Reconsidering the Consequences of Worker Displacements: Survey versus Administrative Measurements*

Aaron Flaaen1 \hspace{1cm} Matthew D. Shapiro2,3 \hspace{1cm} Isaac Sorkin2,4

1Federal Reserve Board of Governors \hspace{1cm} 2University of Michigan \hspace{1cm} 3NBER \hspace{1cm} 4Federal Reserve Bank of Chicago

October 2, 2015

Abstract

Displaced workers suffer persistent earnings losses. This stark finding has been established by following workers in administrative data after mass layoffs under the presumption that these are involuntary job losses owing to economic distress. Using linked survey and administrative data, this paper examines this presumption by matching worker-supplied reasons for separations with what is happening at the firm. The paper documents substantially different earnings dynamics in mass layoffs depending on the reason the worker gives for the separation. Using a new methodology for accounting for the increase in the probability of separation among all types of survey response during in a mass layoff, the paper finds earnings loss estimates that are surprisingly close to those using only administrative data. Finally, the survey-administrative link allows the decomposition of earnings losses due to subsequent nonemployment into non-participation and unemployment. Including the zero earnings of those identified as being unemployed substantially increases the estimate of earnings losses.

JEL Codes: J63, J65, J26, J0

Keywords: Unemployment, Job Loss, Earnings Losses

*Thanks to Pawel Krolikowski, Margaret Levenstein, Kristin McCue, Dan Weinberg and seminar participants at the University of Michigan and the Research Data Center Annual Conference for comments. This research is supported by the Sloan Foundation through the Census-HRS project at the University of Michigan with additional support from the Michigan Node of the NSF-Census Research Network (NCRN) under NSF SES 1131500. This research uses data from the Census Bureau's Longitudinal Employer-Household Dynamics Program, which was partially supported by the following National Science Foundation Grants SES-9978093, SES-0339191 and ITR-0427889; National Institute on Aging Grant AG018854; and grants from the Alfred P. Sloan Foundation. Any opinions and conclusions expressed herein are those of the authors and do not necessarily represent the views of the U.S. Census Bureau, the Federal Reserve Bank of Chicago or the Federal Reserve System. All results have been reviewed to ensure that no confidential information is disclosed. aaron.b.flaaen@frb.gov, shapiro@umich.edu and isorkin@umich.edu.
Why do workers separate from their employers, what are the consequences of these separations, and how do they depend on the reason for the separation? A significant literature follows worker experiences after they lose their jobs. One important branch of this literature focuses on separations during a mass layoff, presuming that the reason is economic distress at the firm and not something related to the worker. While following workers after mass layoffs has been tremendously fruitful (e.g. Jacobson, LaLonde, and Sullivan (1993) and Davis and von Wachter (2011)), it opens the question whether all separations in these events are due to economic distress. This paper treats economic distress as a latent event and uses information from both the firm and the worker to infer the reasons of the separation and the consequences for the path of earnings.

Specifically, this paper addresses the following simple question and its natural follow-ons: what do these putatively displaced workers say about why they separated? How do the consequences of the separation vary with the reported survey reasons? And, what does this comparison say about the inferences we draw about the overall costs of firms contracting?

To answer these questions, we link survey and administrative data. From the administrative data we learn whether the firm was shrinking—and by how much—when the worker separated. From the survey data we learn the worker’s assessment of the reason for the separation. In particular, we have a survey indication whether the worker thought the separation was due to firm distress, that is, it was a displacement. It turns out that there is substantial disagreement between the survey and administrative measures of displacement. Just over half of the survey reports agree with the administrative data in saying that there was economic distress at the firm. Among the survey reports that do not align with the administrative data, almost 20% of them report quitting to take another job, while the remaining almost 30% report separating for some other reason such as retiring, going back to school or taking care of family.

We propose that a portion of this misalignment between survey reports and administrative data is workers reporting the proximate rather than the ultimate cause of their separation. To demonstrate this, we compute how the report of a particular survey reason for separation depends on the firm growth rate. The probability of all forms of separation—i.e. quit to take another job, and other—rises rapidly as firms start to contract. This reproduces the finding of Davis, Faberman, and Haltiwanger (2012, Figure 6) for employer-side survey reports. Under assumptions that we detail below, this indicates that the firm contraction causes many of the worker separations
that workers report as being unrelated to the contraction.

The distinction between the proximate and ultimate cause of the separation uncovers important heterogeneity in the consequence of the separation. The consequences of the administratively-labelled displacement depends on the survey-reported reason for displacement. Distress and other separations experience large—and somewhat persistent—earnings losses. On the other hand, workers reporting quit to take another job experience earnings gains relative to a control group of non-separators.

We then turn to understanding the effect of the ultimate cause: what are the earnings losses of the separations that were caused by the firm contraction? First, which separations were ultimately caused by the firm contracting. Second, the earnings losses of the separations that were ultimately caused by the firm contracting.

To answer these questions, our methodology probabilistically distinguishes between the separations that would have happened in the absence of a firm-level shock, and those that are related to the firm-level contraction. The key assumption is that by looking at workers at firms that are stationary in terms of growth rate (i.e. neither growing nor shrinking) we learn what would have happened in the absence of a firm-level contraction. Formally, the workers at the stationary firms provide a counterfactual to the workers at firms that undergo a large contraction. This assumption is consistent with the tradition in the displaced worker literature that at large firms the growth rate is orthogonal to worker characteristics. In support of this assumption, while there are some observable differences between workers at firms that contract and firms that are stationary (and between workers that separate at contracting firms and workers that continue at stationary firms), reweighting on the basis of these characteristics makes no difference to our estimates.

To learn which separations were ultimately caused by the firm contracting, we compare the realized probability of separating and reporting a particular survey reason at contracting and stationary firms. The excess probability at the contracting firm gives the share of a particular kind of separation that is related to the firm contracting. We find that almost all of the survey reports of distress at the contracting firms are related to the contraction. In contrast, fewer of the quit and other survey reported separations are related to the contraction.

To learn about the earnings losses of the separations that were ultimately caused by the firm contracting, we condition on a particular survey reason and compare the earnings changes of workers
who separate from the contracting and stationary firms. We assume that the observed earnings changes of the workers separating from contracting firms are a linear combination of the earnings changes that would have happened in the absence of a firm-level contraction and latent earnings changes that are related to the firm-level contraction. To back out the latent earnings changes, we combine this equation with our assumption that the separations at stationary firms provide an estimate of what would have happened in the absence of a firm-level contraction and our estimates of the probability that the separation was related to the contraction.

As an intermediate step to recovering the latent earnings changes, we find that given the survey reason earnings changes differ depending on whether the worker separated from a stationary or contracting firm. Specifically, workers separating and reporting distress do worse at stationary firms than at contracting firms. This finding is consistent with the adverse selection logic of Gibbons and Katz (1991), and confirms the logic of restricting to large firm contractions. In contrast, workers separating and reporting quit do better at stationary firms than at contracting firms. This finding is consistent with the idea that workers at the contracting firms that quit to take a job are less choosy than those at stationary firms. Finally, there are not large differences in the earnings consequences of separation where the workers report other reasons for separation.

We then aggregate the various pieces of our method to construct the earnings changes of the separations caused by the firm contraction. Despite the substantial heterogeneity in earnings changes across survey reports, we find that our latent measure of earnings changes is remarkably similar to the measure of earnings losses using only administrative data.

