Winter 2017, MATH 215 Calculus III, Exam 2

3/23/2017, 6:10-7:40pm (90 minutes)

• Your name: ___

• Circle your section and write your Lab time:

<table>
<thead>
<tr>
<th>Section</th>
<th>Time</th>
<th>Professor</th>
<th>GSI</th>
<th>Lab Time (e.g. Th 10-11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>9–10</td>
<td>Sema Gunturkun</td>
<td>Alex Leaf</td>
<td>_________________________</td>
</tr>
<tr>
<td>30</td>
<td>10–11</td>
<td>Mattias Jonsson</td>
<td>Robert Cochrane</td>
<td>_________________________</td>
</tr>
<tr>
<td>40</td>
<td>11–12</td>
<td>Sumedha Ratnayake</td>
<td>Harry Lee</td>
<td>_________________________</td>
</tr>
<tr>
<td>50</td>
<td>12–1</td>
<td>Sumedha Ratnayake</td>
<td>Deshin Finlay</td>
<td>_________________________</td>
</tr>
<tr>
<td>60</td>
<td>1–2</td>
<td>Yueh-Ju Lin</td>
<td>Rebecca Sodervick</td>
<td>_________________________</td>
</tr>
<tr>
<td>70</td>
<td>2–3</td>
<td>Yueh-Ju Lin</td>
<td>Jacob Haley</td>
<td>_________________________</td>
</tr>
</tbody>
</table>

Instructions:

• This examination booklet contains 7 problems.

• If you want extra space, write on the back.

• DO NOT remove any sheets or the staple from the exam booklet.

• The formula sheet is not collected back and not graded.

• This is a closed book exam. Electronic devices, calculators, and note-cards are not allowed.

• Show your work and explain clearly.
1. (10 points) Find the volume below the surface \(z = x^4 + y^4 \) and above the square in the \(x-y \) plane with vertices at \((x, y) = (\pm 1, 0), (0, \pm 1)\). The square is shown here:

\[
\text{Volume} = \iiint_\mathcal{D} x^4 + y^4 \, dA
\]

\(x^4 + y^4 \) is even in both \(x \) and \(y \).

\(\mathcal{D} \) is symmetric about the \(x \)-axis and the \(y \)-axis.

By symmetry, \(\text{volume} = 4 \iint_\mathcal{D} x^4 + y^4 \, dA \).

\(D_1 = \left\{ (x, y) \in \mathbb{R}^2 : 0 \leq x \leq 1, \ 0 \leq y \leq 1-x \right\} \)

\[
D_1 = \left\{ (x, y) \in \mathbb{R}^2 : 0 \leq y \leq 1, \ 0 \leq x \leq 1-y \right\}
\]

\[
\iint_{D_1} x^4 + y^4 \, dA = \int_0^1 \int_0^{1-x} x^4 + y^4 \, dy \, dx
\]

\[
= \int_0^1 \left[x^4 y + \frac{y^5}{5} \right]_{y=0}^{y=1-x} \, dx
\]

\[
= \int_0^1 x^4 (1-x) + \frac{(1-x)^5}{5} \, dx
\]

\[
= \int_0^1 x^4 (1-x) \, dx + \int_0^1 \frac{(1-x)^5}{5} \, dx
\]
\[
\int_0^1 x^4 (1-x) \, dx = \int_0^1 x^4 - x^5 \, dx = \frac{x^5}{5} - \frac{x^6}{6} \bigg|_{x=0}^{x=1} = \frac{1}{30}.
\]
\[
\int_0^1 \frac{(1-x)^5}{5} \, dx = \int_0^1 -\frac{u^5}{5} \, du = -\frac{u^6}{30} \bigg|_{u=0}^{u=1} = \frac{1}{30}.
\]

\[
\text{Volume} = 4 \int_D x^4 + y^4 \, dA = \frac{4}{15}.
\]

\textbf{Note} The domain D remains unchanged upon swapping the x and y axes.

\[
\Rightarrow \int_D x^4 \, dA = \int_D y^4 \, dA.
\]
\[
\text{Volume} = \int_D x^4 + y^4 \, dA = \int_D x^4 \, dA + \int_D y^4 \, dA
\]
\[
= 2 \int_D x^4 \, dA = 8 \int_D x^4 \, dA.
\]

This integral is simpler to compute.
2. Consider the iterated triple integral

\[\int_0^1 \int_y^1 f(x, y, z) \, dz \, dx \, dy. \]

In this integral, \(z \) is innermost, \(x \) is in the middle, and \(y \) is outermost.

