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Economic theory assigns a central role to risk preferences. This article develops a measure of relative risk tolerance using responses to
hypothetical income gambles in the Health and Retirement Study. In contrast to most survey measures that produce an ordinal metric, this
article shows how to construct a cardinal proxy for the risk tolerance of each survey respondent. The article also shows how to account
for measurement error in estimating this proxy and how to obtain consistent regression estimates despite the measurement error. The risk
tolerance proxy is shown to explain differences in asset allocation across households.
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1. INTRODUCTION

Choices with uncertain outcomes, such as financial invest-
ments, career paths, and health practices, are numerous and im-
portant to welfare. Empirical studies of these behaviors often
suffer from a common weakness—the inability to take into ac-
count heterogeneity in preferences. In this article, we develop
a quantitative proxy for risk tolerance based on responses from
a large-scale survey to account for this heterogeneity. We then
use the proxy to study asset allocation.

Our measurement of risk tolerance is based on individuals’
responses to questions about hypothetical risky choices. In par-
ticular, we ask them to choose between a job with a certain
lifetime income and a job with a random, but higher mean
lifetime income. We show how to translate these ordinal re-
sponses into a cardinal proxy for risk tolerance. To construct
this proxy and use it to study behavior, we confront a num-
ber of issues. First, the survey responses about gambles over
lifetime income imply a range instead of a point value for
the unobserved cardinal preference parameter. Second, the sur-
vey responses are likely to be subject to measurement error.
We develop a statistical model addressing both issues. Mul-
tiple responses from some individuals and refinements to the
survey questions isolate the true variation in risk preferences.
With the maximum likelihood estimates, we compute the proxy
value—the expectation of risk tolerance conditional on survey
responses—for each individual. Because it is based on a small
set of survey questions, the proxy may not fully capture the sys-
tematic variation in risk preferences. This induces a nonstan-
dard errors-in-variables problem in regression estimates that
use the proxy as an explanatory variable. We provide an esti-
mator using the proxy that is consistent despite errors in vari-
ables.
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The plan of the article is as follows. Section 2 discusses the
survey questions on lifetime income gambles and the distrib-
ution of responses in the Health and Retirement Study. (See
http://hrsonline.isr.umich.edu for information on the survey.)
Section 3 shows how to construct the cardinal proxy for risk
tolerance from these survey responses, and Section 4 addresses
the presence of survey response error. Researchers will be able
to use such a proxy as an explanatory variable in studying a
wide range of behaviors. In Section 5 we show how to estimate
consistently the effect of the preference parameter on behavior.
Section 6 applies these procedures to study the asset allocation
decision. Our results show that our improved measure of risk
preference significantly alters the estimated effects of risk tol-
erance and other observable characteristics on asset allocation.
The final section offers conclusions.

2. SURVEYING RISK PREFERENCES

The Health and Retirement Study (HRS) is a large-scale, bi-
ennial survey, which began in 1992 with a representative sample
of individuals between the ages of 51 and 61 and their spouses.
In addition to detailed financial and demographic information,
the study elicits risk preferences using a battery of questions
developed by Barsky, Juster, Kimball, and Shapiro (1997). The
Panel Study of Income Dynamics, National Longitudinal Study,
Surveys of Consumers, Dutch CentERpanel, and Chilean Social
Protection Survey have also fielded these gambles over lifetime
income. In hypothetical scenarios, respondents choose between
a certain job and a risky job. With equal chances, the risky job
will double lifetime income or cut lifetime income by a spe-
cific fraction (or downside risk). Varying the downside risk on
the new job in subsequent questions refines the measure of risk
preferences.

Specifically, in 1992 the HRS poses the following scenario:
Suppose that you are the only income earner in the family, and you have a
good job guaranteed to give you your current (family) income every year for
life. You are given the opportunity to take a new and equally good job, with a
50–50 chance it will double your (family) income and a 50–50 chance that it
will cut your (family) income by a third. Would you take the new job?

Individuals accepting this new, risky job then consider one with
a higher downside risk:
Suppose the chances were 50–50 that it would double your (family) income,
and 50–50 that it would cut it in half. Would you still take the new job?

Those initially declining the new job consider one with a lower
downside risk:
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Table 1. Risk tolerance response categories

Downside risk Bounds on

Response
category

of risky job risk tolerance

Accepted Rejected Lower Upper

1 None 1/10 0 .13
2 1/10 1/5 .13 .27
3 1/5 1/3 .27 .50
4 1/3 1/2 .50 1.00
5 1/2 3/4 1.00 3.27
6 3/4 None 3.27 ∞
NOTE: Respondents choose between a job with a certain income and a job with risky
income. With equal chances, the risky job will double lifetime income or cut it by the
specific fraction shown in the columns labeled downside risk. The largest risk accepted
and the smallest risk rejected across gambles define a response category. In 1992, there
are four categories 1–2, 3, 4, and 5–6. In 1994 and later surveys, there are six response
categories. The last two columns show the bounds on relative risk tolerance consistent
with these response categories in the absence of response error.

Suppose the chances were 50–50 that it would double your (family) income and
50–50 that it would cut it by 20 percent. Would you then take the new job?

These two responses order individuals in four categories: un-
willing to risk a one-fifth income cut, willing to risk at most a
one-third cut, willing to risk a one-third to a one-half cut, and
willing to risk at least a one-half cut. In 1994, a randomly se-
lected subsample answered the questions again. In 1994 and
later implementations, there were additional questions about
the willingness to accept one-tenth and three-quarter cuts. With
these additional gambles, there are six distinct response cate-
gories. The second and third columns of Table 1 relate these
response categories to the downside risks of the new jobs. In
Section 3 we will discuss the last two columns of Table 1, which
relate the response categories to the preference parameter.

In general, the gambles over lifetime income reveal a low tol-
erance for risk. As reported in Table 2, almost two-thirds of the
respondents in 1992 are in the least risk tolerant category 1–2.
The remaining one-third of respondents divide almost equally
among the other three categories. The distribution of risk cate-
gories in 1994 follows a similar pattern. Over 60% of respon-
dents fall in category 1 or 2 with most choosing the least risk
tolerant category 1.

