3 Option Pricing

We are now going to apply our continuous-time methods to the pricing of nonstandard
securities. In particular, we will consider the class of derivative securities known as
options in this section of the notes. We will derive the famous Black-Scholes option
pricing model in this section, for which Scholes recently won the Nobel prize (Black
died a few years ago). The original paper by Black and Scholes is the supplementary
reading that goes with this lecture note. The paper is a model of how all good papers
should be written. There is not a lot of extraneous information in there - it’s pretty
short. However, its influence has been enormous. They seem to have maximized the
ratio of economics to math in their paper. If you do not know much about options,

you may want to talk to me about other readings.

3.1 The Black-Scholes Model

We will assume that stock prices follow geometric Brownian motion,

% = adt + odW (64)

We also know that a particular call option’s price is a function of time and its underlying
stock price,

C =C(S,1). (65)

Since the call option’s value is a function of time and the stock price, we know that it
will follow a diffusion process. We posit (and later verify) that the call option’s value

follows geometric Brownian motion,

) _ gt + saw. (66)
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Geometric Brownian motion makes sense for the call price because call prices cannot

be negative. Now Using Ito’s lemma we can find an expression for dC,
dC = CsdS + Cydt + %ngdSQ, (67)
and we can take the expectation of dC,
E[dC] = CsaSdt + C,dt + %CSSSQUth. (68)

In order to verify that the call option’s price follows Geometric Brownian motion we
need to solve for & and &. If we can find expressions for both of these terms then the
call price really does follow GBM. We solve for the terms using our expression for dC

and F[dC]. Beginning with &,

E[dC] - CsaS + C; + 5055520'2

a= cdt C (69)
The term for ¢ is
5= dC — E[dC] _ Cs(dS — E[dS]) 4+ 3Css(dS? — E[dSQ])7 (70)
Caw Cdw
which simplifies to
G = CSC? ’. (71)

So we have shown that the call option price follows GBM with particular values for
a and 6. Now we want to think about a portfolio, or a position that involves putting
w dollars in the call option and putting (1 — w) in the stock. The stochastic proces

that will describe the value of our position, V', through time is another GBM process,

av dC ds
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Using the processes for dC and dS, we can be more specific about the process driving

the value of our position,

% — [wé + (1 — w)a]dt + [w6 + (1 — w)o]dW, (73)

We choose a value for w that eliminates all the risk in our position in the next

instant by setting the coefficient on the dW term above to zero,

w* = . (74)

Choosing this particular w gives us the risk-free process

v

7| = [w*é& + (1 — w*)aldt = rdt (75)

w*

We have apparently done a very curious thing. By carefully choosing w, we can
make the coefficient on the dW term go to zero. If we set up our position just right,
we can eliminate all of the risk in the portfolio. This is called a dynamic hedge. The
risk-free position that we create will only be risk-free over the next instant - to maintain
a risk-free position, we will have to constantly adjust w as both S and C move around
through time. This is the continuous-time analog to one node of the binomial tree
that we saw in the previous set of notes. The continuous-time hedge is the basis for
most arbitrage pricing in continuous time. To effectively hedge continuously you must
have very small transactions costs. Some researchers derive no-arbitrage results with
transactions costs - they find that rather than arriving at a unique no-arbitrage price,
they get a range of possible option values that don’t admit arbitrage. This is a highly
techincal research area that is dominated by statisticians and mathematicians.

We have shown how to convert our position to a risk-free security through a dynamic

hedge. Since this position is riskless over the next instant, dt, its payoff must be equal
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to the payoff of a risk-free security over the next instant (by the law of one price),
(76)

CgSo
< (Oé - 7’),

C’gaS + Ct + %0550252
—r =
C o

Substituting the expressions for & and & into this expression,

which further simplifies to
1
CsaS + C; + 5055(7252 —rC = CgS(O& — 7’). (79)

Dropping CsSa from both sides,
1
CsSr +C; + 5055(7252 —rC =0, (80)

which is the equation that we have been solving for, a famous differential equation

known as the heat transfer equation. Its solution was derived many years ago.
One interesting feature of this differential equation is that it does not depend on

investor preferences in any direct way. In particular, it is not a function of the expected

stock return, . This is important because it provides some intuition for the “risk-
Since the option value does not

neutral” pricing results that we will derive later.
depend on attitudes about risk, it is the same regardless of the level of risk aversion in
the economy. It is even the same in an economy characterized by risk-neutral agents.

In a risk-neutral economy, the growth rate of the stock return is just the risk-free rate
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If we take the expected value of the option payoff after assuming that o = ry, we
should get the right option price. We will save this exercise for another portion of the
notes.

For the Black-Scholes formula, we solve the heat transfer equation subject to the

following boundary conditions,

Boundary conditions : C(0,t) =0
C(S,T) = max[S — X, 0] (81)
C(S,t) < S.

Unfortunately, you will just have to take it on faith (for now) that the solution to the
heat transfer equation is actually the Black-Scholes formula. For reference purposes,

the equation can be written as
C(S,t) = SN (dy) — Xe "N (dy), (82)

where

_ In(S/X)+ (r+c%/2)1
oNT

and 7 is the option’s time to maturity, A/(-) is the cumulative normal distribution, and

dl 5 d2 = dl - U\/Fa (83)

X is the strike price.

This is not the last time that we will see the Black-Scholes formula. We will derive it
again with “change of measure” methods when we talk about the absence of arbitrage
in continuous-time. Let’s talk about the model a little more right now to get a little

more understanding of how it works.

