Notes on p-adic Hodge theory

Serin Hong
Contents

Chapter I. Introduction 5
1. A first glimpse of p-adic Hodge theory 5
 1.1. The arithmetic perspective 5
 1.2. The geometric perspective 8
 1.3. The interplay via representation theory 11
2. A first glimpse of the Fargues-Fontaine curve 12
 2.1. Definition and some key features 12
 2.2. Relation to the theory of perfectoid spaces 13
 2.3. Geometrization of p-adic Galois representations 14

Chapter II. Foundations of p-adic Hodge theory 17
1. Finite flat group schemes 17
 1.1. Basic definitions and properties 17
 1.2. Cartier duality 20
 1.3. Finite étale group schemes 23
 1.4. The connected-étale sequence 27
 1.5. The Frobenius morphism 30
2. p-divisible groups 35
 2.1. Basic definitions and properties 35
 2.2. Serre-Tate equivalence for connected p-divisible groups 39
 2.3. Dieudonné-Manin classification 47
3. Hodge-Tate decomposition 51
 3.1. The completed algebraic closure of a p-adic field 51
 3.2. Formal points on p-divisible groups 54
 3.3. The logarithm for p-divisible groups 57
 3.4. Hodge-Tate decomposition for the Tate module 60
 3.5. Generic fibers of p-divisible groups 67

Chapter III. Period rings and functors 71
1. Fontaine’s formalism on period rings 71
 1.1. Basic definitions and examples 71
 1.2. Formal properties of admissible representations 76
2. de Rham representations 79
 2.1. Perfectoid fields and tilting 79
 2.2. The de Rham period ring B_{dR} 82
 2.3. Filtered vector spaces 90
 2.4. Properties of de Rham representations 93
3. Crystalline representations 99
 3.1. The crystalline period ring B_{cris} 99
 3.2. Properties of crystalline representations 99
Chapter IV. The Fargues-Fontaine curve

1. Construction
 1.1. The schematic curve
 1.2. The adic curve

2. Vector bundles
 2.1. Slope formalism
 2.2. Classification theorem
 2.3. Modifications of vector bundles
 2.4. A theorem of Colmez and Fontaine

Bibliography
CHAPTER I

Introduction

1. A first glimpse of p-adic Hodge theory

Our goal in this section is to give a rough idea of what p-adic Hodge theory is about. By nature, p-adic Hodge theory has two sides of the story, namely the arithmetic side and the geometric side. We will briefly motivate and describe each side of the story, and discuss how the two sides are related.

1.1. The arithmetic perspective

From the arithmetic perspective, p-adic Hodge theory is the study of p-adic Galois representations, i.e., continuous representations $\Gamma_K := \text{Gal}(\overline{K}/K) \rightarrow \text{GL}_n(\mathbb{Q}_p)$ where K is a p-adic field. This turns out to be much more subtle and interesting than the study of ℓ-adic Galois representations, i.e. continuous representations $\Gamma_K \rightarrow \text{GL}_n(\mathbb{Q}_\ell)$ with $\ell \neq p$. In the ℓ-adic case, the topologies on Γ_K and \mathbb{Q}_ℓ do not get along with each other very well, thereby imposing a huge restriction on the kinds of continuous representations that we can have. In the p-adic case, on the other hand, we don’t have this “clash” between the topologies on Γ_K and \mathbb{Q}_p, and consequently have much more Galois representations than in the ℓ-adic case.

Remark. Our definition of p-adic field allows infinite extensions of \mathbb{Q}_p. For a precise definition, see Definition 3.1.1 in Chapter II.

In this subsection, we discuss a toy example to motivate and demonstrate some key ideas from the arithmetic side of p-adic Hodge theory. Let E be an elliptic curve over \mathbb{Q}_p with good reduction. This means that we have a unique elliptic scheme \mathcal{E} over \mathbb{Z}_p with $\mathcal{E}_{\mathbb{Q}_p} \simeq E$. For each prime ℓ (which may be equal to p), the Tate module $T_\ell(E) := \lim \rightarrow E[\ell^n](\overline{\mathbb{Q}_p}) \simeq \mathbb{Z}_\ell^2$ is equipped with a continuous $G_{\mathbb{Q}_p}$-action, which means that the rational Tate module $V_\ell(E) := T_\ell(E) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell \simeq \mathbb{Q}_\ell^2$ is an ℓ-adic Galois representation. The Tate module $T_\ell(E)$ and the rational Tate module $V_\ell(E)$ contain important information about E, as suggested by the following fact:

Fact. For two elliptic curves E_1 and E_2 over \mathbb{Q}_p, the maps

$$\text{Hom}(E_1, E_2) \otimes \mathbb{Z}_\ell \longrightarrow \text{Hom}_{\mathbb{Q}_p}(T_\ell(E_1), T_\ell(E_2))$$

$$\text{Hom}(E_1, E_2) \otimes \mathbb{Q}_\ell \longrightarrow \text{Hom}_{\mathbb{Q}_p}(V_\ell(E_1), V_\ell(E_2))$$

(1.1)

are injective; in other words, a map between E_1 and E_2 is determined by the induced map on the (rational) Tate modules as Galois representations.