Repeated observations from some individuals will be cen-
tral to our statistical strategy for separating signal from noise
in the survey responses. Among the 693 respondents who an-
swer the gambles in both the HRS 1992 and 1994, the corre-

Table 2. Distribution of risk tolerance responses

Response
category

% by HRS wave

1992 1994 1998 2000 2002

1
64.6

43.4 37.9 46.3 44.8
2 18.1 19.0 18.4 18.6
3 11.6 13.5 17.0 14.4 15.3
4 10.9 14.5 10.8 8.1 9.6
5

12.9
6.3 8.0 7.5 6.1

6 4.2 7.3 5.3 5.6

Responses 11,592 717 796 884 3,591

NOTE: Tabulations use responses on the final release version of HRS 1992, 1994, 1998,
2000, and 2002 without sample weights. The sample for this article includes the 11,616
original respondents in the HRS study who answer a gamble in one of the first two waves.
See Table 1 for definition of the risk tolerance response categories.

lation of the response categories across the two waves is .27,
and almost half switch response categories. Altogether, the sur-
vey responses suggest substantial and persistent differences in
risk preferences across individuals, but also large changes in
responses within individuals across surveys.

The 1998 HRS introduced a new situational frame for the in-
come gambles to remove the potential for status quo bias. In the
original question, individuals choose between their current cer-
tain job and a new risky job. An unwillingness to switch jobs
may reflect their aversion to the risky income at the new job
or their desire to maintain the status quo. Status quo bias ap-
pears to be a common feature in many settings (Samuelson and
Zeckhauser 1988). In the presence of status quo bias, estimates
from the original question would understate individuals’ true
risk tolerance. Using a pilot study of undergraduates, Barsky
et al. (1997) estimate average risk tolerance to be 24% lower
with responses to the original question than with responses to
an alternate question free of status quo bias. In 1998, 2000, and
2002, the HRS fielded a status-quo-bias-free question, in which
individuals choose between two new jobs. The question word-
ing is
Suppose that you are the only income earner in the family. Your doctor recom-
mends that you move because of allergies, and you have to choose between two
possible jobs. The first would guarantee your current total family income for
life. The second is possibly better paying, but the income is also less certain.
There is a 50–50 chance the second job would double your total lifetime in-
come and a 50–50 chance that it would cut it by a third. Which job would you
take—the first job or the second job?

As in the original version, follow-up questions vary the down-
side risk of the second job, and responses assign individuals
to one of six categories. Starting in 2000, the job-related gam-
bles are targeted to individuals less than age 65. The final three
columns of Table 2 show the responses to the status-quo-bias-
free question. In this article, we restrict the sample to original
respondents of the HRS who answered the gambles in 1992 or
1994. The respondents in 1998 to the new question do appear
more risk tolerant with only 56.9% in category 1–2 compared
to 64.6% in 1992 and 61.5% in 1994. This difference disap-
pears in the last two survey waves. Nonetheless, variation in the
question wording allows us to estimate the status quo bias and
question-specific response errors.

This approach to measuring risk preference from hypotheti-
cal gambles in the HRS differs fundamentally from earlier sur-
vey measurement of attitudes toward risk. Other surveys com-
monly use categorical responses with vague quantifiers to probe
risk preferences. For example, beginning in 1983, the Survey of
Consumer Finances (SCF) asks respondents:
Which of the statements comes closest to the amount of financial risk that you
and your (spouse/partner) are willing to take when you save or make invest-
ments?

1. take substantial financial risks expecting to earn substantial returns
2. take above average financial risks expecting to earn above average returns
3. take average financial risks expecting to earn average returns
4. not willing to take any financial risks

While intended to order respondents by their risk tolerance, the
subjective wording may generate uninterpretable variation. Be-
cause individuals must define “substantial,” “above average,”
and “average” financial risks and returns, we cannot quantify
differences across responses. In contrast, the income gambles
on the HRS supply objective boundaries between risk cate-
gories. In the next section, we use economic theory to map sur-
vey responses to a cardinal proxy for risk tolerance.
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Using the cardinal proxy has several advantages. First, it
provides a unidimensional, quantitative measure of risk toler-
ance that allows meaningful interpersonal comparisons. Sec-
ond, in many settings, such as the demand for risky assets that
we study in Section 6, economic theory makes predictions that
link risk preference parameters quantitatively to economic de-
cisions. Third, by having a quantitative measure we can correct
for the measurement error inevitable with proxies based on sur-
vey responses.

3. CONSTRUCTING A CARDINAL PROXY

Expected utility theory provides a cardinal metric for risk
preference—the coefficient of relative risk tolerance. Denote
an individual’s concave utility function over original lifetime
income as U(W). Faced with 50–50 gambles of doubling life-
time income or cutting it by various fractions π , an individual
should accept the risky job when its expected utility exceeds the
utility from the certain job—that is, if

.5U(2W) + .5U((1 − π)W) ≥ U(W). (1)

The greater the curvature of U , the smaller the downside risk π

an individual will accept. Associating gamble responses more
tightly with underlying risk tolerance requires a parametric util-
ity function.

We assume that constant relative risk aversion (CRRA) well
approximates individuals’ utility over lifetime income

U(W) = W 1−1/θ

1 − 1/θ
, (2)

where the coefficient of relative risk tolerance θ may differ
across individuals. This form implies that relative risk toler-
ance, θ = −U ′/WU ′′ (Pratt 1964), is constant across all val-
ues of lifetime income for a given individual. Analysis of the
gamble responses with household income and wealth supports
this utility specification (Sahm 2007). We focus on relative risk
tolerance θ rather than relative risk aversion 1/θ because rela-
tive risk tolerance is linearly related to demand for risky finan-
cial assets (Breeden 1979). While the survey does not directly
measure risk tolerance, the responses to the income gambles
with this utility function establish boundaries on the underlying
preference parameter.

To illustrate how to bound risk tolerance, consider individ-
uals in response category 3. By accepting the risky job when
the downside risk is one-fifth, but declining when the downside
risk is one-third, these individuals reveal risk tolerance between
.27 and .50. Each bound for this category equates the expected
utility of a new risky job and the current certain job:

.5
21−1/θ3

1 − 1/θ3
+ .5

(4/5)1−1/θ3

1 − 1/θ3
= 11−1/θ3

1 − 1/θ3

→ θ3 = .27, (3)

.5
21−1/θ3

1 − 1/θ3
+ .5

(2/3)1−1/θ3

1 − 1/θ3
= 11−1/θ3

1 − 1/θ3

→ θ3 = .50. (4)

Substituting the largest downside risk accepted and the smallest
risk rejected from Table 1, we similarly determine the lower and
upper bounds for the other categories. The last two columns

of Table 1 report the bounds for each response category. The
categories exhaust the possible range of risk tolerance.