3.2 Solving for Delta

An important quantity for the Black-Scholes model is what is commonly called A,

or the sensitivity of the option’s call price to changes in the value of the option’s
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underlying security. As we stated previously, in the Black-Scholes framework, a call

option’s A is just equal to N (d;). We should prove this rigorously. We start by taking

the derivative of the Black-Scholes call option price,

_oC ON (d) _rON(d2)
Remembering that we can express d; as,
_ In(S/X) r 1
dy = o~ +Uﬁ+20\/?,

we can take the derivative of d; with respect to S,

od, 1

S~ SoyT
Now using the chain rule,

ON(di) ON(dy)0d,  f(dy)
S 9d, 0S8 Soyt

Since dy is just d; minus o+/7, a similar result holds for N (d,),

aN(dQ) _ f(dl—U\/F)

oS So/T

In both of these expressions, f(-) is just the standard normal distribution,

2
e—X2/2

Returning to our expression for A, we can now state that

fldi)  Xe ' f(di — oy/T)
o\/T S oT

A= 22
oS

N(d1) +
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Therefore, our result (A = AN (d;)) will hold as long as

Xe—’r‘T
S

fldy) = fldy = oV/T). (91)

To see that this condition is true, we express the ratio of f(d;) to f(ds) as

e—d%/Q B Xe T 0
e—(d—oyT)2/2 g (92)
Next, we express the denominator as
e—(dl—o'\/’J_')/Q — e—(d%—leaﬁJ,-ng)/Q, (93)
which yields the condition
e*d10ﬁ+02’r/2 — Xe— (94)
S
Finally, substituting the definition of d; into our condition,
o In(S/X)—(r+0?/2)r+0%7/2 _ Xe 7 (95)
S
which we can verify as true. Thus, we have shown that
oC
A =— = N(d,). 96

What do we use this A term for? For one thing, A tells us how to perform our
continuous-time hedge. As we stated in the notes on the binomial tree pricing model,
we always want to hold A shares of stock for each written call option in a risk-free
portfolio. As the components of d; change, A will change. We can update our position
by constantly checking if we have A shares of stock per short call.

A second reason for caring about A is that it tells us about the expected return on
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an option. To see this, we will define another quantity known as omega,

s SN (dy)
0SC  SN(d)) — Xe "N (dy)

Q > 1. (97)

Omega is the elasticity of the call option’s price to changes in the value of the call’s
underlying security. Thus, If the underlying asset’s value changes by 3% because the
market moves 3%, the call option’s price should move by € times 3%. In other words,

it can be shown (you will basically show in a homework) that

Be = QPs, (98)

where (¢ is the call option’s market beta and (g is the stock’s market beta. Since (2 is
always greater than one (as demonstrated above), the expected return of a call option
written on an asset with a positive beta is always higher than the expected return of
the underlying asset in a Black-Scholes/CAPM world. There are, of course, much more
general things that can be said about option returns. However, the intuition behind

options returns arguments is the Black-Scholes/CAPM case.

3.3 CAPM-Based Derivation

We can, in fact, use our results about beta to derive the Black-Scholes formula in a
different way. If we define the risk premium on the market portfolio to be ~, then the

CAPM stipulates that
E [ﬁ] = rdt + yBsdt

0 (99)
E [%] = rdt + yBcdt.
Using (98), we can express the expected change in the call price as,
E[dC] = rCdt + vCsSBsdt. (100)
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Of course, from Ito’s lemma we also know that dC' can be expressed as
dC = CsdS + Cydt + %ngdSQ, (101)
so the expected change in the call price is,
E[dC] = Cs[rS + vSBs|dt + Cidt + %CSSSQUth (102)

Setting equations (100) and (102) equal to eachother and dividing through by dt yields

the differential equation,
1
CsSr+ Cy + 50550252 —rC =0, (103)

which is equivalent to (80).

So what is the point of this derivation? It is nice to see that the Black-Scholes model
is entirely consistent with the continuous-time CAPM. This makes sense - they basically
make the same assumptions. This also gives some intuition about risk-neutral pricing,
which we haven’t really discussed yet. While it is true that there exists a probability
measure under which all security prices are just discounted expected payoffs, that
probability measure is not arbitrarily chosen. For the CAPM and risk-neutral pricing
to be compatible, it must be that the probability measure assigns a higher probability
to bad states of the world than the “true” subjective probability. In a CAPM world,
bad states of the world correspond to low market returns.

We have spent a great deal of time discussing option pricing. This may seem
unwarranted because options are just one type of financial instrument available to
market participants. However, Black and Scholes point out at the end of their article
that lots of securities actually have option-like characteristics. Consider, for example,
the stock of a company that has some level of debt outstanding that must be paid in a

lump sum. If the company plans to liquidate immediately after paying off its debt then
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the company’s stock can be thought of as an option on the value of the firm. If the firm
is sufficiently profitable then the option will expire in the money and stockholders will
be paid. Otherwise, all the firm’s value will go to bondholders and the option (equity)

will expire worthless.
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3.4 Homework Problems

1. Assume that returns are driven by a k-factor model, so that

dS;/S; = cudt + Bi[dfre/ fie] + - - - + Bixldfut/ fre] + 0:dW; (104)

and assume that each factor follows geometric Brownian motion with zero drift
and a volatility of one. Let the Wiener process of each factor (dWy;) be indepen-
dent of the corresponding process of each other factor and let it be independent
of dW; for all 7. Assume also all of the assumptions that make the Black-Scholes
formula valid. Show that the jth factor beta of a European call option on stock

i is equal to §2; times the stock’s factor beta, [;;.

2. Suppose that a stock pays out a continuous dividend at rate ASdt. Derive the
differential equation for the option’s value under this assumption and write down
what the option’s value should be. It should look something like the Black-Scholes

formula.

3. Verify by direct calculation that the differential equation (80), subject to the
boundary conditions (81) and the constraint that S > 0 is solved by the Black-
Scholes formula, (82).
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