(a) (5 points) Rewrite the integral with \(x \) innermost, \(y \) in the middle, and \(z \) outermost.

\[E = \{ (x, y, z) \in \mathbb{R}^3 : 0 \leq y \leq 1, \ y \leq x \leq 1, \ 0 \leq z \leq y \} \]

Outer double integral is for \(dy \, dz \).

For each \(y \) and \(z \) : \(y \leq x \leq 1 \)

\[\int_0^1 \int_y^1 f(x, y, z) \, dx \, dy \, dz \]
Note: You can also use the cross section method.

\[E = \{ (x, y, z) \in \mathbb{R}^3 : 0 \leq y \leq 1, \ y \leq x \leq 1, \ 0 \leq z \leq y \} \]

Outermost integral is for \(dz \).

Bounds: \(0 \leq z \leq y \leq x \leq 1 = 0 \leq z \leq 1 \).

Inner double integral is for \(dx \ dy \) (\(z \) fixed).

Boundary: \(0 \leq y \leq 1, \ y \leq x \leq 1, \ z \leq y \).

\[\int_0^1 \int_y^1 \int_z^1 f(x, y, z) \, dx \, dy \, dz \]

\(0 \leq z \leq 1 \) on the line \(y = z \) lies between the lines \(y = 0 \) and \(y = 1 \).
(b) (5 points) Rewrite the integral with z innermost, y in the middle, and x outermost.

Outer double integral is for $dy \, dx$.

For each x and y: $0 \leq z \leq y$.

$$\int_0^1 \int_0^y f(x,y,z) \, dz \, dy \, dx$$

Note: You can also use the cross section method.

Outermost integral is for dx.

Bounds: $0 \leq y \leq x \leq 1 \Rightarrow 0 \leq x \leq 1$

Innermost integral is for $dz \, dy$ (x fixed).

Bounds: $0 \leq y \leq 1$, $y \leq x$, $0 \leq z \leq y$.

$$0 \leq y \leq x, \ 0 \leq z \leq y.$$
3. Let \(f(x, y) = x^4 + y^4 + 4xy \).

(a) (5 points) Find three critical points of \(f(x, y) \).

\[
\nabla f = (f_x, f_y) = (4x^3 + 4y, 4y^3 + 4x)
\]

\[
\nabla f = 0 \iff \begin{cases} 4x^3 + 4y = 0 & \Rightarrow y = -x^3 \\ 4y^3 + 4x = 0 & \Rightarrow x = -y^3 = x^9 \end{cases}
\]

\[
x = x^9 \iff x = -1, 0, 1.
\]

\[
y = -x^3 \Rightarrow (x, y) = (-1, 1), (0, 0), (1, -1)
\]

(b) (5 points) Pick one of the three critical points and classify it as local minimum, local maximum, or saddle.

\[
f_{xx} = \frac{\partial^2 f}{\partial x^2} = \frac{2}{\partial x} (4x^3 + 4y) = 12x^2.
\]

\[
f_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (4x^3 + 4y) = 4
\]

\[
f_{yy} = \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} (4y^3 + 4x) = 12y^2
\]

\[
H = \det \begin{bmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{bmatrix} = \det \begin{bmatrix} 12x^2 & 4 \\ 4 & 12y^2 \end{bmatrix}
\]

\[
= 144x^2y^2 - 16.
\]
At \((1, -1)\): \[H = 144 \cdot (-1)^2 \cdot 1^2 - 16 > 0 \]

\[f_{xx} = 12 > 0 \]

\(\Rightarrow\) A local minimum at \((-1, 1)\)

At \((0, 0)\): \[H = 144 \cdot 0^2 - 0^2 - 16 < 0 \]

\(\Rightarrow\) A saddle point at \((0, 0)\)

At \((1, -1)\): \[H = 144 \cdot (-1)^2 \cdot 1^2 - 16 > 0 \]

\[f_{xx} = 12 > 0 \]