Remark. The above fact remains true if \mathbb{Q}_p is replaced by an arbitrary field L of characteristic is not equal to ℓ. Moreover, the maps in (1.1) become isomorphism if L is a finite field, a global function field or a number field, as shown respectively by Tate, Zarhin and Faltings.
1. INTRODUCTION

For \(\ell \neq p \), we can explicitly describe the Galois action on \(T_\ell(E) \) (and \(V_\ell(E) \)) by passing to the mod \(p \) reduction \(\mathcal{E}_{\overline{F}_p} \) of \(\mathcal{E} \). Note that \(\mathcal{E}_{\overline{F}_p} \) is an elliptic curve over a finite field \(\mathbb{F}_p \), so the Galois action of \(\Gamma_{\overline{F}_p} \) on the Tate module \(T_\ell(\mathcal{E}_{\overline{F}_p}) \) and the rational Tate module \(V_\ell(\mathcal{E}_{\overline{F}_p}) \) are very well understood. In fact, the Frobenius element of \(\Gamma_{\overline{F}_p} \), which topologically generates the Galois group \(\Gamma_{\overline{F}_p} \), acts on \(T_\ell(\mathcal{E}_{\overline{F}_p}) \) with characteristic polynomial \(x^2 - ax + p \) where \(a = p + 1 - \#\mathcal{E}_{\overline{F}_p}(\mathbb{F}_p) \). Now the punchline is that we have isomorphisms

\[
T_\ell(E) \simeq T_\ell(\mathcal{E}_{\overline{F}_p}) \quad \text{and} \quad V_\ell(E) \simeq V_\ell(\mathcal{E}_{\overline{F}_p}) \tag{1.2}
\]

as \(\Gamma_{\mathbb{Q}_p} \)-representations, where the actions on \(T_\ell(\mathcal{E}_{\overline{F}_p}) \) and \(V_\ell(\mathcal{E}_{\overline{F}_p}) \) are given by \(\Gamma_{\mathbb{Q}_p} \rightarrow \Gamma_{\overline{F}_p} \). In other words, we can describe the Galois action on \(T_\ell(E) \) (and \(V_\ell(E) \)) as follows:

1. The action of \(\Gamma_{\mathbb{Q}_p} \) factors through the map \(\Gamma_{\mathbb{Q}_p} \rightarrow \Gamma_{\overline{F}_p} \).
2. The Frobenius element of \(G_{\overline{F}_p} \) acts with characteristic polynomial \(x^2 - ax + p \) where \(a = p + 1 - \#\mathcal{E}_{\overline{F}_p}(\mathbb{F}_p) \).

A Galois representation of \(\Gamma_{\mathbb{Q}_p} \) which satisfies the statement \([1]\) is said to be unramified. The terminology comes from the fact that \(\Gamma_{\overline{F}_p} \) is isomorphic to \(\text{Gal}(\mathbb{Q}_p^{un}/\mathbb{Q}_p) \), where \(\mathbb{Q}_p^{un} \) denotes the maximal unramified extension of \(\mathbb{Q}_p \). It is worthwhile to mention that our discussion in the preceding paragraph shows one direction of the following important criterion:

Theorem 1.1.1 (Néron-Ogg-Shafarevich). An elliptic curve \(E \) on \(\mathbb{Q}_p \) has a good reduction if and only if the Tate module \(T_\ell(E) \) is unramified for all primes \(\ell \neq p \).

Let us now turn to the case \(\ell = p \), which is our primary interest. In this case, we never have an isomorphism between the (rational) Tate modules as in \([1,2]\); indeed, \(T_p(\mathcal{E}_{\overline{F}_p}) \) is isomorphic to either \(\mathbb{Z}_p \) or 0 whereas \(T_p(E) \) is always isomorphic to \(\mathbb{Z}_p^2 \). This suggests that the action of \(\Gamma_{\mathbb{Q}_p} \) on \(T_p(E) \) has a nontrivial contribution from the kernel of the map \(\Gamma_{\mathbb{Q}_p} \rightarrow \Gamma_{\overline{F}_p} \), called the inertia group of \(\mathbb{Q}_p \), which we denote by \(I_{\mathbb{Q}_p} \).

Therefore we need another invariant of \(E \) which does not lose too much information about the Galois action under passage to the mod \(p \) reduction \(\mathcal{E}_{\overline{F}_p} \). A solution by Grothendieck and Tate is to replace the Tate module \(T_p(E) \) by the direct limit of \(p \)-power torsion groups

\[
E[p^\infty] := \lim_{\to} E[p^n]
\]

called the \(p \)-divisible group of \(E \). Here we consider each \(E[p^n] \) as a finite flat group scheme over \(\mathbb{Q}_p \). It is not hard to see that \(E[p^\infty] \) contains all information about the Galois action on \(T_p(E) \) in the following sense:

Fact. We can recover the Galois action of \(\Gamma_{\mathbb{Q}_p} \) on \(T_p(E) \) from \(E[p^\infty] \).

We can similarly define the \(p \)-divisible groups \(\mathcal{E}[p^\infty] \) and \(\mathcal{E}_{\overline{F}_p}[p^\infty] \) associated to \(\mathcal{E} \) and \(\mathcal{E}_{\overline{F}_p} \). The \(p \)-divisible groups of \(E, \mathcal{E} \) and \(\mathcal{E}_{\overline{F}_p} \) are related as follows:

\[
\begin{array}{ccc}
E[p^\infty] & \xrightarrow{\otimes_{\mathbb{Q}_p}} & \mathcal{E}[p^\infty] \\
\mathcal{E}[p^\infty] & \xrightarrow{\otimes_{\overline{F}_p}} & \mathcal{E}_{\overline{F}_p}[p^\infty]
\end{array}
\]

We wish to study \(E[p^\infty] \) using \(\mathcal{E}_{\overline{F}_p}[p^\infty] \), as we expect that the theory of \(p \)-divisible groups becomes simpler over \(\mathbb{F}_p \) than it is over \(\mathbb{Q}_p \). The first step towards this end is provided by the following fundamental result:
Theorem 1.1.2 (Tate). The generic fiber functor

\[
\begin{array}{c}
\left\{ \begin{array}{c}
\text{p-divisible groups} \\
\text{over } \mathbb{Z}_p
\end{array} \right\} \otimes_{\mathbb{Q}_p} \left\{ \begin{array}{c}
\text{p-divisible groups} \\
\text{over } \mathbb{Q}_p
\end{array} \right\}
\end{array}
\]

is fully faithful.

