaged quantities:
$$\Psi = \int_{\Omega} d\Omega \ \psi$$
, $F = \int_{\Omega} d\Omega \ f$,...
Phase averaged quantities: $\varphi_k = \frac{1}{\Omega} \int_{\Omega} d\Omega \ I(\phi) \ \phi^k$, $\varphi_{\nabla^k} = \frac{1}{\Omega} \int_{\Omega} d\Omega \ I(\phi) \ \nabla^k \phi$,...
Non local derivatives: $\frac{\delta \Psi}{\delta \varphi_k}$, $\frac{\delta \Psi}{\delta \varphi_{\nabla^k}}$, $\frac{\delta \Psi}{\delta \varphi_{\nabla_k}}$, ...

Reduced Order Model: Operator Elimination via stepwise regression

$$\frac{\delta\varphi}{\delta t} = -M_{\varphi}\frac{\delta\Psi}{\delta\varphi} - \mathcal{E}_{\varphi}$$

- ► Train model with a large basis: $M_{\varphi}, \mathcal{E}_{\varphi} \in \text{span}$ $\left(\varphi_k, \varphi_{\nabla^2}, F, F', \ \bar{\varphi}_k, \bar{\varphi}_{\nabla^2}, \bar{F}, \bar{F}', \frac{\delta \Psi}{\delta \varphi_k}, \cdots\right)$
- Drop the basis term that causes least change in loss
- Repeat until loss increases drastically.

Parameters	M_{arphi}	\mathcal{E}_{arphi}
4	$\gamma^{arphi_{ abla}^2} arphi_{ abla}^2 arphi_{ abla}^2$	$\gamma^{\varphi} \varphi + \gamma^{\varphi_{3+}} \varphi_{3+} + \gamma^{\varphi_{\nabla^2_{-}}} \varphi_{\nabla^2_{-}}$
3	0	$\gamma^{\varphi} \varphi + \gamma^{\varphi_{3+}} \varphi_{3+} + \gamma^{\varphi_{\nabla^2_{-}}} \varphi_{\nabla^2_{-}}$
2	0	$\gamma^{\varphi} \varphi + \gamma^{\varphi_{3+}} \varphi_{3+}$
1	0	$\gamma^{\varphi} \varphi$

Loss curves

Best fit curve

Representation of Physical System:

- Graph theory offers a framework for representation and analysis of large scale computed solutions.
- ▶ The axioms for Physical systems add more mathematical structure to graphs.
- Graph computational techniques can be used to study physical systems.

Non-local calculus on graphs:

- Constraining non-locality of operators ensures consistency of model.
- Multi-dimensional weights on a directed graph

Reduced-order models:

- Reduced order models can be computed using physical ansatz and a basis of operators enriched with non-local derivatives
- Algorithm available in the open-source package mechanoChemML: https://pypi.org/project/mechanoChemML/

Relevant Publications:

- ▶ Graph representation: R. Banerjee, K. Sagiyama, G.H. Teichert, K. Garikipati, CMAME 2019
- Analysis with simple radial functions as weights: M. Duschenes, K. Garikipati, arXiv:2105.01740
- Analysis with discrete weights: M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2105.01740

Figure: Number of constraints when considering unique and non-unique terms due to commutativity of multiplication of monomials in each term.

Error in the estimation of higher order derivatives

Second order derivatives in 1D

$$\begin{split} \frac{\delta^2 u(x)}{\delta x^2} &- \frac{\partial^2 u(\widetilde{x})}{\partial x^2} = \sum_{s=r_2}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+2} u(\widetilde{x})}{\partial x^{s+2}} \left[\sum_{\mathcal{N}^{(2)}(\widetilde{x})} z(\widetilde{x})^s a^{(2)}(z(\widetilde{x})) \right] \\ &+ \sum_{s=r_1}^{\infty} \frac{1}{(s+1)!} \frac{\partial^{s+1} u(\widetilde{x})}{\partial x^{s+1}} \left[\sum_{\mathcal{N}^{(2)}(\widetilde{x})} \frac{a^{(2)}(z(\widetilde{x}))}{z(\widetilde{x})} \left[\sum_{\mathcal{N}^{(1)'}(x)} z'(x)^s a^{(1)}(z'(x)) - \sum_{\mathcal{N}^{(1)'}(\widetilde{x})} z'(\widetilde{x})^s a^{(1)}(z'(\widetilde{x})) \right] \right] \\ &+ \sum_{s=r_1}^{\infty} \sum_{s'=0}^{\infty} \frac{1}{(s+1)!(s'+1)!} \frac{\partial^{s+s'+2} u(\widetilde{x})}{\partial x^{s+s'+2}} \left[\sum_{\mathcal{N}^{(2)}(\widetilde{x})} z(\widetilde{x})^{s'} a^{(2)}(z(\widetilde{x})) \left[\sum_{\mathcal{N}^{(1)'}(x)} z'(x)^s a^{(1)}(z'(x)) \right] \right], \end{split}$$

Non-commuting second term

M. Duschenes, S. Srivastava, K. Garikipati, arXiv:2205.02206