In the next section, we consider a more general model that
accounts for measurement error and other features of the ques-
tion. To illustrate how we map the discrete responses into a con-
tinuous distribution, assume that true risk tolerance follows a
log-normal distribution,

log θ ≡ x ∼ N(μ,σ 2
x ). (5)

The log-normal functional form has several advantages. First,
it imposes the restriction that relative risk tolerance is nonneg-
ative. Second, it is parsimonious and computationally simple.
Third, we are able to use the moment-generating function of
the normal to calculate analytically the unconditional and con-
ditional expectations of θ = exp(x). Finally, the log-normal ap-
pears to fit the data well. It can capture the fact that the modal
value of relative risk tolerance is close to 0 but that a substantial
fraction of individuals have higher risk tolerance.

We use standard maximum likelihood methods to estimate
the mean μ and variance σ 2

x of log risk tolerance in the popu-
lation. Consider first a case in which we observe one response
category c for each individual. The probability of being in cat-
egory j is

P(c = j) = P(log θj < x < log θj )

= �((log θj − μ)/σx) − �((log θj − μ)/σx), (6)

where �(·) is the cumulative normal distribution function.
Maximizing the sample log-likelihood of the individuals’ first
gamble response yields a mean log risk tolerance of −1.98 and
a standard deviation of 1.76 as reported in the second column of
Table 3. These parameters are precisely estimated: Both have an
asymptotic standard error of .03. For the maximum likelihood
estimation, we use the modified method of scoring where the
sample average of the outer product of the score function ap-
proximates the information matrix.

For many applications, it is valuable to assign a numerical
risk tolerance proxy for each individual conditional on his or
her survey responses. Using the estimated population parame-
ters, we can impute log risk tolerance conditional on a survey
response in category j as

E(log θ |c = j)

= μ + σx

φ((log θj − μ)/σx) − φ((log θj − μ)/σx)

�((log θj − μ)/σx) − �((log θj − μ)/σx)
, (7)

where φ(·) is the standard normal density function. Alterna-
tively, from the moment-generating function we can impute risk
tolerance as

E(θ |c = j) = exp

(
μ + σ 2

x

2

)(
�((log θj − μ − σ 2

x )/σx)

− �((log θj − μ − σ 2
x )/σx)

)/
(
�((log θj − μ)/σx)

− �((log θj − μ)/σx)
)
. (8)

Given the parameter estimates, the proxy, h = E(θ |c), has four
values, .083, .367, .706, and 3.687, for individuals in response
categories 1–2, 3, 4, and 5–6. Unlike ordinal rankings, this
proxy quantifies the average difference in log risk tolerance
across the risk categories.
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Table 3. Distribution of log risk tolerance: maximum
likelihood estimates

Ignoring Modeling Including
response response application

Parameter error error covariates

Log risk tolerance
Mean μ −1.98 −1.84 −1.86

(.03) (.03) (.07)

Standard deviation σx 1.76 .73 .73
(.03) (.04) (.04)

Status quo bias bo −.11 −.10
(.04) (.07)

Response error standard deviation
Original question, 1.39 1.40

transitory σeo (.05) (.05)

Original question, .73 .72
persistent σκo (.10) (.10)

SQB-free question, 1.43 1.42
transitory σef (.03) (.03)

SQB-free question, .60 .61
persistent σκf (.09) (.09)

Number of individuals 11,616 11,616 11,616
Number of responses 11,616 17,580 17,580
Number of parameters 2 7 19

Log-likelihood −12,073.4 −21,208.3 −21,121.3

NOTE: The second column estimates the model in Section 3. The third column models
survey response error, as described in Section 4. The model of log risk tolerance in the
fourth column includes the covariates from the application in Section 6. Asymptotic stan-
dard errors are given in parentheses.

4. ADDRESSING SURVEY RESPONSE ERROR

Responses to hypothetical income gambles likely provide
a noisy signal of true risk tolerance. Thus, the risk tolerance
proxy from the previous section is also error prone. Statistical
procedures that use the risk tolerance proxy will be subject to
errors-in-variables problems. In particular, using the proxy as
an explanatory variable in a regression will lead to attenuation
biases and inconsistent coefficient estimates. Because a key aim
of including the risk questions on large-scale surveys is to pro-
vide researchers with a means to control for heterogeneity in
preferences, it is critical to address and correct for the conse-
quences of survey response error.

That some individuals give multiple responses to the risk
tolerance questions provides a lever for quantifying survey re-
sponse error. By making the structural assumption that prefer-
ences are immutable, we attribute the common component in
an individual’s answers to true preference and the changes to
response error. Recall that x = log(θ) is the individual’s true
preference parameter. With two versions of the gamble ques-
tion, we also incorporate a question-specific persistent response
error. The survey response error in wave w to question type q

is a normal disturbance εqw added to x that leads the individual
to choose the gamble response category corresponding to the
sum ξqw . The error εqw can be interpreted as either an individ-
ual’s misperception of his or her risk tolerance or an error the
individual makes in calculating the bounds (θj , θj ) that map
preferences into the gambles. Hence,

ξqw = x + εqw = x + bq + κq + eqw, (9)

where bq is a common bias across individuals of question type
q , κq is the individual’s persistent response error for question
type q , and eqw is the individual’s transitory response error
for a particular wave w and question type q . The components
are distributed as ξqw ∼ N(μ + bq, σ 2

q ), κq ∼ N(0, σ 2
κq), and

eqw ∼ N(0, σ 2
eq) with σ 2

q = σ 2
x + σ 2

κq + σ 2
eq . The covariance

in responses across waves for different question types depends
only on the variance of true risk tolerance. For the same ques-
tion type, the variance of the persistent error also affects the
covariance across waves. We assume that the survey response
error is a purely random—or “classical”—measurement error.
Specifically, the response error εqw is independent of an indi-
vidual’s true risk tolerance and any other attributes.