\(\Rightarrow\) A local minimum at \((1, -1)\)
4. (10 points) Find a critical point (you do not need to classify it as a local maximum or minimum) of
\[f(x, y, z) = -x \log x - 2y \log y - 3z \log z \]
subject to the constraint
\[g(x, y, z) = x + 2y + 3z - 1 = 0. \]
Evaluate \(f \) at that point. Here \(\log \) is the natural logarithm, as usual, so that \(\frac{d \log x}{dx} = \frac{1}{x} \).

\[\nabla f = (f_x, f_y, f_z) = (-1 - \log x, -2 - 2 \log y, -3 - 3 \log z) \]

\[f_x = \frac{d}{dx} (-x \log x) = -1 \cdot \log x - x \cdot \frac{1}{x} = -\log x - 1 \]

↑ product rule

Similar computation for \(f_y \) and \(f_z \)

\[\nabla g = (g_x, g_y, g_z) = (1, 2, 3) \]

\[\nabla f = \lambda \nabla g : (-1 - \log x, -2 - 2 \log y, -3 - 3 \log z) = \lambda (1, 2, 3) \]

\[\begin{aligned}
-1 - \log x &= \lambda & \Rightarrow \log x &= -1 - \lambda & \Rightarrow x &= e^{-1-\lambda} \\
-2 - 2 \log y &= 2 \lambda & \Rightarrow \log y &= -1 - \lambda & \Rightarrow y &= e^{-1-\lambda} \\
-3 - 3 \log z &= 3 \lambda & \Rightarrow \log z &= -1 - \lambda & \Rightarrow z &= e^{-1-\lambda}
\end{aligned} \]

\[x = y = z. \]

\[g = 0 : x + 2y + 3z = 1 \Rightarrow x = y = z = \frac{1}{6}. \]

\(\Rightarrow \) A critical point is at \((\frac{1}{6}, \frac{1}{6}, \frac{1}{6}) \)

\[f(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}) = -\frac{1}{6} \log (\frac{1}{6}) - \frac{2}{6} \log (\frac{1}{6}) - \frac{3}{6} \log (\frac{1}{6}) = -\log (\frac{1}{6}) = \log (6). \]
5. (10 points) Find the two points at which the parabola \(y = \frac{x^2}{2} \) intersects the circle \(x^2 + y^2 = 8 \). If \(D \) is the region bounded by that parabola and circle (see below), evaluate the double integral:

\[
\int \int_D x^2 y \, dx \, dy.
\]

The region of integration \(D \) looks as follows:

Note: Once you have a numerical answer you do not need to simplify it to a fraction. In the textbook, the area element \(dx \, dy \) in the integral is given as \(dA \).

Semicircle: \(x^2 + y^2 = 8 \), \(y \geq 0 \) \(\Rightarrow \) \(y = \sqrt{8-x^2} \).

Intersection: \(y = \frac{x^2}{2} \) and \(x^2 + y^2 = 8 \)

\(\Rightarrow \) \(x^2 = 2y \) and \(x^2 = 8-y^2 \)

\(\Rightarrow \) \(2y = 8-y^2 \) \(\Rightarrow \) \(y = 2, -4 \)

\(\Rightarrow \) \(x = \pm \sqrt{2y} = \pm 2 \).

\(\Rightarrow \) \((x, y) = (-2, 2), (2, 2) \)

\(D = \{ (x, y) \in \mathbb{R}^2 : -2 \leq x \leq 2, \ \frac{x^2}{2} \leq y \leq \sqrt{8-x^2} \} \).
\[\iint_D x^2y \, dA = \int_{-2}^{2} \int_{y^2/2}^{\sqrt{8-x^2}} x^2y \, dy \, dx \]

\[= \int_{-2}^{2} \frac{x^2y^2}{2} \bigg|_{y^2=\sqrt{8-x^2}} \, dx \]

\[= \int_{-2}^{2} \frac{x^2(8-x^2)}{2} - \frac{x^6}{8} \, dx \]

\[= \int_{-2}^{2} 4x^2 - \frac{x^4}{2} - \frac{x^6}{8} \, dx \]

\[= \left[\frac{4}{3}x^3 - \frac{x^5}{10} - \frac{x^7}{56} \right]_{x=-2}^{x=2} \]

\[= \frac{1088}{105} \]

Note: \(D \) is symmetric about the \(y \)-axis, while the function \(x^2y \) is even in \(x \).

\[\Rightarrow \iint_D x^2y \, dA = 2 \iint_{D_1} x^2y \, dA \]

where \(D_1 \) is the part of \(D \) on the first quadrant.
6. Consider the integral

\[\int \int_D \frac{dx \, dy}{(x^2 + y^2)^{1/2}} \]

where \(D \) is the disc \((x-1)^2 + y^2 \leq 1\).