Remark. Theorem 1.1.2 is the main result of Tate’s seminal paper [Tat67], which marks the true beginning of p-adic Hodge theory. Here we already see how this result provides the first significant progress in the arithmetic side of the theory. In the next subsection we will see how its proof initiates the geometric side of the theory.

Let us now consider the problem of studying \(\mathcal{E}[p^{\infty}] \) using the mod \(p \) reduction \(\mathcal{E}_{F_p}[p^{\infty}] \). Here the key is to realize \(\mathcal{E}[p^{\infty}] \) as a characteristic 0 lift of \(\mathcal{E}_{F_p}[p^{\infty}] \). More precisely, we identify the category of p-divisible groups over \(\mathbb{Z}_p \) with the category of p-divisible groups over \(F_p \) equipped with “lifting data”. Such an identification is obtained by switching to another category, as stated in the following fundamental result:

Theorem 1.1.3 (Dieudonné, Fontaine). There are (anti-)equivalences of categories

\[
\begin{array}{c}
\left\{ \begin{array}{c}
\text{p-divisible groups} \\
\text{over } \mathbb{F}_p
\end{array} \right\} \sim \left\{ \begin{array}{c}
\text{Dieudonné modules} \\
\text{over } \mathbb{F}_p
\end{array} \right\}
\end{array}
\]

\[
\begin{array}{c}
\left\{ \begin{array}{c}
\text{p-divisible groups} \\
\text{over } \mathbb{Z}_p
\end{array} \right\} \sim \left\{ \begin{array}{c}
\text{Dieudonné modules over } \mathbb{F}_p \\
\text{with an “admissible” filtration}
\end{array} \right\}
\end{array}
\]

where a Dieudonné module over \(\mathbb{F}_p \) means a finite free \(\mathbb{Z}_p \)-module \(M \) equipped with a (Frobenius-semilinear) endomorphism \(\varphi \) such that \(pM \subseteq \varphi(M) \).

Remark. The description of Dieudonné modules in our situation is misleadingly simple. In general, the endomorphism \(\varphi \) should be Frobenius-semilinear in an appropriate sense. Here we don’t get this semilinearity since the Frobenius automorphism of \(F_p \) acts trivially on \(\mathbb{Z}_p \).

We have thus transformed the study of the p-adic Galois action on the Tate modules to the study of certain explicit semilinear algebraic objects. Roughly speaking, the actions of the inertia group \(I_{\mathbb{Q}_p} \) and the Frobenius element in \(\Gamma_{F_p} \) on \(T_p(E) \) are respectively encoded by the “admissible” filtration and the (semilinear) endomorphism \(\varphi \) on the corresponding Dieudonné module.

If we instead want to study the p-adic Galois representation of the rational Tate module, all we have to do is to invert \(p \) in the corresponding Dieudonné module. The resulting algebraic object is a finite dimensional vector space over \(\mathbb{Q}_p \) with a (Frobenius-semilinear) automorphism \(\varphi \). Such an object is called an isocrystal (over \(\mathbb{F}_p \)).

Our discussion here shows an example of the defining theme of p-adic Hodge theory. In fact, much of p-adic Hodge theory is about constructing a dictionary that relates good categories of p-adic Galois representations to various categories of semilinear algebraic objects. The dictionary that we described here serves as a prototype for many other dictionaries.

Another recurring theme of p-adic Hodge theory is base change of the ground field \(K \) to the completion \(\hat{K}^\text{un} \) of its maximal unramified extension. In terms of the residue field, this amounts to passing to the algebraic closure. In most cases, such a base change preserves key information about the Galois action of \(\Gamma_K \). In fact, most good properties of p-adic representations of \(\Gamma_K \) turn out to be detected on the inertia group, which is preserved under passing to \(\hat{K}^\text{un} \) as follows:

\[I_K \simeq \Gamma_{K^\text{un}} \simeq \Gamma_{\hat{K}^\text{un}}. \]
Moreover, base change to \(\widehat{K}^{un} \) often greatly simplifies the study of the Galois action of \(\Gamma_K \). For example, in our discussion base change to \(\widehat{\mathbb{Q}}_p^{un} \) amounts to replacing the residue field by \(\mathbb{F}_p \), thereby allowing us to make use of the following fundamental result:

Theorem 1.1.4 (Manin). The category of isocrystals over \(\mathbb{F}_p \) is semisimple.

In summary, we have motivated and described several key ideas in \(p \)-adic Hodge theory via Galois representations that arise from an elliptic curve over \(\mathbb{Q}_p \) with good reduction. In particular, our discussion shows a couple of recurring themes in \(p \)-adic Hodge theory, as stated below.

1. Construction of a dictionary between good categories of \(p \)-adic representations and various categories of semilinear algebraic objects.
2. Base change of the ground field \(K \) to \(\widehat{K}^{un} \).

It is natural to ask whether there is a general framework for these themes. To answer this question, we need to investigate the geometric side of the story.

1.2. The geometric perspective

From the geometric perspective, \(p \)-adic Hodge theory is the study of the geometry of a (proper smooth) variety \(X \) over a \(p \)-adic field \(K \). Our particular interests are various cohomology theories related to \(X \), such as

- the étale cohomology \(H^n_{\text{ét}} \),
- the algebraic de Rham cohomology \(H^n_{\text{dR}} \),
- the crystalline cohomology \(H^n_{\text{cris}} \).

Note that \(p \)-adic Galois representations naturally come into play via the étale cohomology groups \(H^n_{\text{ét}}(X^K, \mathbb{Q}_p) \). Hence we already see a vague connection to the arithmetic side of \(p \)-adic Hodge theory.