We analyze the two question types, the original question o

and the status-quo-bias-free question f , so q ∈ {o,f }. In each
wave, only one question type is asked. We assume that the new
version is not subject to status quo bias on average, so bf = 0
and ξf w ∼ N(μ,σ 2

f ). Identification of the parameters requires
that at least some individuals answer the gambles more than
once and some of the multiple responders answer the same
question type more than once. Of the 11,616 individuals in our
sample, all answer the original question at least once, and 4,244
individuals answer a status-quo-bias-free question. There are
693 individuals who answer the original question twice. For the
bias-free question, 471 individuals answer in two surveys and
278 in three surveys.

In Section 3 we discuss how an individual with true log risk
tolerance x will be assigned to a category by responses to the
survey questions. Survey response error can move the individ-
ual into a different category from wave to wave and affects as-
signment to response categories even for those who answer only
in one wave. For individuals who respond in only one wave, the
likelihood of category j is

P(cw = j)

= �

(
log θj − μ − bq

σq

)
− �

(
log θj − μ − bq

σq

)
. (10)

This likelihood depends on the variance of error-prone risk tol-
erance, σ 2

q , not that of true risk tolerance, σ 2
x . Obviously, if all

individuals answered in only one wave to one question type, the
problem is underidentified.

For those answering the income gambles in both waves, the
probability of observing category j in wave w and category k

in wave w′ is

P(cw = j, cw′ = k)

= −→
� (Njq,Nkq ′ , ρ) + −→

� (Njq,Nkq ′ , ρ)

− −→
� (Njq,Nkq ′ , ρ) − −→

� (Njq,Nkq ′ , ρ), (11)

where
−→
� (·) is the bivariate normal cumulative distribution

function, Njq = (log θj − μ − bq)/σq , Nkq ′ = (log θk − μ −
bq ′)/σq ′ , Njq = (log θj − μ − bq)/σq , and Nkq ′ = (log θk −
μ − bq ′)/σq ′ . When the question type is the same, that is,
q = q ′, the correlation, ρ, between the variables ξqw and ξqw′
is the fraction (σ 2

x + σ 2
kq)/σ 2

q of the total variance of the error-
prone variable due to true log relative risk tolerance plus the
question-specific persistent response error. When the question
types differ, that is, q 	= q ′, the correlation is σ 2

x /σqσq ′ where
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the covariance depends only on the variation in true log relative
risk tolerance. Unlike the typical multiple-indicator solution to
the errors-in-variables problem, identification here does not re-
quire repeat observations from all individuals in the sample.

Maximizing the sample log-likelihood with respect to μ, σx ,
σκo, σκf , σeo, and σef yields consistent estimates of the para-
meters. The third column of Table 3 reports the estimates. The
estimated mean of log risk tolerance −1.84 is somewhat higher
in this model with multiple gamble responses and question-
specific response errors. The original question type is asso-
ciated with an 11% lower reported risk tolerance. While this
status quo bias is relatively modest, it is statistically different
from 0. A more substantial shift occurs in the estimated vari-
ation of true log risk tolerance, as the estimate of the standard
deviation falls to .73 from 1.76. Most of this decline is from
modeling transitory response error using multiple gamble re-
sponses of some individuals. The modeling of question-specific
persistent response error also lowers the estimated heterogene-
ity in true preferences somewhat. Together, this implies a much
lower estimate of mean risk tolerance in the population: .21 in-
stead of .65. The variability from response error greatly exceeds
that from true risk tolerance. This finding highlights the lim-
ited test–retest reliability of the gambles and the need for multi-
ple responses from some individuals. Nonetheless, the income
gambles still convey much useful information on preferences as
the application in Section 6 validates.

Ignoring survey response error overstates the heterogeneity
in risk preferences. As noted, this causes an upward bias in
estimated average risk tolerance. This effect is not dependent
on the log-normal specification. Given the nonnegativity of risk
tolerance, noise will, in general, shift the mean of the distrib-
ution of exp(ξ) to the right. Figure 1 illustrates the effects of
response error. The solid line is the empirical distribution of
the discrete responses in 1992 from Table 2 using the bounds
(θj , θj ) in Table 1. The solid curve is the fitted log-normal dis-
tribution of true risk tolerance θ = exp(x). The dashed curve
is the fitted log-normal distribution of the true parameter plus
noise, exp(x + ε). The figure shows how the distribution of the
true parameter moves mass away from the extremes relative to
the distribution that includes noise from response errors.

Table 4 summarizes additional features of the estimated dis-
tribution of true risk preferences based on the parameter esti-
mates in the third column of Table 3. The second column shows
the distribution of log risk tolerance. The third column shows
the distribution of the level of risk tolerance. The estimated
mode of .094 indicates that the bulk of respondents have very
low risk tolerance. Yet, there are enough respondents with rel-
atively high risk tolerance to pull the mean substantially above
the mode. About 25% of respondents are estimated to have risk
tolerance greater than or equal to .259, and about 10% have risk
tolerance greater than .402. Yet, virtually no respondents have
risk tolerance as high as 1 (logarithmic utility).

Figure 1. Distribution of relative risk tolerance. The solid line shows the empirical distribution of the survey responses. The solid curve
shows the fitted distribution of the true level of risk tolerance, θ = exp(x), using the model from Section 4. The dashed curved shows the fitted
empirical distribution, exp(ξ) = exp(x + ε).
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Table 4. Distribution of risk preferences

Log risk Risk Risk
Parameter tolerance tolerance aversion

Mean −1.84 .206 8.2
(.03) (.008) (.3)

Median −1.84 .159 6.3
(.03) (.005) (.2)

Mode −1.84 .094 3.7
(.03) (.004) (.2)

Standard deviation .73 .172 6.8
(.04) (.018) (.7)

Fractiles
1 −1.54 .029 1.2
5 −1.32 .048 1.9

10 −1.20 .063 2.5
25 −1.01 .097 3.9
50 −.80 .159 6.3
75 −.59 .259 10.3
90 −.40 .402 16.0
95 −.28 .523 20.8
99 −.07 .858 34.1

NOTE: The values are calculated from the parameter estimates in the third column of Ta-
ble 3. Asymptotic standard errors approximated with the delta method are given in paren-
theses.