(a) (4 points) Describe the region of integration in polar coordinates.

\((x-1)^2 + y^2 = 1\): a disk of radius 1, centered at \((1,0)\).

Write the circle equation in polar coordinates:

\((x-1)^2 + y^2 = 1 \Rightarrow x^2 - 2x + 1 + y^2 = 1 \Rightarrow x^2 + y^2 = 2x \Rightarrow r^2 = 2r \cos \theta \Rightarrow r = 2 \cos \theta\)

 Bounds for \(\theta \) are given by the \(y \)-axis

\[-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}. \]

For each \(\theta \): \(0 \leq r \leq 2 \cos \theta \)

(b) (6 points) Evaluate the integral.

\[\int \int_D \frac{1}{\sqrt{x^2 + y^2}} \, dA = \int_{-\pi/2}^{\pi/2} \int_{-\pi}^{\pi} \frac{1}{r} \cdot r \, dr \, d\theta \]

\[= \int_{-\pi/2}^{\pi/2} 2 \sin \theta \mid_{\theta=-\pi/2}^{\theta=\pi/2} = 4. \]
7. (10 points) Sketch the sector of the unit disc bounded by the lines \(x = y, \ y = 0, \) and the circle \(x^2 + y^2 = 1 \) in the first quadrant of the \(x-y \) plane. Assuming constant density, find the \(x \) and \(y \) coordinates of the center of mass.

Bounds for \(\theta \) are given by

the lines \(y=0 \) and \(y=x \)

\(\theta_{\text{min}} = 0, \ \theta_{\text{max}} = \tan^{-1}(1) = \frac{\pi}{4} \)

\(\Rightarrow 0 \leq \theta \leq \frac{\pi}{4} \)

For each \(\theta : \ 0 \leq r \leq 1 \)

We may assume that the density \(\rho(x,y) = 1 \).

Mass \(m = \iint_D \rho(x,y) \, dA = \iint_D 1 \, dA \)

\(= \text{Area}(D) = \frac{\pi}{8}. \)

\(\bar{x} = \frac{1}{m} \iint_D x \rho(x,y) \, dA = \frac{1}{\pi/8} \iint_D x \, dA \)

\(= -\frac{1}{\pi/8} \int_0^1 \int_0^{\pi/4} r \cos \theta \cdot r \, dr \, d\theta \)

\(= \frac{8}{\pi} \int_0^{\pi/4} \int_0^1 r^2 \cos \theta \, dr \, d\theta \)

\(= \frac{8}{\pi} \int_0^{\pi/4} \frac{r^3}{3} \cos \theta \bigg|_{r=0}^{r=1} \, d\theta \)

\(= \frac{8}{\pi} \int_0^{\pi/4} \frac{1}{3} \cos \theta \, d\theta \)
\[
\bar{y} = \frac{1}{m} \iint_D y p(x, y) \, dA = \frac{1}{\pi^2} \iint_D y \, dA \\
= \frac{8}{\pi} \int_0^{\pi/4} \int_0^1 r \sin \theta \cdot r \, dr \, d\theta \\
= \frac{8}{\pi} \int_0^{\pi/4} \int_0^1 r^2 \sin \theta \, dr \, d\theta \\
= \frac{8}{\pi} \int_0^{\pi/4} \frac{r^3}{3} \sin \theta \bigg|_{r=0}^{r=1} \, d\theta \\
= \frac{8}{\pi} \int_0^{\pi/4} \frac{1}{3} \sin \theta \, d\theta \\
= \frac{8}{3\pi} \left(-\cos \theta \right) \bigg|_0^{\pi/4} \\
= \frac{8}{3\pi} \left(1 - \frac{\sqrt{2}}{2}\right).
\]

Center of mass: \(\left(\frac{4\sqrt{2}}{3\pi}, \frac{8}{3\pi} \left(1 - \frac{\sqrt{2}}{2}\right) \right) \)