The paper that is on its surface most similar to this one is von Wachter, Handwerker, and Hildreth (2012). They link the Displaced Worker Survey (DWS) to California administrative data and assess the alignment between the survey data and the administrative data and see how earnings losses vary depending on the alignment. Our use of the Survey of Income and Program Participation (SIPP) allows us to ask very different questions than von Wachter, Handwerker, and Hildreth (2012) can ask with the DWS. Specifically, workers only appear in the DWS if they report being displaced. Workers who do not appear in the DWS might either have forgotten that they were displaced; or they might have remembered that they separated, but did not perceive it as a displacement. In particular, because respondent are asked retrospectively about the last three years, respondents’ recall might be a function of the outcome. This saliency bias is precisely what von Wachter,

3
Handwerker, and Hildreth (2012) work hard to address. The SIPP has the benefit that workers are asked about separations that occur in the last quarter and so there is less concern about recall bias (in particular, recall that conditions on outcomes). In addition, SIPP respondents can report a reason for separating that is not displacement.

This paper unfolds as follows. Section 1 describes our administrative and survey datasets and the procedure for linking them. Section 2 documents what workers say when the administrative data would label them as displaced, and what the administrative data says when workers say they were displaced. Section 3 describes how we estimate earnings changes following a separation. It also shows that there is substantial heterogeneity in earnings changes conditional on a worker being displaced, but depending on what reason the worker gives for separating. Section 4 describes how we combine the information in (mis)alignment between the survey and administrative data to measure the earnings losses associated with the firm contracting. It also reports the results of implementing our method. Section 5 takes up a distinct question about administrative data that survey data can shed light on: what are workers doing in the quarters with zero earnings? The survey-administrative link allows the decomposition of earnings losses due to subsequent non-employment into non-participation and unemployment. Including the zero earnings of those identified as being unemployed substantially increases the estimate of earnings losses.

1 Survey and administrative data

1.1 Data description

We use two data sets: the Survey of Income and Program Participation (SIPP) and the administrative Longitudinal Employer Household Dynamics (LEHD).

The SIPP is a U.S. Census Bureau survey. It is a nationally representative series of panels with a sample size of between 14,000 and 36,000 households. We use the 2001 and 2004 Panels, which span the years 2000 to 2006. Each SIPP Panel is conducted in waves and rotation groups, with each wave consisting of a 4-month period during which an interviewer contacts a household. The sample is divided into four rotation groups, where one rotation group is interviewed each month. During the interview, the household is asked information about the previous 4 months.

The SIPP contains information on up to two jobs held by each person in the household, along
with the starting and (potential) ending dates of those jobs. If a respondent identifies that a job has ended, they are prompted to identify the reason that the job has ended from a list of 14 possible answers. In addition, it provides information on labor force participation. Those identified as not working are asked to identify the reason.

The LEHD dataset is built from administrative unemployment insurance records. It contains unique person identifiers that allow us to follow workers across employers. Similarly, it contains unique employer identifiers that allow us to follow employers over time and construct employer growth rates.

1.2 Matching procedure

We link the jobs in the SIPP to jobs in the LEHD. While there is a bridge between people in the SIPP and the LEHD, there is not a bridge between jobs.

To align with the interest in the displaced worker literature in high tenure workers we look at SIPP jobs with at least 12 months of tenure. We then link a SIPP job that ends to an LEHD job on three features.

- The LEHD job has 4 consecutive quarters of positive earnings that exceed a minimal threshold (earning the minimum wage at 70% of full-time equivalent hours);
- In the four quarters following the survey-reported separation, the worker has at most minimal earnings from the employer (earnings fall below the threshold defined in the previous bullet); and
- The LEHD job ends either in the quarter that the SIPP job is reported to end, or one quarter before or after the SIPP job is reported to have ended.

The first requirement means that both jobs meet a tenure threshold and are both plausibly full time. The second requirement attempts to capture permanent separations. The third requirement follows

1We have access to all 50 states that participate in the LEHD program, and the data we have available runs through 2008. See Abowd et al. (2009) and McKinney and Vilhuber (2008) for discussion of the background and contents of the LEHD files. Over 90 percent of payroll employment is covered by the unemployment insurance system.

2The unit of analysis on the employer side is the state-level enterprise identification number (SEIN). While several establishments may have the same SEIN in a particular state, the definition of the enterprise does not cross state lines.

3This person-level bridge has been used before (e.g. Juhn and McCue (2010)).

4This four quarters of minimal earnings is similar to Schoeni and Dardia (1996 pg. 5), which they also use to alleviate concerns about recalls.
from our interest in comparing reasons for separations, rather than the reporting of separations. The window around the separation allows for the possibility that workers continue to receive paychecks after a separation. In cases where this procedure yielded more than one match we gave priority to the job with the highest earnings in the quarter prior to the separation.

For linking continuing jobs in the SIPP to the LEHD we follow a similar procedure to above, except that we do not impose the requirement that the job end.

Appendix C provides additional details on the criteria, as well as the resulting match rates. The main sample frame consists of person-quarters in the SIPP that have been matched to the LEHD. This means that a given person might appear multiple times in the dataset. We impose two additional sample restrictions. First, we require that the worker be between the age of 25-74 in that calendar year. Second, we require that the employer have at least 50 workers three quarters prior to the candidate quarter (see Appendix Tables A3 and A2 for comparisons of our sample selection criteria to other studies).

One might worry that when an employer ID disappears (and an employer appears to have shut down) in administrative data that it is due to errors in data linkages. In Appendix D we detail how we used employee flows to clean spurious shutdowns and other employer ID changes.

2 Alignment between survey and administrative measures

2.1 Identifying displacements in administrative data

The standard approach in administrative data is to classify separations based on information from net worker flows. In particular, a large net contraction (generally 30% or more) is taken as evidence of firm distress, and the event as a whole is referred to as a mass layoff.\(^5\) Table A2 highlights the commonality across papers using administrative data of this definition, which originates with Jacobson, LaLonde, and Sullivan (1993).

We use a one year window around when the worker separated to measure the employer growth rate. Specifically, we measure the firm’s employment three quarters before the separation and one quarter after the separation. If the decline in employment over this period exceeds 30%, then we

\(^5\)While this cut-off may seem arbitrary, the findings in this paper suggest that it does a reasonable job of picking up mainly separations that are related to the employer contraction, in a sense that we develop more formally in Section 4.
label this a mass layoff. This one year time window is in line with recent literature, i.e. Andersson et al. (2011) and Davis and von Wachter (2011). In contrast, Jacobson, LaLonde, and Sullivan (1993) allow for a 6 year window.

In Appendix E we discuss other ways of measuring separations due to economic distress that have appeared in the literature.

2.2 Identifying displacements in survey data

Survey data provide information from workers about their perceptions of the circumstances surrounding the separation. Researchers typically use the worker-reported reasons from the survey to classify separations into those owing to economic distress at the firm.

Because of the large number of survey responses in the SIPP and the reasonably small sample sizes, we classify the survey responses into three groups: **distress**, **quit** and **other**. We map the following four reasons for separation to be due to firm **distress**: 1) On layoff; 2) Employer went bankrupt; 3) Employer sold business; and 4) Slack work or business conditions. To identify worker **quits**, we narrow in on the employer-to-employer transitions that is the subject of interest in the literature and thereby restrict to survey reports of 1) Quit to take another job. Finally, we classify the remaining reasons for separation into an **other** category: 1) Retirement or old age, 2) Other family/personal/child obligations, 3) Own illness/injury, 4) School or training, 5) Job was temporary and ended, 6) Unsatisfactory work arrangement, 7) Quit for some other reason, and 8) Discharged/fired.

Other surveys that have been used to study displacements capture a slightly different combination of reasons. The most common surveys used are the DWS and the PSID, although other research has used the HRS, the NLSY, and the SIPP. von Wachter, Handwerker, and Hildreth (2012) compare the DWS with administrative records. Table A1 summarizes definitions of displacement that have been used in worker-side surveys.