For many applications—notably demand for risky assets—
relative risk tolerance θ is the relevant preference parameter
(Breeden 1979; Barsky et al. 1997). But in other applications,
such as the strength of the precautionary saving motive, its
reciprocal 1/θ , relative risk aversion, would be the parameter of
interest (Carroll and Kimball, in press). When preferences are
heterogeneous across individuals, the reciprocal of average rel-
ative risk tolerance is not equal to the average of its reciprocal.
The last column of Table 4 gives the parameters and fractiles
of the distribution of relative risk aversion. For our parameter
estimates, average relative risk tolerance is .206. The estimated
average of relative risk aversion is 8.2, which is far greater than
1/.206 = 4.9. This difference between the expectation of the
reciprocal and the reciprocal of the expectation is a powerful
example of Jensen’s inequality. Jensen’s inequality gets its bite
in this application from the substantial heterogeneity in prefer-
ences, the convexity of the 1/θ function, and the concentrated
mass of the probability density near 0, where the function 1/θ

is most curved.
Many researchers will want to impute risk tolerance for indi-

viduals. As our proxy for individual risk preference, we calcu-
late the expected risk tolerance, conditional on an individual’s
responses, using the estimated distributional parameters of our
statistical model. The formula is similar to (8) in Section 3 ex-
cept that it now accounts for question-specific response error
and multiple responses to the gamble questions. Table 5 reports
the proxy values of risk tolerance, as well as of log risk toler-
ance and risk aversion, for respondents to one status-quo-bias-
free question. The proxy of risk tolerance for response cate-
gory 1 (reject job with one-tenth downside risk) is .153. The
range of relative risk tolerance corresponding to those prefer-
ences is from 0 to .13. (See Table 1.) Hence, the proxy value for
this response lies slightly higher than the range. For risk cate-
gory 2, the proxy of .203 lies near the center of the range from
.13 to .27. With the more risk tolerant response categories, the

Table 5. Imputation of risk preference

Response Log risk Risk Risk
category tolerance tolerance aversion

1 −2.107 .153 10.4
2 −1.811 .203 7.6
3 −1.693 .228 6.7
4 −1.575 .257 6.0
5 −1.419 .301 5.1
6 −1.172 .387 4.0

NOTE: The proxy values are for responses to a single SQB-free question and are based
on the estimates in the third column of Table 3. The values differ for persons answering in
multiple surveys, the original question type, or in the combined categories 1–2 and 5–6. We
provide a spreadsheet of all possible values online (http://www.amstat.org/publications/
jasa/supplemental_materials).

proxy values are substantially lower than the range. For exam-
ple, category 5 (accept a job with one-third downside risk but
reject a job with one-half downside risk), the proxy of .301 lies
far below the low end of the range from 1.0 to 3.7. The proxy
values of log risk tolerance and risk aversion follow a similar
pattern, as do the proxies from a response to the original ques-
tion type. Hence, correcting for response error shifts the proxy
toward the unconditional mean. Yet, substantial heterogeneity
and meaningful quantitative differences remain even after this
correction.

For those answering in multiple waves, we use all their
responses to sharpen the estimate of their relative risk tol-
erance. These additional responses greatly widen the range
of proxy values. The lowest imputed value of risk toler-
ance in our sample is .087 and the highest value is .732.
When individuals give different responses across waves, we
adjust the proxy values accordingly. Table 5 contains only
a small subset of the 370 unique proxy values observed in
this sample. For researchers who wish to make imputations
based on our parameter values for any possible response to
the HRS questions, we provide a spreadsheet of all possi-
ble values of risk tolerance and risk aversion online (http://
www.amstat.org/publications/jasa/supplemental_materials).

5. STUDYING BEHAVIOR WITH THE PROXY

A major application of our proxy for risk tolerance is its use
as a regressor to control for heterogeneity in preferences when
studying a wide range of behaviors. The proxy h = E(θ |c) is
the conditional expectation of true risk tolerance. Hence, the
deviation of the proxy from the true variable u = θ − h is not a
classical measurement error. In particular, the deviation is cor-
related with the true variable, not the proxy. In this section, we
discuss the nonstandard errors-in-variables problem that arises
from use of the proxy and present an estimator that addresses
this problem.

To study the effects of risk tolerance and other regressors on
behavior, consider a model

y = θδθ + zδz + ν, (12)

where θ is true risk tolerance and z is a 1 ×K vector of observ-
ables that also affect the behavior of interest y. To simplify later
analysis, all variables are expressed as deviations from their
means. We make the assumptions that, conditional on the re-
gressors, the population error is mean 0, E(ν|θ, z) = 0, and that
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the expected outer product matrix of (θ, z) has full rank. If we
observed true risk tolerance and the other regressors, ordinary
least squares (OLS) would consistently estimate the population
parameters, δ = (δθ , δ

′
z)

′.
Now consider the use of the proxy. Substituting the proxy

h = E(θ |c) in (12), we have

y = hδθ + zδz + η, (13)

where

η = uδθ + ν. (14)

The composite error term η includes an expectation error u =
θ − h and the structural error term ν. Unlike a classical mea-
surement error, the deviation u of the proxy from the true vari-
able is uncorrelated with the proxy h and correlated with the
true variable θ . This implies that in a univariate linear regres-
sion of a dependent variable y on only the proxy h, there is no
attenuation bias and the OLS coefficient is consistent.

In a multivariate setting, the OLS estimator using the proxy
is unlikely to provide consistent estimates of the population pa-
rameters, δ = (δθ , δ

′
z)

′. The proxy of risk tolerance h = E(θ |c)
only conditions on an individual’s gamble response categories,
so regressors z that are correlated with true risk tolerance θ

would also correlate with the expectation error u. For example,
men may be more risk tolerant than women. Then gender would
be correlated with the expectation error. Using the proxy with
a standard set of demographic regressors, the OLS coefficient
estimate for men would mix the direct effects of gender with
the indirect effects of risk tolerance. A more general statement
of the problem is that

E(z′h) 	= E(z′θ). (15)

The lack of equality in (15) arises because of the correlation
between the proxy’s expectation error u and the regressors z,
which also implies that OLS is inconsistent.