In this subsection, we motivate and state three fundamental comparison theorems about these cohomology theories. These theorems share a general theme of extracting some information about the geometry of \(X \) from the \(\Gamma_K \)-representation on \(H^n_{\text{ét}}(X^K, \mathbb{Q}_p) \).

Recall that, for a proper smooth \(\mathbb{C} \)-scheme \(Y \), we have the *Hodge decomposition*

\[
H^n(Y(\mathbb{C}), \mathbb{Q}) \otimes \mathbb{C} \cong \bigoplus_{i+j=n} H^i(Y, \Omega^j_Y).
\]

During the proof of Theorem 1.1.2, Tate observed the existence of an analogous decomposition for the étale cohomology of an abelian variety over \(K \) with good reduction. This discovery led to his conjecture that such a decomposition should exist for all étale cohomology groups of an arbitrary proper smooth varieties over \(K \). This conjecture is now a theorem, commonly referred to as the *Hodge-Tate decomposition*.

Theorem 1.2.1 (Faltings). Let \(\mathbb{C}_K \) denote the \(p \)-adic completion of \(\mathbb{K} \). For a proper smooth variety \(X \) over \(K \), there is a canonical isomorphism

\[
H^n_{\text{ét}}(X^K, \mathbb{Q}_p) \otimes \mathbb{Q}_p \mathbb{C}_K \cong \bigoplus_{i+j=n} H^i(X, \Omega^j_{X/K}) \otimes_K \mathbb{C}_K(-j) \tag{1.3}
\]

compatible with \(\Gamma_K \)-actions.

Remark. Since the action of \(\Gamma_K \) on \(\mathbb{K} \) is continuous, it uniquely extends to an action on \(\mathbb{C}_K \). Thus \(\Gamma_K \) acts diagonally on the left side of (1.3) and only through the Tate twists \(\mathbb{C}_K(-j) \) on the right side of (1.3).
For an analogy to other two comparison theorems, let us rewrite (1.3) as
\[H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{HT}} \cong \left(\bigoplus_{i+j=n} H^i(X, \Omega^j_{X/K}) \right) \otimes_K B_{\text{HT}} \]
where \(B_{\text{HT}} := \bigoplus_{j \in \mathbb{Z}} \mathbb{C}_K(j) \) is the Hodge-Tate period ring. By a theorem of Tate and Sen, we have \(B_{\text{HT}}^\Gamma_K = K \). Hence we obtain an isomorphism of finite dimensional graded \(K \)-vector spaces
\[(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{HT}})^\Gamma_K \cong \bigoplus_{i+j=n} H^i(X, \Omega^j_{X/K}), \]
which allows us to recover the Hodge numbers from the \(\Gamma_K \)-representation on \(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \).

Next we discuss the comparison theorem between étale cohomology and de Rham cohomology. Recall that, for a proper smooth \(\mathbb{C} \)-scheme \(Y \) of dimension \(d \), we have a comparison isomorphism
\[H^n(Y(\mathbb{C}), \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C} \cong H^n_{\text{dr}}(Y/\mathbb{C}) \tag{1.4} \]
given by Poincare duality and the “period paring”
\[H^n_{\text{dr}}(Y(\mathbb{C})/\mathbb{C}) \times H_{2d-n}(Y(\mathbb{C}), \mathbb{C}) \longrightarrow \mathbb{C}, \quad (\omega, \Gamma) \mapsto \int_{\Gamma} \omega. \]
One may hope to obtain a \(p \)-adic analogue of (1.4) by tensoring both \(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \) and \(H^n_{\text{dr}}(X/K) \) with an appropriate “period ring”. Fontaine formulated this idea into a conjecture using his construction of a ring \(B_{\text{dR}} \) that satisfies the following properties:

1. \(B_{\text{dR}} \) is equipped with a filtration such that the associated graded ring is \(B_{\text{HT}} \).
2. \(B_{\text{dR}} \) is endowed with an action of \(\Gamma_K \) such that \(B_{\text{dR}}^\Gamma_K = K \).

Below is a precise statement of this conjecture, which is now a theorem commonly referred to as the \(p \)-adic de Rham comparison isomorphism.

Theorem 1.2.2 (Faltings). For a proper smooth variety \(X \) over \(K \), there is a canonical isomorphism
\[H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{dR}} \cong H^n_{\text{dr}}(X/K) \otimes_K B_{\text{dR}} \tag{1.5} \]
compatible with \(\Gamma_K \)-actions and filtrations.

Remark. By construction, the de Rham cohomology group \(H^n_{\text{dr}}(X/K) \) is endowed with the Hodge filtration whose associated graded \(K \)-space is the Hodge cohomology \(\bigoplus_{i+j=n} H^i(X, \Omega^j_{X/K}) \).

The filtration on the right side of (1.5) is given by the convolution filtration.

An important consequence of Theorem 1.2.2 is that one can recover the de Rham cohomology \(H^n_{\text{dr}}(X/K) \) from the \(\Gamma_K \)-representation on \(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \) by
\[(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{dR}})^\Gamma_K \cong H^n_{\text{dr}}(X/K). \]
Moreover, one can recover Theorem 1.2.1 from Theorem 1.2.2 by passing to the associated graded \(K \)-vector spaces.

However, Theorem 1.2.2 (or Theorem 1.2.1) does not provide any way to recover the \(\Gamma_K \)-representation on \(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \). It is therefore natural to seek for a refinement of \(H^n_{\text{dr}}(X/K) \) which recovers the \(\Gamma_K \)-representation on \(H^n_{\text{ét}}(X_K, \mathbb{Q}_p) \). Grothendieck conjectured that, when \(X \) has good reduction, such a refinement should be given by the crystalline cohomology in the following sense:
Conjecture 1.2.3 (Grothendieck). Let k be the residue field of \mathcal{O}_K. Denote by $W(k)$ the ring of Witt vectors over k, and by K_0 its fraction field. There should exist a (purely algebraic) fully faithful functor \mathcal{D} on a category of certain p-adic Galois representations such that

$$\mathcal{D}(H^n_{\text{ét}}(X_{\overline{\mathbb{F}}}, \mathbb{Q}_p)) = H^n_{\text{cris}}(\mathcal{X}_k/W(k)) \otimes_{W(k)} K_0$$

for all proper smooth variety X with a proper smooth integral model \mathcal{X} over \mathcal{O}_K.