Fujita and Moscarini (2013) note that there is recall among workers reporting “on layoff” in the SIPP. We attempt to capture only non-recalled layoffs by requiring that the worker have minimal earnings from that employer in the 4 quarters following the report of “on layoff.” We have conducted robustness checks where we exclude the small share of workers who have earnings starting five quarters after separation from their pre-displacement employer.

7
2.3 Terminology

At this point, it is useful to clarify the relationship between the various terms used in this paper. A mass layoff (ML) is a separation that occurs when the firm contracts by 30% or more. The workers who separated are administrative displacements. We sometimes refer to the firm that contracts by 30% or more as being in economic distress. Using the survey data, when a worker reports that there was economic distress at the firm, then we refer to this as a survey displacement, or a survey reason of distress. Similarly, quit and other are also survey reasons for the separation.

Ultimately, this paper is interested in what we refer to as ML*. This corresponds to a separation that occurs in a mass layoff (ML) and is due to the economic distress at the firm. This separation is a true displacement.

2.4 Alignment of survey and administrative indicators

There are a large number of separations of each of three classes of survey reports. Table I shows about 20% of the separations are reported as due to distress, 30% as due to a quit, and 50% for other reasons.

Using our aggregated survey categories, the survey and administrative measures are correlated. For example, of the separations where workers report distress in the survey data, 28% occur during a mass layoff. In contrast, only 5% of worker report quits, and 6% of worker reported other reasons, occur when there is a mass layoff. Even more strikingly, only 2% of the continuing jobs occur in quarters when there is a mass layoff at the employer.

Even within the aggregated survey categories, the survey and administrative measures are correlated. All of the survey reasons we classify as other have lower shares of the mass layoff indicator than the survey reasons we classify as distress. Within the survey reasons we classify as distress, the fact that employer bankrupt/sold business has the highest share of the mass layoff indicator also makes sense.

Despite this alignment between the survey and administrative measures, the administrative measure misses most of the separations that the survey respondents label as due to distress. Specifically, while 28% of the worker survey-reported distress separations are captured by the administrative indicator, this means that the administrative indicator misses over 70% of the survey-reported
distress separations\footnote{Our results are close to von Wachter, Handwerker, and Hildreth (2012). Conditional on a survey report of a displacement, they find substantial variation in alignment depending on the precise administrative definition used. For their preferred administrative definition (row 8), they find that a displacement shows up in the administrative data 23% of the time given the presence in the survey data, while we find it for 28% of separations. Of course, if we focus attention on a narrow category of distress, “employer bankrupt or sold business,” then the alignment is tighter.}

Panel B of Table 1 shows the misalignment in the other direction. Almost half of the separations that are labelled as an administrative displacement are labelled by workers as not due to distress. Among the administrative displacements, 55\% of SIPP respondents report a job loss due to distress\footnote{Conditional on the administrative indicator, we find many more survey reports of distress using the SIPP than von Wachter, Handwerker, and Hildreth (2012) find using the DWS. In von Wachter, Handwerker, and Hildreth (2012 Table 4, column (7)), conditional on the firm-side indicator showing distress, they find a report of a displacement in the DWS at most 14\% of the time (for various definitions of displacement). This contrasts to 55\% in our data. The reason, we think, is that the DWS is notoriously plagued by recall bias.} Thus, the majority of the separations that the administrative measure labels as a displacement correspond to a worker report of displacement, which confirms the finding reported in Davis and von Wachter (2011, pg. 9 n. 9) that “most employment reductions are achieved through layoffs when firms contract by 30 percent or more.”\footnote{The Davis and von Wachter (2011) statistic is based on the Job Openings and Labor Turnover Survey (JOLTS), which is an employer-side survey. It is possible a firm reports laying a worker off, while a worker reports a quit, or other reasons for separation.}

Thus, the majority of the separations that the administrative measure labels as a displacement correspond to a worker report of displacement, which confirms the finding reported in Davis and von Wachter (2011, pg. 9 n. 9) that “most employment reductions are achieved through layoffs when firms contract by 30 percent or more.”

Figure 1 shows how separations depend on the employer growth rate. In Panel A, the solid line plots the probability of a worker separating as a function of the employer growth rate, while the histogram plots the distribution of the employer growth rates. The histogram shows that for most observations in our data employers are neither growing nor shrinking. The solid line displays the canonical hockey-stick shape (Davis, Faberman, and Haltiwanger (2012, Figure 6)) whereby the probability of separating rises rapidly as employers contract.

Panel B of Figure 1 shows the graphical version of the imperfect alignment between survey and administrative indicators of displacement. The figure decomposes the probability of separating in Panel A as a function of the employer growth rate into the three survey reasons: distress, quit and other. Looking at the left-hand side of the graph, we see that among firms contracting by 30\% or more there are many survey reports of quit and other as the reason for separation. Moreover, as employers contract, the probability of all survey reasons rise. Looking at the right hand side, there is still a positive probability of worker’s reporting distress as the reason for separation, even though

\footnote{Looking at Table 1, the quarterly separation rate is about 3.0\%. This might appear low. Several features of our sample account for this fact. First, the SIPP respondents considered in this paper have relatively stable jobs because we condition on having a year of tenure. Second, the frequency of the table is quarterly. The implied annual separation rate is about 12\%.}
the administrative data approach would suggest none.

2.5 Alignment among older workers

We now consider survey reasons for separations as a function of employer growth among the subset of our sample age 55-74. For this exercise, we compare the survey reason of retire to all other survey reasons of separation.\footnote{These non-retire separations include those we refer to elsewhere in the paper as distress and quit, as well as all of the other survey responses besides retire. There are two reasons to group differently among older workers. First, retirement is a particularly interesting reason for separation in this group. Second, disclosure limitations prevent us from distinguishing between quit, distress and the remaining other reasons in this subsample.}

Figure 2 plots the analogous relationship to Figure 1 among workers aged 55-74. The figure shows that as firms contract older workers also separate at higher rates. The increase in the probability of separating and reporting retire is quite shallow—it is closer in slope to the quit line in Figure 1 than the other line. The interpretation is that among older workers the firm contraction does not push them to separate — the so-called “forced” retirement.

3 Earnings changes following a separation

The prior section showed that survey and administrative indicators of displacement are imperfectly aligned. This section shows that the consequences of the separation depend on both the administrative and survey classifications. In section 4 we look in more detail at the interaction between the classifications.

3.1 Earnings specification

We estimate the “treatment” effect of several different classes of separations on labor market outcomes in an event study framework. While this event study framework was pioneered by Jacobson, LaLonde, and Sullivan (1993) to study the effect of displacements, it is a useful framework to study the earnings changes following any separation because it means that we do not mechanically attribute earnings gains (or losses) to separations if these were expected. For notational simplicity, we refer to displaced workers as the treated group in this section.