We have enough structure on the problem to derive moment
conditions that will allow for a consistent estimator using the
proxy. The assumption of purely random response error and the
properties of conditional expectations imply that the proxy is
uncorrelated with both the structural error term ν and the ex-
pectation error u. This yields the following moment condition
for the proxy:

E(hη) = E(hu)δθ + E(hν) = 0. (16)

To formulate a moment condition for the other observables, we
assume that the conditional expectation of each observable zk

in the vector z is linear in risk tolerance, such that

zk = θβk + ζ, (17)

where E(ζ |θ) = 0 and βk = E(θ2)−1E(θzk). The linear speci-
fication serves as a good approximation and could be extended
to a risk tolerance vector that included higher order terms. With
purely random response error, ζ is independent of the response
error ε, which together with θ determines the proxy h. This
implies that E(hζ ) = 0. By definition, the proxy h is also un-
correlated with the expectation error u = θ −h. Substituting the
proxy in (17), we have

zk = hβk + uβk + ζ, (18)

so the regression of zk on the proxy h consistently estimates
βk , that is, βk = E(θ2)−1E(θzk) = E(h2)−1E(hzk). We define
the true-to-proxy variance ratio as

λ = E(θ2)/E(h2). (19)

It follows that

E(θzk) = βkE(θ2) = βkλE(h2)

= λE(hzk) for all zk ∈ z, (20)

where the first equality uses the population estimate of βk in
terms of θ , the second equality uses the definition of λ, and the
third equality uses the population estimate of βk in terms of h.
We restate the model in (12) with the proxy h adjusted by λ as

y = λhδθ + zδz + ω, (21)

where

ω = (θ − λh)δθ + ν. (22)

With (16) and (20), we have two sets of orthogonality condi-
tions that identify the model:

E(hη) = E[h(y − hδθ − zδz)] = 0, (23)

E(z′ω) = E[z′(y − λhδθ − zδz)] = 0. (24)

The second orthogonality condition effectively multiplies the
covariance of z with the proxy h by the variance ratio λ to get
the implied covariance of z with θ .

The estimator of δ will be based on the sample estimates
of the proxy h and the true-to-proxy variance ratio λ. We can
implement this generalized method of moments (GMM) esti-
mator because we have an estimate of λ from the maximum
likelihood estimation. This situation contrasts with the standard
errors-in-variables setting where the true-to-proxy variance ra-
tio is unidentified. Substituting the sample analogs into the mo-
ment conditions and solving for the estimates gives[

δ̂θ

δ̂z

]
=

[
N−1 ∑

h2
i N−1 ∑

hizi

N−1 ∑
λz′

ihi N−1 ∑
z′
izi

]−1

×
[

N−1 ∑
hiyi

N−1 ∑
z′
iyi

]
. (25)

Under the conditions specified, these will be consistent esti-
mates of δ and have a limiting normal distribution. Note the
ratio λ in the lower left block of the inverted matrix. There are
three cases in which this estimator is identical to the OLS es-
timator: (i) when there are no regressors other than risk toler-
ance; (ii) when none of the other regressors is correlated with
true risk tolerance; and (iii) when there is no expectation error
for the proxy, that is, θ = h, so λ = 1. Taking into account that
the proxy variance is attenuated with respect to the true prefer-
ence parameter is important in multivariate models with strong
correlations between the other regressors and risk tolerance.

The asymptotic distribution of the estimator in (25) is
√

N(̂δ − δ)
D→ N(0,A−1BA−1), (26)

where

A = E

[
h2 hz

λz′h z′z

]
,

(27)

B = E

[(
hη

z′ω

)
( hη z′ω )

]
.
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Table 6. True-to-proxy variance ratio λ

Parameter Estimate

Variance
Risk tolerance θ .030
Proxy h = E(θ |c) .005

True-to-proxy ratio λ 6.319

NOTE: The estimated variance of true risk tolerance and its proxy depend on the estimated
parameters in the third column of Table 3. Section 4 describes the relationship between
survey responses and the proxy values. The true-to-proxy variance ratio λ is an input to the
GMM estimator in (25) and the R2 in (28).

While we do not directly observe risk tolerance, we can still
compute an implied R2 for the model in (12) based on the true
values of risk tolerance. The R2 as if true θ were observed is

R2 = δ̂
′
[

N−1 ∑
λ̂ĥ2

i N−1 ∑
λ̂ĥizi

N−1 ∑
λ̂z′

i ĥi N−1 ∑
z′
izi

]
δ̂
/(

N−1
∑

y2
i

)
.

(28)

Using the standard R2 from a regression with the proxy would
understate the explanatory power of the model, because the
variability of the proxy understates the true variability of risk
tolerance. Table 6 shows that this understatement is substantial.
The ratio λ of the variance of the true risk tolerance to the proxy
is 6.32. When the other regressors are strongly correlated with
risk tolerance, the GMM estimator in (25) and the implied R2 in
(28) will more accurately characterize the effects of risk toler-
ance on behavior than standard estimators. Even in a univariate
regression on risk tolerance alone, (28) is needed to calculate
the implied R2.

6. APPLICATION TO ASSET ALLOCATION

In this section, we apply the methods discussed previously
to study asset allocation. Faced with uncertain asset returns,
risk preferences should be central in allocating financial wealth
between high-risk and low-risk assets. Individuals with greater
risk tolerance should be willing to hold a larger fraction of their
wealth in risky assets, such as stocks. Under complete markets,
only risk tolerance and the distribution of risky asset returns
affect allocations (Merton 1969; Samuelson 1969). Many indi-
viduals also anticipate labor income, which they cannot fully
capitalize due to their ability to sort across contracts by their
risk type (adverse selection) and to alter their post-contract be-
havior (moral hazard). With market incompleteness, models of
asset allocation also identify a role for the determinants of fu-
ture labor income, such as age and the distribution of income
shocks (Heaton and Lucas 1997). Empirical studies often doc-
ument substantial differences in asset allocation by gender, ed-
ucation, and race. Nonetheless, much of the heterogeneity in
asset allocation remains unexplained.