Remark. The functor \mathcal{D} in Conjecture 1.2.3 has become to known as the Grothendieck mysterious functor.

It is worthwhile to mention that Conjecture 1.2.3 is motivated by the dictionary that we described in I.1. Recall that, for an elliptic curve E over \mathbb{Q}_p with good reduction, we discussed how the $\Gamma_{\mathbb{Q}_p}$-representation on $V_{\mathbb{p}}(E)$ is determined by the associated filtered isocrystal. We may regard this dictionary as a special case of the Grothendieck mysterious functor, as H_{cris} and \mathcal{D} are respectively identified with the dual of $H_{\text{ét}}^1(\mathbb{G}_m)$ and $H^1_{\text{cris}}(\mathbb{G}_m)$. The key insight of Grothendieck was that there should be a way to go directly from $H^1_{\text{ét}}(\mathbb{G}_m)$ to $H^1_{\text{cris}}(\mathbb{G}_m)$ without using p-divisible groups.

Fontaine reformulated Conjecture 1.2.3 in terms of a comparison isomorphism between étale cohomology and crystalline cohomology. His idea is to construct another period ring B_{cris} that satisfies the following properties:

1. B_{cris} is equipped with an action of Γ_K such that $B_{\text{cris}}^\Gamma = K_0$.
2. There is a Frobenius-semilinear endomorphism φ on B_{cris}.
3. There is a natural map

$$B_{\text{cris}} \otimes_{K_0} K \hookrightarrow B_{\text{dR}}$$

which induces a filtration on B_{cris} from the filtration on B_{dR}.

The endomorphism φ in (2) is referred to as the Frobenius action on B_{cris}. Fontaine’s conjecture is now a theorem, which we state as follows:

Theorem 1.2.4 (Faltings). Suppose that X has good reduction, meaning that it has a proper smooth model \mathcal{X} over \mathcal{O}_K. There exists a canonical isomorphism

$$H^n_{\text{ét}}(X_{\overline{\mathbb{F}}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{cris}} \cong H^n_{\text{cris}}(\mathcal{X}_k/W(k)) \otimes_{W(k)} B_{\text{cris}}$$

compatible with Γ_K-actions, filtrations, and Frobenius actions.

Remark. By construction, the crystalline cohomology group $H^n_{\text{cris}}(\mathcal{X}_k/W(k))$ carries a Frobenius action. Moreover, the comparison isomorphism

$$H^n_{\text{cris}}(\mathcal{X}_k/W(k)) \otimes_{W(k)} K_0 \cong H^n_{\text{dR}}(X/K)$$

induces a filtration on $H^n_{\text{cris}}(\mathcal{X}_k/W(k)) \otimes_{W(k)} K_0$ from the Hodge filtration on $H^n_{\text{dR}}(X/K)$.

By Theorem 1.2.4 we have an isomorphism

$$(H^n_{\text{ét}}(X_{\overline{\mathbb{F}}}, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} B_{\text{cris}})^\Gamma \cong H^n_{\text{cris}}(\mathcal{X}_k/W(k)) \otimes_{W(k)} K_0.$$
1.3. The interplay via representation theory

The Grothendieck mysterious functor, which we have yet to give a complete description, is an example of various functors that link the arithmetic side and the geometric side of p-adic Hodge theory. Such functors provide vital means for studying p-adic Hodge theory via the interplay between the arithmetic and geometric perspectives.

Here we describe a general formalism due to Fontaine for constructing functors that connect the arithmetic and geometric sides of p-adic Hodge theory. Let $\text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ denote the category of \mathbb{Q}_p-adic representations of Γ_K for a p-adic field K. For a p-adic period ring B, such as B_{HT}, B_{dR} or B_{cris} as introduced in the preceding subsection, we define $D_B(V) := (V \otimes_{\mathbb{Q}_p} B)^{\Gamma_K}$ for each $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$.

We say that $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is B-admissible if the natural morphism $\alpha_V : D_B(V) \otimes_{B^{\Gamma_K}} B \rightarrow V \otimes_{\mathbb{Q}_p} B$ is an isomorphism. Let $\text{Rep}_B^B(\Gamma_K) \subseteq \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ be the full subcategory of B-admissible representations. Then D_B defines a functor from $\text{Rep}_B^B(\Gamma_K)$ to the category of finite dimensional vector spaces over B^{Γ_K} with some additional structures. Here the additional structures that we consider for the target category reflect the structure of the ring B, as indicated by the following examples:

(a) The target category of D_B^HT is the category of finite dimensional graded K-spaces, reflecting the graded algebra structure on B_{HT}.

(b) The target category of D_B^dR is the category of finite dimensional filtered K-spaces, reflecting the filtration on B_{dR}.

(c) The target category of D_B^cris is the category of finite dimensional filtered K_0-spaces with a Frobenius-semilinear endomorphism, reflecting the filtration and the Frobenius action on B_{cris}.

In particular, we have a complete description of the Grothendieck mysterious functor given by D_B^cris. We also obtain its fully faithfulness from the following fundamental result:

Theorem 1.3.1 (Fontaine). The functors D_B^HT, D_B^dR, and D_B^cris are all exact and faithful. Moreover, the functor D_B^cris is fully faithful.