Consider a treated group of workers who lose their job in a displacement in a particular event quarter y (say 2000:I), and a control group of workers who do not lose their jobs and were employed
at a firm that was stationary (i.e. did not growth or shrink) in that quarter. Following Davis and von Wachter (2011, equation 1), we specify the regression

$$e_{it}^y = \alpha_i^y + \gamma_t^y + \beta Y X_{it} + \sum_{k=-3}^{16} \delta_k^y D_{it}^k + u_{it}^y, \ t = k + y$$ \hspace{1cm} (1)$$

where e_{it}^y is real earnings of individual i in quarter t, α_i^y are worker fixed effects, γ_t^y are calendar-quarter fixed effects, X_{it} is a quartic polynomial in the age of worker i in year t, the D_{it}^k are dummy variables equal to 1 in the k^{th} year relative to the displacement, and u_{it}^y represents random factors. In this specification, the inclusion of the calendar time dummies, the γ_t^y, means that the δ_k^y measure the earnings path of the time y displaced workers relative to the continuers at the stationary firms. The δ_k^y are the coefficients of interest: the effect of being displaced relative to continuing at a stationary firm in the particular quarter12

In our SIPP-LEHD matched data, we have a relatively small number of separators per quarter so we pool across quarters by stacking datasets corresponding to each of the quarter-specific experiments reflected in equation (1). Specifically, this means keeping only three quarters of workers earnings prior to each event quarter and 16 quarters of earnings post event quarter13 Letting y represent a displacement or event quarter and recognizing that $t = k + y$ we have:

$$e_{ik}^y = \sum_y \alpha_i^y + \gamma_t^y + \beta Y X_{ik}^y + \sum_{k=-3}^{16} \delta_k^y D_{ik}^k + \sum_y \sum_{k=-3}^{16} \gamma_k^y E_{ik}^y + u_{ik}^y.$$ \hspace{1cm} (2)$$

Relative to equation (1), this specification imposes three restrictions. First, the effect of displacement on earnings does not vary across displacement quarters so that $\delta_k^y = \delta_k$. Second, the slope of the path of the earnings of the control group is constant across displacement quarters, up to a level shift. That is, rather than entering γ_t^y we enter $\sum_{k=-3}^{16} \gamma_k^y E_{ik}^y$ where E_{ik}^y is an indicator for the displacement quarter13 Third, the age-earnings profile does not differ across displacement quarter

12This contrasts to the notion of displacement in Jacobson, LaLonde, and Sullivan (1993, pg. 691): “Our definition of earnings loss is the change in expected earnings if, several periods prior to date s, it was revealed that the worker would be displaced at date s rather than being able to keep his or her job indefinitely.”

13In Appendix Table A4 we present a stylized example of how a single person’s earnings history turns into several potential earnings records in our regression.

14Note that the person displacement quarter fixed effects subsume the average of the time-varying error component in the time that the worker is in the sample (e.g. the average of γ_t). Hence, this specification implicitly allows there to be a time-specific component of earnings.
so that $\beta^u = \beta^{15}$. Appendix A discusses several issues with how to compute standard errors for this pooled specification and how we address them.

The sample described above are the person-quarters in the SIPP that we successfully match to the LEHD. That match required that we observe LEHD earnings in the current and previous three quarters. To study outcomes subsequent to displacement events, we need to include LEHD earnings for subsequent quarters. As is standard in the literature (see Table A3), we restrict to the sample of people with positive earnings in a calendar year for up to 4 years after the displacement in any of the 30 LEHD states that we have available. We allow for less than 4 years when the LEHD data “runs out” (e.g. for a separation in 2006, we only require positive earnings in 2006, 2007 and 2008). We discuss this sample restriction in detail in section 5.

As our primary earnings variable we normalize earnings using the average of 2 quarters of workers’ earnings prior to displacement. To be precise, if the last quarter of the employment relationship is period $t = 0$, then we use the average earnings in periods $t − 1$ and $t − 2$. Using earnings normalized in this way combines the strengths of the levels and logs specification. Like the levels specification, it allows us to include quarters in which a worker had zero earnings. Like the log specification, it generates coefficient estimates that are interpretable as percent change in earnings relative to pre-displacement earnings. In addition, like the log specification it weights each worker equally. We are not the first to construct normalized earnings in this way; see, for example, Autor et al. (2014) and Davis and von Wachter (2011).

3.2 Comparison groups

Equation (2) relies on using a control group of workers to form a counterfactual for the treated group. In contrast to the typical control group in the displaced worker which is all workers who continue, our control group is workers who continue at stationary firms, which is new to the literature. The language of treatment and control implies that we presume that the data approximates an experiment where some workers randomly separate. An empirical implication of random separations is that the two groups look similar on observable covariates.

Table 2 shows that there are important differences in observable characteristics between the treatment and control groups for the canonical comparison of the administrative mass layoff indi-

\footnote{Note that if t is sufficiently bigger than y then we do not include a calendar-quarter times displacement-quarter dummy since there are no earnings records associated with it.}
cators relative to continuers. The table shows the difference in population shares of several characteristics between the treatment and the control group. The mass layoff separators are younger, have less education, are more likely to be men and earn less.\footnote{The earnings deciles are calculated by taking the average of earnings quarters 2 and 3 quarters prior to the separation for the separators, and 2 and 3 quarters prior to the observation of continuing for the continuers. For workers who continue—and thus possibly appear many times in the data—we only take one earnings record to calculate the earnings distribution.} They also work in smaller firms and in more blue-collar industries.

To address this lack of covariate balance, we turn to propensity score reweighting. The basic idea of propensity score reweighting is to make the control group “look like” the treatment group. Complete details are in Appendix B.

3.3 Displaced worker earnings losses: weighted and unweighted

Panel A of Figure 3 shows that there are large earnings losses immediately after a displacement. The figure plots the earnings trajectories of workers from 3 quarters before to 16 quarters after the separation. While there is a recovery, even three to four years after the displacement earnings are still lower. This replicates the standard result in the literature.

Panel B shows that our reweighting procedure makes no difference to the estimated earnings trajectory. Given the large differences in observable characteristics documented in Table 2 and the fact that the reweighting procedure generates balance (see column (2)), this finding might seem surprising. Because we have already included worker fixed effects in estimation, however, level differences in earnings predicted by these characteristics are removed. So reweighting only changes estimates if these characteristics predict different slopes of earnings. Evidently, these characteristics do not predict large enough differences in slope to matter.

The finding that there are differences in observable characteristics between different groups of workers but that reweighting makes no difference to our estimates repeats for the remainder of the results in the paper. As such, we present the reweighted results but do not discuss differences in observable characteristics across groups.

3.4 Decomposing the administrative measure by survey reason

Among those identified as displaced by the administrative indicator, there is significant heterogeneity in the earnings changes based on the survey reason. Figure 2 plots the earnings changes for the
administratively-indicated displaced workers (as in Figure 3) but split into the three survey categories. Mechanically, the lines in this figure come from estimating three separate regressions of the form given in equation (2). Those reporting a distress reason for separation experience large initial drops in earnings and then a gradual recovery. Indeed, the recovery is slightly steeper among the survey distress in an administrative displacement than in the administrative displacement overall. The earnings trajectory of the other separations are similar to the distress, except that the earnings recovery fades out more than three years past the separation. In contrast, those reporting a quit experience modest earnings gains relative to the control group.

This heterogeneity in earnings losses across survey reasons provides evidence that measurement error does not explain why the administrative and survey measures of displacement are imperfectly aligned. Specifically, that the quits do much better than the remaining two survey reasons is consistent with these workers having a very different experience of the mass layoff. The next section takes up the question of how to interpret this heterogeneity in earnings changes by survey report.

4 Recovering earnings losses of a true displacement

Section 2 showed that the survey data and administrative data do not always agree on the reason for separation. Moreover, Section 3 showed that the consequences of an administratively indicated mass layoff differ depending on the worker survey report. In this section we present evidence against treating worker survey reports as reflecting the ultimate cause of the separation. We then develop and implement a method to measure the earnings losses of the separations that are related to the employer contraction, which combines the information in the previous two sections.