In contrast with other empirical studies of asset allocation,
our risk tolerance proxy allows us to control quantitatively for
the effects of risk preference cross-sectionally. In this section,
using data from the HRS, we present estimates of how the share
of financial wealth held in stocks increases with risk tolerance.
We also consider other regressors such as gender, education,
age, race, household income, and wealth. While households
typically own assets jointly, many of these attributes are person
specific. We treat the respondent who is most knowledgeable

about household finances as the primary decision maker and
control for his or her attributes. We limit our analysis to house-
holds with positive financial wealth and income. Because the
HRS is a sample of older households that have often accumu-
lated some wealth, this selection eliminates fewer observations
than it would in an age-representative sample. Nonetheless, it
does exclude approximately 20% of households. The average
share of financial wealth in stocks (excluding individual retire-
ment accounts) is .16, and a significant portion of households
do not own stocks. The standard deviation of the share in stocks
is .29, so there is considerable dispersion in stock allocations.

To demonstrate the usefulness of our risk tolerance proxy h

and the true-to-proxy variance ratio λ, we contrast our GMM
estimates with the OLS estimates that use the risk tolerance
variable without taking into account response error. While fo-
cusing on the effects of risk tolerance, we also discuss the ef-
fects of gender and education. We use the estimated effects
from these regressors to demonstrate the misleading inferences
from failing to take into account risk tolerance heterogeneity
and also failing to correct for the consequences of survey re-
sponse error in the risk tolerance proxy.

As a baseline, we estimate the stock allocation model with-
out any control for risk tolerance. This corresponds to the ap-
proach in most empirical studies. As reported in Table 7, the
gender, education, and race of the financial respondent as well
as the household’s log income and log financial assets account
for 17.0% of the variation in stock allocations. In this specifi-
cation, households with men responsible for the finances have
2.4 percentage points more in stocks on average. Post-college
education raises the share by 3.4 percentage points. Both are
statistically significant and represent 15% and 22% of the aver-
age stock allocation.

If any of these characteristics correlate with risk tolerance,
then their estimated coefficients also include the indirect effects
of risk tolerance. One way to try to sort out the direct effects of
risk tolerance on stock holding and to study the confounding
effect of gender, education, and other regressors is to estimate
a model of asset allocation controlling for the categorical sur-
vey responses to the income gambles. Based on their first re-
sponse in the HRS, we assign individuals to four risk tolerance
categories. This regression with categorical controls explains
17.2% of the variation in stock allocations. Households in the
most risk tolerant category hold 2.5 percentage points more of
their wealth in stocks than those in the least risk tolerant cate-
gory. But the relationship is nonlinear as households in the sec-
ond lowest risk tolerant category hold 2.6 percentage points less
in stocks than those in the least risk tolerant category. Adding
the categorical controls diminishes the effect of a male financial
respondent to 2.3 percentage points and post-college education
to 3.2. These results are consistent with the Barsky et al. (1997)
finding that men and the most educated are more risk tolerant.
Even partially controlling for risk preferences begins to lower
the estimated effect of these attributes on asset allocation.

The last four columns of estimates in Table 7 use different
versions of the cardinal proxy for risk tolerance and different es-
timators. In the fourth column, we use the proxy from Section 3,
which ignores survey response error. All else equal, the most
risk tolerant households based on one observation (risk toler-
ance of 3.687) average 2.9 percentage points more in stocks
than the least risk tolerant households (risk tolerance of .049).



1036 Journal of the American Statistical Association, September 2008

Table 7. Effect of risk preferences on the share of financial wealth in stocks

Risk tolerance proxy

Categorical Ignoring Modeling Modeling Including
Control for log survey response response response application
risk tolerance None response error error error covariates

Estimator OLS OLS OLS OLS GMM OLS

Category 3 −.026
(.010)

Category 4 .022
(.012)

Category 5–6 .025
(.011)

Proxy .008 .146 .162 .152
(.003) (.054) (.060) (.056)

Male .024 .023 .023 .023 .014 .018
(.007) (.007) (.007) (.007) (.008) (.008)

Education
>16 years .034 .032 .032 .031 .012 .019

(.012) (.012) (.012) (.012) (.013) (.014)

13–16 years .036 .035 .035 .035 .024 .029
(.009) (.009) (.009) (.009) (.009) (.009)

<12 years −.023 −.024 −.023 −.023 −.026 −.024
(.009) (.009) (.009) (.009) (.009) (.009)

Black −.029 −.029 −.029 −.028 −.024 −.027
(.009) (.009) (.009) (.009) (.009) (.009)

Hispanic −.035 −.036 −.035 −.035 −.034 −.038
(.012) (.012) (.012) (.012) (.013) (.012)

Age/10 −.002 −.001 −.001 −.001 .006 .006
(.008) (.008) (.008) (.008) (.008) (.008)

Log income .002 .003 .003 .002 .004 .003
(.005) (.005) (.005) (.005) (.005) (.005)

Log wealth .046 .047 .046 .046 .047 .046
(.002) (.002) (.002) (.002) (.002) (.002)

R2 .170 .172 .171 .171 .178 .177

NOTE: Regressions include 5,818 households with positive financial wealth and total income in 1992. Individual attributes are from the household’s financial respondent. Share of wealth
in stocks has a mean of .158 and a standard deviation of .286. Asymptotic standard errors are in parentheses. In the second to last column, the GMM estimates are based on the formula
in (25), and the R2 in the last two columns is based on the formula in (28). For the application subsample, the true-to-proxy variance ratio λ is 6.40. In the last column, the proxy is
constructed from a model of log risk tolerance that conditions on the application covariates as well as the gamble responses.

The fifth column of Table 7 uses the proxy from Section 4,
which accounts for the measurement error in the gamble re-
sponses but does not address the potential correlation between
the proxy’s expectation error and the other regressors discussed
in Section 5. These results show that ignoring survey response
error greatly understates the marginal effect of risk tolerance
on stock allocations. When we use the proxy values from Sec-
tion 4, the coefficient estimate for the proxy increases over ten-
fold. This increase shows how attenuation bias affects the es-
timates in the previous two columns that do not account for
response error. Of course, this correction mainly scales up the
coefficient estimate and does not affect the R2. The larger esti-
mated effect of risk tolerance means that when risk tolerance
is measured more precisely with multiple responses that the
predicted differences in behavior can be substantial. The most
risk tolerant households based on multiple observations (risk
tolerance of .732) average 9.4 percentage points more wealth
in stocks than the least risk tolerant households (risk tolerance
of .087). This difference represents 60% of the average stock
share. Thus, correcting for measurement error has a substan-

tial impact on the estimated responsiveness of behavior to risk
tolerance.