Remark. We will see in Chapter III that the first statement of Theorem 1.3.1 is (almost) a formal consequence of some algebraic properties shared by B_{HT}, B_{dR} and B_{cris}.

Note that, for each $B = B_{\text{HT}}$, B_{dR}, or B_{cris}, the definition of B-admissibility is motivated by the corresponding comparison theorem from the preceding subsection, while the target category of the functor D_B consists of semilinear algebraic objects that arise in the arithmetic side of p-adic Hodge theory. In other words, the functor D_B relates a certain class of “geometric” p-adic representations to a class of semilinear algebraic objects that carry some arithmetic information. Hence we can consider Fontaine’s formalism as a general framework for connecting the following themes:

1. Study of the geometry of a proper smooth variety over a p-adic field via the Galois action on the étale cohomology groups.

2. Construction of a dictionary that relates certain p-adic representations to various semilinear algebraic objects.

In fact, this tidy connection provided by Fontaine’s formalism forms the backbone of classical p-adic Hodge theory.
2. A first glimpse of the Fargues-Fontaine curve

In this section, we provide a brief introduction to a remarkable geometric object called the Fargues-Fontaine curve, which serves as the fundamental curve of \(p \)-adic Hodge theory. Our goal for this section is twofold: building some intuition about what this object is, and explaining why this object plays a pivotal role in modern \(p \)-adic Hodge theory.

2.1. Definition and some key features

The Fargues-Fontaine curve has two different incarnations, namely the schematic curve and the adic curve. In this subsection, we will only consider the schematic curve, as we don’t have a language to describe the adic curve. The two incarnations are essentially equivalent due to a GAGA type theorem, as we will see in Chapter IV.

Throughout this section, let us restrict our attention to the case \(K = \mathbb{Q}_p \) for simplicity. We denote by \(F \) the completion of the algebraic closure of \(\mathbb{F}_p((u)) \). Recall that Fontaine constructed a \(p \)-adic period ring \(B_{\text{cris}} \) which is equipped with a \(\Gamma_{\mathbb{Q}_p} \)-action and a Frobenius semilinear endomorphism \(\varphi \). There is also a subring \(B_{\text{cris}}^+ \) of \(B_{\text{cris}} \) with the following properties:

(i) \(B_{\text{cris}}^+ \) is stable under \(\varphi \) with \((B_{\text{cris}}^+)_{\varphi=1} \simeq \mathbb{Q}_p \).

(ii) there is an element \(t \in B_{\text{cris}}^+ \) with \(B_{\text{cris}} = B_{\text{cris}}^+[1/t] \) and \(\varphi(t) = pt \).

Definition 2.1.1. The schematic Fargues-Fontaine curve (associated to the pair \((\mathbb{Q}_p, F) \)) is defined by

\[
X := \text{Proj} \left(\bigoplus_{n \geq 0} (B_{\text{cris}}^+)_{\varphi=p^n} \right).
\]

Note that \(X \) can be regarded as a \(\mathbb{Q}_p \)-scheme by the property (i) of \(B_{\text{cris}}^+ \). However, as we will see in a moment, the scheme \(X \) is not of finite type over \(\mathbb{Q}_p \). In particular, \(X \) is not a curve in the usual sense, and not even a projective scheme over \(\mathbb{Q}_p \).

Nonetheless, the scheme \(X \) is not completely exotic. In fact, \(X \) is geometrically akin to the complex projective line \(\mathbb{P}^1_{\mathbb{C}} \) in many aspects.

Theorem 2.1.2 (Fargues-Fontaine). We have the following facts about the Fargues-Fontaine curve \(X \):

1. As a \(\mathbb{Q}_p \)-scheme, \(X \) is noetherian, connected and regular of dimension 1.
2. \(X \) is a union of two spectra of Dedekind domains.
3. \(X \) is complete in the sense that the divisor of every rational function on \(X \) has degree zero.
4. \(\text{Pic}(X) \simeq \mathbb{Z} \).

Remark. The statements (1) and (3) together suggest that \(X \) behaves almost as a proper curve, thereby justifying the use of the world “curve” to describe \(X \).

We can also describe \(X \) as an affine scheme of a principal domain plus “a point at infinity”, in the same way as we describe \(\mathbb{P}^1_{\mathbb{C}} \) as \(\text{Spec} (\mathbb{C}[z]) \) plus a point at infinity. More precisely, for some “preferred” closed point \(\infty \in X \) we have identifications

\[
X - \{ \infty \} = \text{Spec} (B_e) \quad \text{and} \quad \mathcal{O}_{X,\infty} = B_{\text{dR}}^+,
\]

where \(B_e := B_{\text{cris}}^\varphi=1 \) and \(B_{\text{dR}}^+ \) is the ring of integers of \(B_{\text{dR}} \). The fact that \(B_e \) is a principal ideal domain is due to Fontaine.

Remark. The above discussion provides a geometric description of the period ring \(B_{\text{dR}} \).
2.2. Relation to the theory of perfectoid spaces

The Fargues-Fontaine curve turns out to have a surprising connection to Scholze’s theory of perfectoid spaces. In this subsection, we describe this connection after recalling some basic definitions and fundamental facts about perfectoid fields.

Definition 2.2.1. Let C be a nonarchimedean field of residue characteristic p.

1. C is called a perfectoid field if it satisfies the following conditions:
 (i) its valuation is nondiscrete,
 (ii) the p-th power Frobenius map on \mathcal{O}_C/p is surjective.

2. If C is a perfectoid field with valuation $|\cdot|$, we define the tilt of C by

 $$C^\circ := \lim_{\xrightarrow{\longrightarrow}} C_x^x / x \xrightarrow{p}$$

 which carries a ring structure with a valuation $|\cdot|^\circ$ as follows:

 (a) $(a \cdot b)_n := a_n b_n$,
 (b) $(a + b)_n := \lim_{m \to \infty} (a_{m+n} + b_{m+n})^{p^m}$,
 (c) $|a|^\circ := |a_0|$.