4.1 Overview

Panel B of Figure 1 shows why we do not want to interpret the survey responses as reflecting the ultimate causes of the separation. Instead, we interpret the survey responses as sometimes reflecting the proximate cause of the separation. As discussed in Section 2, the figure plots the probability of reporting each kind of separation as a function of employer growth rates. It shows that the probability of reporting all kinds of separations rises rapidly as the employer contracts.

The fact that the quit and other probabilities rise as the firm contracts suggests that many of
these separations are related to the firm contraction. This inference is justified by the assumption that firm growth rates are independent of the underlying propensities of individuals to separate for quit or other reasons. The next section formalizes this logic and shows how to use this assumption to learn about the earnings changes related to the employer contraction. Sorkin[2015] uses similar reasoning to probabilistically distinguish between separations that are related and unrelated to an employer contraction, but does not incorporate survey data.

4.2 Methodology for identifying true displacements and its consequences

We are interested in estimating the effects of a separation in a mass layoff that is due to economic distress, which we call a true displacement and denote by ML*. ML* differs from separations observed in mass layoff (or ML) in that it only contains the separations that are caused by the employer contraction, and not merely coincident with it.

We now define some notation. Let s be a particular survey reason for separation, $s \in \{\text{distress, quit, other}\}$. We will use ML_s and ML^*_s to refer to separations in an observed mass layoff based on administrative data (ML_s) or a true displacement (ML^*_s) when a worker reports a particular survey reason. Let $\Delta earn_k$ be the earnings change in a particular displacement time (δ_k from Section 3). Define ω_s to be the share of survey reason s in a mass layoff, while ω^*_s is the share of survey reason s in the separations in the mass layoff that are related to the firm contraction.

The standard earnings loss regression is equivalent to:

$$E[\Delta earn_k|ML] = \sum_{s} \omega_s E[\Delta earn_k|ML_s].$$

(3)

We are instead interested in:

$$E[\Delta earn_k|ML^*] = \sum_{s} \omega^*_s E[\Delta earn_k|ML^*_s].$$

(4)

Comparing equations (3) and (4) reveals two reasons why the earnings losses related to the contraction might differ from the benchmark results. First, the shares might differ. For example, it might be that the benchmark approach overstates the share of quits that are related to the contraction.

\[^{17}\text{If the coefficients on covariates vary by survey response, then this aggregated version will differ from running the benchmark regression. The benchmark and “aggregated” versions turn out to be identical. See Appendix Figure A1.}\]
and so leads to an underestimate of earnings losses. Second, the earnings changes might differ. For example, it might be that quits that are related to the mass layoff have very different earnings changes than the quits that would have happened anyway.

To estimate the $E[\Delta \text{earn}_k|\text{ML}_s^*]$, we assume that the following pointwise relationship (i.e. for all k from Section 3) holds

$$E[\Delta \text{earn}|\text{ML}_s] = \pi_s E[\Delta \text{earn}|\text{ML}_s^*] + (1 - \pi_s) E[\Delta \text{earn}|\text{not ML}_s^*],$$ \hspace{1cm} (5)

where $\pi_s = \Pr(\text{ML}_s^*|\text{ML}_s)$ is the probability that a separation and survey response is related to the firm-level contraction. Below, we use the notation $\Pr(\text{not ML}_s^*) = 1 - \pi_s$ to refer to the ML_s separations that are not related to the mass layoff. This equation says that observed earnings changes given a mass layoff and a survey response are a mix of workers who separate because of the mass layoff, and workers who would have separated anyway.

To estimate the ω_s^*, we use the following relationship:

$$\omega_s^* = \pi_s \omega_s \sum_s \pi_s \omega_s.$$ \hspace{1cm} (6)

This equation says that the latent shares differ from the observed shares to the extent that the survey responses are differently related to the employer contraction. For example, we find that survey reports of distress are more likely to be related to the contraction than survey reports of quits.

Our identifying assumptions are:

Assumption 1: $\Pr(\text{not ML}_s^*) = \Pr(\text{no growth}_s)$;

Assumption 2: $E[\Delta \text{earn}_k|\text{not ML}_s^*] = E[\Delta \text{earn}_k|\text{no growth}_s]$.

Assumption 1 says that we can estimate the probability that a separation would have happened regardless of what was going on at the firm by looking at the separation probability in the stationary, or no growth, region. Assumption 2 says that we can estimate the earnings losses of the separations that would have happened in the absence of the firm-level contraction by looking at the earnings losses of those who separate in the stationary, or no growth, region.

Assumption 1 allows us to estimate the probability a separation was related to the contraction
by:

\[\pi_s = \frac{\Pr(\text{ML}_s) - \Pr(\text{no growth}_s)}{\Pr(\text{ML}_s)}. \tag{7} \]

We then rearrange equation (5) and substitute in for our various assumptions to have:

\[\mathbb{E}[\Delta\text{earn}_k|\text{ML}^*_s] = \frac{1}{\pi_s} \mathbb{E}[\Delta\text{earn}_k|\text{ML}_s] - \frac{(1 - \pi_s)}{\pi_s} \mathbb{E}[\Delta\text{earn}_k|\text{no growth}_s]. \tag{8} \]

This equation shows that two things have to be true for the earnings losses in ML* to differ from those in ML. First, there needs to be a difference between ML* and ML, formally, that \(\pi_s < 1 \). Second, the earnings losses in ML need to differ from the earnings losses in the stationary or no growth region, formally, \(\mathbb{E}[\Delta\text{earn}_k|\text{no growth}_s] \neq \mathbb{E}[\Delta\text{earn}_k|\text{ML}_s] \).

As an example of the calculation in equation (8), suppose that the average quit leads to a gain of $10. Suppose that a quit at a contracting employer leads to a gain of $5 and that 50% of these are excess quits. Then we infer that these extra quits had a gain of $0, since \(0.5 \times 10 + 0.5 \times 0 = 5 \), where the 0 on the left hand side is the unknown quantity that we solve for.

Aggregating up the results of equation (7) and (8) allows us to substitute in to equation (4) and estimate the object of interest.

4.3 Probabilities and shares

The probability of all survey reported reasons of separation are much higher when firms undergo large contractions than when they are stationary. Rows (1) and (2) of Table 3 contain the numerical version of the differences evidence in Figure 1. Converting to the probability that the separations are related to the employer contraction using equation (7), row (3) of Table 3 shows that the distress separations are much more related to firm growth than the quit and other separations. Specifically, 96% of the distress separations are related to the firm contraction, while only 77% of the other separations and 67% of the quit separations are related to the firm contraction. This finding is consistent with the intuition that even at stationary firms, workers are likely to be quitting (or separating for other reasons), and so many of these quits and other separations would have happened anyway. Overall, 86% of separations in a mass layoff are related to the employer contraction.
These different probabilities of being related to the contraction by survey reason alters the weights placed on different categories of survey separation when computing earnings losses related to the contraction. The bottom two rows of Table 3 show the shares used in equations (3) and (4) to aggregate the earnings changes by category. As can be anticipated from the different probabilities, this procedure means that we place more weight on the distress separation and less weight on the quit and other separations.

4.4 Earnings losses related to the contraction

We now compute the earnings losses for each of the three survey reasons for separation that are related to the contraction.

Panel A of Figure 5 considers the distress survey reason. It plots the earnings components of equation (8). The red dashed line reproduces the solid red line from Figure 4, which measures the earnings changes of workers separating in administratively indicated displacement where the survey reason is also distress. The blue line reports the earnings changes where in the administrative data the firm is stationary, but the worker’s survey reason is distress. Significantly, workers reporting distress have better post-displacement earnings outcomes during a mass layoff than when there is no growth at the firm (i.e. it is not growing or shrinking). This finding is consistent with the adverse selection logic of Gibbons and Katz (1991) that workers who perceive distress as the reason for the separation do better when there are many workers leaving the firm and there is less scope for selection. The black solid line combines the blue line and red line to recover the latent earnings loss caused by the firm contraction. It is remarkably similar to the red dashed line of all the distress responses in a mass layoff. The reason is that we estimate that 97% of the survey-reported distress separations in a mass layoff are related to the firm contraction and so the latent earnings loss places almost all weight on the ML earnings loss.