The sixth column of Table 7 uses the same proxy for risk
tolerance as in the fifth column but replaces the OLS estima-
tor with the GMM estimator derived in Section 5. The GMM
estimates show the importance of accounting for the correla-
tion between the expectation error of the proxy and the other
regressors. When using (28) for the implied R2, the explained
variation in stock allocations rises to 17.8% from 17.1%. The
point estimate for the effect of risk tolerance rises 11% to .162.
The average difference in stock allocations of the most and least
risk tolerant households with multiple responses increases over
1 percentage point to 10.5. The GMM estimator has a more pro-
nounced effect on the coefficient estimates for other regressors.
As stressed in Section 5, the main issue is that in the OLS esti-
mate the other regressors will spuriously account for variation
in the dependent variable to the extent that they are correlated
with risk tolerance. Having a male financial respondent now
raises stock allocations by only 1.4 percentage points and the
effect of a post-college education falls to 1.2 percentage points.
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These coefficient estimates are 42% and 65% lower than in the
regression with no measure of risk tolerance and are no longer
statistically different from 0 at the 5% level.

As a check on the accuracy of the GMM estimator, the last
column of Table 7 looks at an alternative estimator. Instead of
basing the proxy just on the gamble response categories, we
also condition on the regressors in this application. Specifi-
cally, in the first-step maximum likelihood model, we model the
mean of log risk tolerance μ as a linear function of the observ-
ables z. The estimated unconditional mean and variance of log
risk tolerance from this alternative first-step maximum likeli-
hood model are reported in the last column of Table 3. The esti-
mated distribution does not differ substantially from the model
that conditions on only the gamble responses. This is a direct
approach to eliminate the correlation between the proxy’s ex-
pectation error and the observables. Condition (15) now holds
with equality, and the OLS estimator with this new proxy con-
sistently estimates the model with true risk tolerance. The last
two columns of Table 7 are very similar. This finding implies
that the GMM approach, which does require on re-estimating
the proxy conditional on all the covariates in the regressions,
works well.

The results in Table 7 demonstrate the importance of care-
fully controlling for the heterogeneity in preferences. Beyond
using the proxy to control understand the effect of risk toler-
ance, we show how the effect of other regressors can be over-
stated if no correction is made for the fact that the proxy is im-
perfectly measured and the other regressors are correlated with
preferences. For researchers who want to include an individual
measure of risk tolerance in their studies of other behaviors, our
maximum likelihood estimates provide a valid proxy. To the ex-
tent that this proxy’s expectation error is correlated with other
explanatory variables of interest, the OLS estimates can be mis-
leading. This problem can be addressed with the GMM estima-
tor that we derived in Section 5 or can be avoided by condition-
ing on the other variables in the first-step maximum likelihood.
While the second alternative might be the best approach, the
Health and Retirement Study is currently the only dataset with
a sufficient panel to correct for the survey response error in the
gamble responses. When the first-step maximum likelihood is
not possible (e.g., because of having only one response per in-
dividual), the proxy values we provide that condition only on
the gamble responses should be used with the GMM estimator
to obtain consistent estimates.

7. CONCLUSION

We demonstrate the importance of carefully controlling for
risk preferences when examining asset allocation. In particular,
our procedures address many issues in using survey-based mea-
sures of risk tolerance—translation of categorical responses to a
cardinal metric, survey response error, and expectation error for
the proxy. Our methods for constructing the proxy and estimat-
ing the effects of risk tolerance on behavior have a wide range of
potential applications. A growing number of surveys, including
the Panel Study of Income Dynamics in the United States, the
CentERpanel in the Netherlands, and the Social Protection Sur-
vey in Chile, have fielded lifetime income gambles like those in
the HRS. Our statistical procedures for constructing the risk tol-
erance proxy can be applied with minimal adjustment to these
other surveys.

In studies of stock market participation (Hong, Kubik, and
Stein 2004) and intergenerational wealth correlations (Charles
and Hurst 2003), researchers have used indicator variables from
income gamble responses. This approach does not fully capture
the effect of heterogeneous risk preferences. According to our
empirical analysis, even if the direct effects of risk tolerance are
not central to the study, such indicator variables are unlikely to
adequately control for risk tolerance. In other words, these par-
tial controls are not sufficient either in theory or in practice for
consistent estimates of the direct effects of other variables of
interest. With survey questions and statistical techniques moti-
vated by economic theory, we expand the options for studying
the effects of risk preferences on behavior. Using the quanti-
tative proxy for risk tolerance, we find a strong effect of risk
tolerance on stock holding. Moreover, after accounting for how
errors in measured risk tolerance are correlated with other vari-
ables, the estimated effects of gender and education on asset
allocation are substantially reduced.

APPENDIX: BOOTSTRAP

Both the OLS and the GMM estimates in Table 7 use the risk toler-
ance proxy h, which is a generated regressor from the first-step max-
imum likelihood procedure. The variance ratio λ is another generated
regressor in the GMM estimator. While the coefficient estimates from
these second-step estimators are asymptotically consistent, the esti-
mated standard errors do not reflect the sampling variation in the proxy
and the variance ratio. We use a bootstrap to show this sampling vari-
ation does not qualitatively alter our inferences in Section 6.

Using a Monte Carlo experiment, we draw 199 random samples
from the data and repeat the two steps of estimation in Sections 4 and 6.
Sampling with replacement, we maintain the distribution of respon-
dents to the original and status-quo-bias-free questions. We use a sym-
metric t test to construct the 95% bootstrap confidence interval for the
proxy coefficient estimate in the asset allocation model. The OLS es-
timate in the fifth column of Table 7 of .146 has a confidence interval
of .042 to .249. The GMM estimate in the sixth column of Table 7 of
.162 has a confidence interval of .042 to .283. The OLS estimate in
the seventh column of Table 7 of .152 has a confidence interval of .044
to .260. In all three cases, the estimated effect of risk tolerance on asset
allocation remains statistically significant at the 5% level. As expected,
sampling variation in the generated regressors has little effect on the
inference of the other controls. The moderate impact of the generated
regressors reflects the precision of the first-step maximum likelihood
procedure.

[Received November 2005. Revised July 2007.]
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