Remark. It is not hard to see that C° is a perfectoid field of characteristic p.

Example 2.2.2. The p-adic completion \mathbb{C}_p of \mathbb{Q}_p is a perfectoid field with $\mathbb{C}_p^\circ \simeq F$.

The theory of perfectoid fields (and perfectoid spaces) has numerous applications in p-adic Hodge theory. As a key example, we mention Scholze’s generalization of Theorem 1.2.2 (and Theorem 1.2.1) to the category of rigid analytic varieties. Here we state one of the fundamental results for such applications, known as the tilting equivalence.

Theorem 2.2.3 (Scholze). Let C be a perfectoid analytic space.

1. Every finite extension of C is a perfectoid field.
2. The tilting operation induces an equivalence of categories

 $$\{\text{finite extensions of } C\} \xrightarrow{\sim} \{\text{finite extensions of } C^\circ\}.$$

3. There is an isomorphism $\Gamma_C \simeq \Gamma_{C^\circ}$ of absolute Galois groups.

An amazing fact is that, given a characteristic p perfectoid field F, the Fargues-Fontaine curve X parametrizes the characteristic 0 untilts of F, which are pairs (C, ι) consisting of a characteristic 0 perfectoid field C and an isomorphism $\iota : C^\circ \simeq F$. Note that there is an obvious notion of isomorphism for untilts of F. In addition, the p-th power Frobenius automorphism φ_F of F acts on untilts of F by $\varphi_F \cdot (C, \iota) := (C, \varphi_F \circ \iota)$.

Theorem 2.2.4 (Fargues-Fontaine). For every closed point $x \in X$, the residue field $k(x)$ is a perfectoid field of characteristic 0 with $k(x)^\circ \simeq F$. Moreover, there is a bijection

$$\{\text{closed points of } X\} \xrightarrow{\sim} \{\varphi_F\text{-orbits of characteristic } 0 \text{ untilts of } F\}$$

given by $x \mapsto (k(x), k(x)^\circ \simeq F)$.

Remark. Theorem 2.2.4 implies that X is not of finite type over \mathbb{Q}_p.

This moduli interpretation of the Fargues-Fontaine curve is one of the main inspirations for Scholze’s theory of diamonds, which is a perfectoid analogue of Artin’s theory of algebraic spaces. In fact, many perfectoid spaces or diamonds that arise in p-adic geometry have moduli interpretations involving (vector bundles on) the Fargues-Fontaine curve.
2.3. Geometrization of p-adic Galois representations

Let us now demonstrate how the Fargues-Fontaine curve provides a way to geometrically study p-adic Galois representations. The geometric objects that we will consider are as follows:

Definition 2.3.1. Let us fix a closed point $\infty \in X$.

1. A vector bundle on X is a locally free O_X-module of finite rank.
2. A modification of vector bundles at ∞ is a tuple (E, F, i) where
 - E and F are vector bundles on X,
 - $i : E|_{X-\{\infty\}} \sim \longrightarrow F|_{X-\{\infty\}}$ is an isomorphism outside ∞.

We will see in Chapter IV that vector bundles on the Fargues-Fontaine curve admit a complete classification. The following theorem summarizes some of its key consequences.

Theorem 2.3.2 (Fargues-Fontaine). There is a functorial commutative diagram

\[
\begin{array}{ccc}
\{\text{isocrystals over } \overline{\mathbb{F}}_p\} & \sim & \{\text{vector bundles on } X\} \\
\uparrow & & \uparrow \\
\{\text{filtered isocrystals over } \overline{\mathbb{F}}_p\} & \longrightarrow & \{\text{modifications of vector bundles on } X\}
\end{array}
\]

where the vertical maps are forgetful maps defined by $(N, \text{Fil}^\bullet(N)) \mapsto N$ and $(E, F, i) \mapsto E$.

Now recall that Fontaine constructed a fully faithful functor

\[D_{B_{\text{cris}}} : \{B_{\text{cris}}\text{-admissible } p\text{-adic representations of } \Gamma_{\mathbb{Q}_p}\} \longrightarrow \{\text{filtered isocrystals over } \overline{\mathbb{F}}_p\}.\]

If we compose $D_{B_{\text{cris}}}$ with the base change functor to $\overline{\mathbb{F}}_p$ and the bottom map in Theorem 2.3.2 we obtain a functor

\[
\{B_{\text{cris}}\text{-admissible } p\text{-adic representations of } \Gamma_{\mathbb{Q}_p}\} \longrightarrow \{\text{modifications of vector bundles on } X\}.
\]

Hence we can study B_{cris}-admissible p-adic Galois representations by purely geometric objects, namely modifications of vector bundles on X. As an application, we obtain the following fundamental result:

Theorem 2.3.3 (Colmez-Fontaine). Let $N^\bullet := (N, \text{Fil}^\bullet(N))$ be a filtered isocrystal over $\overline{\mathbb{F}}_p$. We denote by $\overline{N}^\bullet := ((\overline{N}), \text{Fil}^\bullet(\overline{N}))$ the associated filtered isocrystal over $\overline{\mathbb{F}}_p$ (obtained by base change), and by $(\mathcal{E}(\overline{N}^\bullet), \mathcal{F}(\overline{N}^\bullet), i(\overline{N}^\bullet))$ its image under the bottom map in Theorem 2.3.2. Then \overline{N}^\bullet is in the essential image of $D_{B_{\text{cris}}}$ if and only if the vector bundle $\mathcal{F}(\overline{N}^\bullet)$ is trivial (i.e., isomorphic to O_X^m for some n).