Panel B of Figure 5 considers the quit survey reason. The red dashed line—the ML line—reproduces the blue line from Figure 4, which measures the earnings changes of workers separating in administratively indicated mass layoff where the survey reason is quit. The blue line reports the earnings changes where in the administrative data the firm is stationary, but the worker’s survey reason is quit. The black line shows that the estimated earnings changes of the quits related to the mass layoff (ML_{quit}) are worse than that measured from looking at the quit separations in mass
layoffs directly \((ML_{quit})\). The reason is that the earnings gains to quits when the firm is stationary are much bigger than the earnings gains to quits when the firm is contracting. Since we estimate that about a third of the \textit{quits} in the mass layoff are reaping these larger gains, the quits related to the mass layoff must have worse outcomes. Nevertheless, the difference between \(ML_{quit}\) and \(ML_{\ast quit}\) is not very big—at most a few percentage points.

Panel C of Figure 5 considers the \textit{other} survey reason. The red dashed line—the ML line—reproduces the black line from Figure 4 which measures the earnings changes of workers separating in administratively indicated mass layoff where the survey reason is \textit{other}. The blue line reports the earnings changes where in the administrative data the firm is stationary, but the worker’s survey reason is \textit{other}. The black line combines these two lines. The earnings changes of the \textit{other} survey reason related to the mass layoff \((ML_{\ast other})\) quite similar to all the \textit{other} separation in the mass layoff \((ML_{other})\).

Finally, using equation (4), Figure 6 aggregates the latent measures across survey categories depicted in Figure 5 using the weights in Table 3 to measure the earnings losses of the separations caused by the firm contraction. The figure also reproduces the benchmark results from Figure 3. The earnings losses from the simple administrative-based measure are remarkably close to the earnings losses of the separations related to the firm contraction.

Why are the earnings losses in ML so similar to \(ML_{\ast}\)? Two surprising features of the data drive this result. First, conditional on the survey reason, what is going on at the firm—whether it is contracting by a lot, or is stationary—does not have a large effect on earnings losses. Specifically, the variation in earnings changes across survey reasons holding the firm growth rate constant in Figure 4 is much bigger than the variation in earning changes within survey reasons but changing the firm growth rate. (As is evident in Panel B of Figure 1, the firm growth rate does have a large effect on the composition of these reasons.) This means that the first condition necessary for the latent and observed measures to differ emphasized in equation (8) is not met. Second, the sharp rise in the probability of all the survey reasons in Figure 1 means that there is a large difference between proximate reasons reported by workers at contracting firms and the ultimate reason for their separation. As a result, the weights in equation (8) are quite high and so the second condition necessary for ML and \(ML_{\ast}\) to differ is also not found in the data.

Hence, the standard practice of using observed ML is not misleading. Nonetheless, knowledge
of the worker reason contains important information about the consequences of the separation for workers’ future labor market outcomes.

5 Accounting for zeros: unemployed or out of the labor force?

Having used survey data to sort out the reasons for separations, we now turn to using the survey data to understand the labor market outcomes subsequent to the separation. As it turns out, the information in survey data about these labor market outcomes makes a large difference for understanding labor market outcomes after a true displacement.

A common practice in estimating displaced worker earnings losses is to exclude earnings histories when a worker exhibits long spells of zero earnings following the separation (see Table A3). The reason is that in administrative data is hard to know whether the zero earnings represent periods of being out of the labor force, or periods of looking for work. If we could distinguish between these reasons, however, we might want to include the looking for work zero earnings losses because these earnings losses simply represent an extreme reduction in hours following the displacement. In contrast, we might not want to include the being out of the labor force zeros because this is a fundamentally different state. So far in this paper we have followed the standard practice of omitting all earnings histories with enough zeros following the separation.

Our link with survey data provides information on whether the zero earning histories that we omit in our benchmark specification represent workers who are out of the labor force or looking for work. We study the set of workers who have at least one calendar year of zeros following displacement. Specifically, we look at the quarters in the year following displacement in which these workers have zero earnings and associate these zeros with the reasons for zero earnings. (We also report results on the secondary issue of whether the administrative zeros are truly zero because some earnings are not covered by the administrative data.)

Table 4 shows that over 40% of separators have zero earnings in a calendar year following the separations and are thus omitted from the regression analysis of earnings loss in Section 3.1. The results by survey response align with expectations. The other category contains many reasons for separation that are correlated with leaving the labor force, and indeed around 70 percent of these observations are excluded from our baseline earnings analysis. In contrast, relatively few (10 percent) of the quit separations are removed due to a calendar year of zero earnings. Finally, one
in five separators identifying *distress* record zero earnings for a calendar year and are excluded.

The second part of Table 4 demonstrates that workers citing firm *distress* and have zero earnings are more likely to remain in the labor force than workers who lose their jobs for other reasons. Forty percent of worker-quarters associated with separations citing firm *distress* report looking for work, while this share is only 6 percent for the other categories.

5.1 The role of zeros in earnings losses

To assess the role of zero-earnings in the measurement of post-displacement earnings, we create two additional samples besides our benchmark sample of workers who are consistent employed (*no zeros*):

- add back in all the earnings histories with zero earnings that are dropped by our zeros screen whether it looks like they are unemployed or out of the labor force (*all zeros*); and
- include only those earnings histories with zero earnings that identify in the SIPP that they are looking for work in the four quarters following the separation and thus would be classified as unemployed (*some zeros*).

Panel A of Figure 7 reproduces the standard finding that there are massive differences in earnings losses depending on the two treatments of zeros that are available to researchers using only administrative data. The *no zero* shows the standard treatment of zeros. The *all zeros* line includes “all” zeros, that is, it includes workers who are out of the labor force and unemployed. The difference between these two lines is about 10 percentage points of pre displacement earnings. Typical analysis of displaced worker earnings losses would stop there and leave it to the reader to make up their minds which line they preferred.

Our use of survey data allows us to add back in only the earnings histories of workers who stay in the labor force following the displacement. The red dashed line in Panel A of Figure 7 shows that doing this—the *some zeros* line—results in earnings losses that are about halfway between the two extreme treatments of zeros. That is, many displaced workers continue to look for work but have significant spells of no earnings following their separation.

Panel B - D Figure 7 shows that these workers who are unemployed following the displacement are exclusively those who report *distress*. In Panel B, which focuses on workers who report *distress*,
almost all of the workers with zeros are unemployed and so the some zero line is close to the all zero line. In contrast, for the quit and other survey reasons the workers with zeros are almost all out of the labor force so the some zero line is very close to the no zero line.

5.2 Employment among false zeros

Table 4 shows that despite these being quarters with zero administrative data earnings, many workers report being employed. Among the quits 88% of workers report being employed, while this number is only 30% among those who separated due to distress. An obvious explanation is that, while our administrative data covers a large majority of the workforce, it is still possible for an individual to transition to a job not covered by the data. In particular, more informal employment arrangements such as working for a family member might not report to the UI system and our version of the LEHD does not contain Federal government employment.

Table 5 shows that working for government or family members is less common among workers who separated due to distress than other separations. The table investigates workers who report being employed in the survey, but for whom the administrative data records zero earnings. Part-time work is another kind of employment that might be less likely to be covered and/or reported to the UI system. We find substantial amounts of part-time work among the zeros (34 percent among those citing firm distress). Finally, the table indicates that the survey reported earnings are low. Conditional on positive earnings in the SIPP, the mean level of earnings is around 4500 a quarter among workers separating due to distress.

6 Conclusion

This paper studies why workers separate from their jobs and how the consequences of these separations depend on the reason. Specifically, we look at workers who are labelled displaced using the standard administrative data approach, and ask what these workers say about why they separated. Almost half of such workers report reasons other than firm distress, including a large share (about 20%) who report quitting to take another job. Similarly, at firms that administrative data

\[\footnote{Even though we are looking at a sample of people who report employment in the survey, not all of them actually report positive earnings. Indeed, among the problematic group of survey respondents who reported distress in the survey, have zero administrative earnings, and claim to be employed, only 55 percent actually report positive earnings in the survey.} \]
would indicate are doing fine, we find evidence that workers separate and give a survey reason of displacement.

We also find that even given the administrative data indicator, there is significant heterogeneity in the consequences of the separations that depends on the survey reason. For example, the survey quits in an administrative mass layoff experience earnings gains relative to the control group of non-separators.

Surprisingly, this heterogeneity in earnings losses by survey reason conditional on the administrative data indicator is larger than the heterogeneity in the other direction. That is, conditional on the survey reason, what is going on at the firm does not have a large impact on the earnings changes of workers.

What the administrative indicator does do, however, is shift the composition of separations. Not surprisingly, survey reports of distress account for a much greater share of separations at the mass layoff firms than at the stationary firms. Even though the composition of separations shifts, it is still the case that the probability of separating and reporting each survey reason rises dramatically when the employer contracts. On the other hand, considering just the sample of older workers, we find that the probability of separating and reporting retirement as the reason does not rise very steeply when employers contract.

We then develop a method to combine the information in the survey and administrative data and measure the consequences of the separations that were ultimately caused by the firm contraction. We find that the earnings consequences of the separations ultimately caused by the employer contraction are quite similar to those captured by the standard administrative measure. Two intermediate results drive this finding. First, the earnings changes associated with each survey report do not depend that much on the state of the employer. Second, because the probability of all types of separations rises dramatically, most of the separations in the administratively indicated mass layoff are related to the mass layoff.

Additionally, we use the combination of administrative and survey data to shed light on the conceptually distinct issue of how to treat displaced workers with persistent zero earnings. The standard practice in the displaced worker literature is to exclude observations with long stretches of zero earnings. Using the survey data, we can distinguish whether these zero earning individuals were looking for work or not. Including those who were looking for work substantially increases the
estimate of earnings loss following a displacement. Specifically, counting the zero earnings of those with sustained unemployment in the calculation of earnings losses leads to estimates of the effects of displacement on earnings that is halfway between the polar treatment of zeros that is available in administrative data alone.

More generally, this paper has demonstrated the usefulness of combining administrative and survey measures of the same outcome. Administrative data are attractive because they provide precise measures of outcome, often on very large samples. The reason for the outcomes, however, must typically be inferred in the administrative data. The linked survey data provide individual-level information on the reason for the outcomes. Our application to displaced workers shows that combining the survey and administrative data can provide a much more complete picture of the reasons for a displacement and its effect.
References

Table 1. Survey Reports of Cause of Separation Among SIPP Respondents Matched to LEHD Jobs

Panel A: Survey Indicators Captured by Admin Indicators

<table>
<thead>
<tr>
<th>Detailed Survey Reason</th>
<th>Share of Separations</th>
<th>Share with ML Indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On layoff</td>
<td>0.14</td>
<td>0.23</td>
</tr>
<tr>
<td>Employer bankrupt/sold business</td>
<td>0.03</td>
<td>0.62</td>
</tr>
<tr>
<td>Slack work or business conditions</td>
<td>0.03</td>
<td>0.18</td>
</tr>
<tr>
<td>Total</td>
<td>0.20</td>
<td>0.28</td>
</tr>
<tr>
<td>Quit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit to take another job</td>
<td>0.32</td>
<td>0.05</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit for some other reason</td>
<td>0.14</td>
<td>0.08</td>
</tr>
<tr>
<td>Retirement or old age</td>
<td>0.11</td>
<td>0.04</td>
</tr>
<tr>
<td>Unsatisfactory work arrangement</td>
<td>0.08</td>
<td>0.04</td>
</tr>
<tr>
<td>Discharged/fired</td>
<td>0.07</td>
<td>0.06</td>
</tr>
<tr>
<td>Other family/personal/child obligation</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Own illness/injury</td>
<td>0.03</td>
<td>0.04</td>
</tr>
<tr>
<td>Job was temporary and ended</td>
<td>0.01</td>
<td>0.13</td>
</tr>
<tr>
<td>School/training</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>Total</td>
<td>0.49</td>
<td>0.06</td>
</tr>
<tr>
<td>Total Separations</td>
<td>6500</td>
<td>0.10</td>
</tr>
<tr>
<td>Total Continuers (Unique Persons)</td>
<td>205600 (28000)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Panel B: Admin Indicators Captures by Survey Indicators

<table>
<thead>
<tr>
<th>Survey reason for separation</th>
<th>Distress</th>
<th>Not Distress</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass Layoff Indicator</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>55%</td>
<td>45%</td>
</tr>
<tr>
<td>No</td>
<td>18%</td>
<td>82%</td>
</tr>
</tbody>
</table>

Source: SIPP-LEHD as explained in text.

This table reports the survey-identified responses for the reason for separation, at a person-quarter frequency. The second column reports the share of total separations represented by the particular reported reason. The final row identifies the number of person-quarter continuing jobs in the sample.
Table 2. Characteristics in the Mass Layoff Comparison

<table>
<thead>
<tr>
<th></th>
<th>ML Separators relative to Stationary Continuer Shares</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Worker Education Levels</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School or Less</td>
<td>11.75</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Some College</td>
<td>-2.14</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>College or More</td>
<td>-9.62</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Worker Age Categories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age 25-34</td>
<td>11.09</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>Age 35-44</td>
<td>-0.16</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Age 45-54</td>
<td>-8.61</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Age 55-59</td>
<td>-2.81</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Age 60-74</td>
<td>0.48</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Worker Earnings Deciles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decile 1</td>
<td>3.34</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Decile 2</td>
<td>3.42</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>Decile 3</td>
<td>2.93</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Decile 4</td>
<td>-0.07</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Decile 5</td>
<td>-2.35</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Decile 6</td>
<td>-0.15</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Decile 7</td>
<td>-2.44</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Decile 8</td>
<td>-3.34</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Decile 9</td>
<td>-2.21</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Decile 10</td>
<td>0.88</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Worker Gender</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11.02</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-11.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Employer Size Categories</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size 50-99</td>
<td>17.72</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>Size 100-249</td>
<td>9.34</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Size 250-499</td>
<td>4.99</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Size 500-999</td>
<td>0.65</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Size 1000-2499</td>
<td>-6.76</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Size 2500+</td>
<td>-25.95</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Employer Industry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Industries</td>
<td>-7.43</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td>5.28</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td>8.26</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Wholesale/Retail/Trans/Warehousing</td>
<td>1.25</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Information</td>
<td>4.21</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>Finance/Insurance/Real Estate</td>
<td>1.52</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>Professional/Technical Services</td>
<td>6.54</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Management</td>
<td>5.01</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Health/Education</td>
<td>-24.64</td>
<td>0.00</td>
<td></td>
</tr>
</tbody>
</table>

Source: SIPP-LEHD as explained in text.
This table reports differences in observable characteristics between the administratively defined mass layoff separators to the control group of continuers at stationary firms. Column (1) reports differences in population shares. Within each category, the differences thus sum to zero. Column (2) reports differences in the population shares after having reweighted the control group to look like the mass layoff separators.
Table 3. Latent Firm Contribution to Survey Reports

<table>
<thead>
<tr>
<th>Survey reason (s)</th>
<th>Distress</th>
<th>Quit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (\text{Pr}(\text{Separation}_s \mid \text{ML}))</td>
<td>0.055</td>
<td>0.021</td>
<td>0.026</td>
</tr>
<tr>
<td>(2) (\text{Pr}(\text{Separation}_s \mid \text{No growth}))</td>
<td>0.002</td>
<td>0.007</td>
<td>0.006</td>
</tr>
<tr>
<td>(3) (\text{Pr}(\text{ML}^*_s \mid \text{ML}_s) = \pi_s)</td>
<td>0.964</td>
<td>0.666</td>
<td>0.768</td>
</tr>
<tr>
<td>(4) (\omega_s = \text{Share}_s \mid \text{ML})</td>
<td>0.542</td>
<td>0.204</td>
<td>0.254</td>
</tr>
<tr>
<td>(5) (\omega^_s = \text{Share}_s \mid \text{ML}^)</td>
<td>0.612</td>
<td>0.159</td>
<td>0.229</td>
</tr>
</tbody>
</table>

Source: SIPP-LEHD as explained in text.
This table reports reweighted probabilities. See Appendix Table A7 for the unweighted version.
Table 4. Accounting for Separators with Zero Earnings

<table>
<thead>
<tr>
<th>Survey Reason for Separation</th>
<th>Distress</th>
<th>Quit</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share with Zero Earnings</td>
<td>0.20</td>
<td>0.10</td>
<td>0.70</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Survey response in period with zero earnings\(^1\)

<table>
<thead>
<tr>
<th>Activity</th>
<th>Distress</th>
<th>Quit</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Looking for work</td>
<td>0.40</td>
<td>(d)</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>0.30</td>
<td>0.89</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Retired</td>
<td>0.07</td>
<td>(d)</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>0.28</td>
<td>(d)</td>
<td>0.36</td>
<td></td>
</tr>
</tbody>
</table>

Source: SIPP-LEHD as explained in text.

This table reports the share of separators that include any calendar-year of zero earnings in a 4-year interval following a separation. The lower panel shows the survey-reports of worker activities in the four quarters that include zero administrative earnings.

\(^1\)Column shares do not sum to one because respondents can identify different activities within the three months in a quarter, the percentages do not sum to one. (d) indicates output suppressed because of disclosure limitations.
Table 5. SIPP Employment in Quarters with Zero Administrative Data Earnings (Rates)

<table>
<thead>
<tr>
<th>Survey Reason for Separation</th>
<th>Distress</th>
<th>Quit</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work for Government or Family</td>
<td>0.15</td>
<td>0.24</td>
<td>0.22</td>
</tr>
<tr>
<td>Part-time Worker</td>
<td>0.34</td>
<td>0.25</td>
<td>0.41</td>
</tr>
<tr>
<td>Share with Positive SIPP Earnings</td>
<td>0.55</td>
<td>0.67</td>
<td>0.49</td>
</tr>
<tr>
<td>Mean of Positive SIPP Earnings (2009 Dollars)</td>
<td>4,521</td>
<td>4,994</td>
<td>3,921</td>
</tr>
</tbody>
</table>

Source: SIPP-LEHD as explained in text.
The sample consists of respondents who had any calendar-year of zero earnings in a 5-year interval following a separation. This table reports worker response in quarters in the first year following a separation in which the worker had zero administrative data earnings but reported positive earnings in the SIPP.
Figure 1. Separation Rates by Firm Growth

A. Separation Rates

B. Probability of Separating and a Survey Reason

Source: SIPP-LEHD as explained in text.
This figure shows how the probability of separating depends on the employer growth rate. In Panel A, the solid line shows the probability of separating, while the histogram shows the distribution of employment as a function of employer growth rate. Panel B decomposes the solid line from Panel A by the three survey reasons for separations.
Figure 2. Separation Rates by Survey Response Among Older Workers

Source: SIPP-LEHD as explained in text.
This figure plots the probability of separating and reporting \textit{retire or other} among workers aged 55-74. The \textit{other} category differs from the rest of the paper in that it contains all survey reasons besides \textit{retire}.
Figure 3. Benchmark earnings losses

A. Benchmark Administrative Measure

B. Reweighted vs. Unweighted Earnings Changes

Source: SIPP-LEHD as explained in text.

This figure plots earnings changes from comparing administratively-defined mass layoff separators to continuers at stationary firms. Panel A reports the 95% confidence intervals. Panel B suppresses these confidence intervals for the sake of clarity. See equation (2) in the text.
Figure 4. Mass layoff by survey category

Source: SIPP-LEHD as explained in text.
This figure plots earnings changes from comparing administratively-defined mass layoff separators split by survey reason for separation to continuers at stationary firms. It reports the results of three separate regressions. Confidence intervals are suppressed for the sake of clarity. See equation (2) in the text.
Figure 5. Earnings losses in separations related to the firm contraction

A. Survey Report of Distress

B. Survey Report of Quit

Source: SIPP-LEHD as explained in text.
Each panel plots the results of two regressions. The ML and no growth lines come from estimating versions of equation (2), where the “treatment” group is separators who report a given survey reason when the firm is contracting by 30% or more (ML) and when the firm is growing by between −5% and +5% (no growth). The two lines are then combined pointwise to form the ML: latent line using equation (8) and information in Table 3.
Figure 5. Earnings losses in separations related to the firm contraction

C. Survey Report of Other

Source: SIPP-LEHD as explained in text.
Each panel plots the results of two regressions. The ML and no growth lines come from estimating versions of equation (2), where the “treatment” group is separators who report a given survey reason when the firm is contracting by 30% or more (ML) and when the firm is growing by between −5% and +5% (no growth). The two lines are then combined pointwise to form the ML:latent line using equation (8) and information in Table 3.
Figure 6. Earnings losses in separations related to the firm contraction: aggregated

Source: SIPP-LEHD as explained in text.
This figure plots the earnings losses of separations in a mass layoff that are related to the contraction (latent) as well as the benchmark approach (aggregated). The latent line is constructed using equation (4) from the latent lines in Figure 5 and the shares in Table 3. The aggregated line is constructed using equation (3). Appendix Figure A1 compares the aggregated line in this figure to the single specification version in Figure 3.
Figure 7. Earnings losses: the role of zeros

A. Total Latent Measure

B. Survey Report of Distress

Source: SIPP-LEHD as explained in text.
This figure plots the latent notion of earnings losses in a mass layoff calculated using the method in section 4 and given by equation (8) for three treatments of the zeros. The no zeros line drop all earnings histories with a calendar year of zeros post-separation. The some zeros line includes the earnings histories dropped in the no zeros line where in the year after the separation the worker reports looking for work (being unemployed). The all zeros line keeps all earnings histories. It includes people who are both looking for work and out of the labor force.
Source: SIPP-LEHD as explained in text.
This figure plots the latent notion of earnings losses in a mass layoff calculated using the method in section 4 and given by equation (8) for three treatments of the zeros. The no zeros line drops all earnings histories with a calendar year of zeros post-separation. The some zeros line includes the earnings histories dropped in the no zeros line where in the year after the separation the worker reports looking for work (being unemployed). The all zeros line keeps all earnings histories. It includes people who are both looking for work and out of the labor force.