Remark. Since $D_{B_{\text{cris}}}$ is fully faithful, its essential image gives a purely algebraic category which is equivalent to the category of B_{cris}-admissible representations.

Theorem 2.3.3 is commonly stated as “weakly admissible filtered isocrystals are admissible”. It was initially proved by Colmez-Fontaine in 2000 by a very complicated and technical argument. In Chapter IV we will provide a very short and conceptual proof of Theorem 2.3.3. The key point of our proof is that the left inverse $V_{B_{\text{cris}}}$ of $D_{B_{\text{cris}}}$ can be cohomologically realized by the following identity:

\[V_{B_{\text{cris}}}(N^\bullet) \simeq H^0(X, \mathcal{F}(\overline{N}^\bullet)).\]
Theorem 2.3.3 has a couple of interesting implications as follows:

(1) B_{cris}-admissibility is a “geometric” property.

(2) B_{cris}-admissibility is insensitive to replacing the residue field \mathbb{F}_p by $\overline{\mathbb{F}}_p$, which amounts to replacing the ground field \mathbb{Q}_p by $\hat{\mathbb{Q}}^\text{un}_p$.

These two implications are closely related since base change of the ground field \mathbb{Q}_p to $\hat{\mathbb{Q}}^\text{un}_p$ can be regarded as “passing to the geometry” via the bottom map in Theorem 2.3.2.

Remark. The Fargues-Fontaine curve also provides a way to geometrically study ℓ-adic Galois representations. In fact, in 2016 Fargues initiated a remarkable problem called the geometrization of the local Langlands correspondence, which aims to realize the local Langlands correspondence as the geometric Langlands correspondence on the Fargues-Fontaine curve.
CHAPTER II

Foundations of p-adic Hodge theory

1. Finite flat group schemes

In this section we develop some basic theory of finite flat group schemes, in preparation for our discussion of p-divisible groups in §2. Our primary reference is Tate’s article [Tat97].

Throughout this section, all rings are assumed to be commutative.

1.1. Basic definitions and properties

We begin by recalling the notion of group scheme.

Definition 1.1.1. Let S be a scheme. A group scheme over S is an S-scheme G along with morphisms

- $m : G \times_S G \to G$, called the multiplication,
- $e : S \to G$, called the unit section,
- $i : G \to G$, called the inverse,

that fit into the following commutative diagrams:

(a) associativity axiom:

\[
\begin{array}{ccc}
G \times_S G \times_S G & \xrightarrow{(m,\text{id})} & G \times_S G \\
| & \downarrow{(\text{id},m)} & | \\
G \times_S G & \xrightarrow{m} & G
\end{array}
\]

(b) identity axiom:

\[
\begin{array}{ccc}
G \times_S S & \xrightarrow{\sim} & G \\
| & \downarrow{(\text{id},e)} & | \\
G \times_S G & \xrightarrow{m} & G \times_S G
\end{array}
\] \hspace{1cm}

\[
\begin{array}{ccc}
S \times_S G & \xrightarrow{\sim} & G \\
| & \downarrow{(e,\text{id})} & | \\
G \times_S G & \xrightarrow{\text{id}} & G
\end{array}
\]

(c) inverse axiom:

\[
\begin{array}{ccc}
G & \xrightarrow{(i,\text{id})} & G \times_S G \\
| & \downarrow{(\text{id},i)} & | \\
S & \xrightarrow{e} & G
\end{array}
\]

In other words, a group scheme over S is a group object in the category of S-schemes.

Lemma 1.1.2. Given a scheme S, an S-scheme G is a group scheme if and only if the set $G(T)$ for any S-scheme T carries a functorial group structure.

Proof. This is immediate by Yoneda’s lemma. \qed
II. FOUNDATIONS OF p-ADIC HODGE THEORY

Definition 1.1.3. Let G and H be group schemes over a scheme S.

1. A morphism $G \to H$ of S-schemes is called a homomorphism if for any S-scheme T the induced map $G(T) \to H(T)$ is a group homomorphism.

2. The kernel of a homomorphism $f : G \to H$, denoted by $\ker(f)$, is a group scheme such that $\ker(f)(T)$ for any S-scheme T is the kernel of the induced map $G(T) \to H(T)$. Equivalently, by Lemma 1.1.2 $\ker(f)$ is the fiber of f over the unit section of H.

Example 1.1.4. Let G be a group scheme over a scheme S, and let n be a positive integer. The multiplication by n on G, denoted by $[n]_G$, is a homomorphism $G \to G$ defined by $g \mapsto g^n$.

In this section, we are mostly interested in affine group schemes over an affine base. Let us generally denote the base ring by R.

Definition 1.1.5. Let $G = \text{Spec } (A)$ be an affine group scheme over R. We define

- the comultiplication $\mu : A \to A \otimes_R A$,
- the counit $\epsilon : A \to R$
- the coinverse $\iota : A \to A$,

to be the maps respectively induced by the multiplication, unit section, and inverse of G.

Example 1.1.6. We present some important examples of affine group schemes.

1. The additive group over R is a scheme $\mathbb{G}_a := \text{Spec } (R[t])$ with the natural additive group structure on $\mathbb{G}_a(B) = B$ for each R-algebra B. The comultiplication, counit, and coinverse are given by
 \[\mu(t) = t \otimes 1 + 1 \otimes t, \quad \epsilon(t) = 0, \quad \iota(t) = -t. \]

2. The multiplicative group over R is a scheme $\mathbb{G}_m := \text{Spec } (R[t, t^{-1}])$ with the natural multiplicative group structure on $\mathbb{G}_m(B) = B^\times$ for each R-algebra B. The comultiplication, counit, and coinverse are given by
 \[\mu(t) = t \otimes t, \quad \epsilon(t) = 1, \quad \iota(t) = t^{-1}. \]

3. The n-th roots of unity is a scheme $\mu_n := \text{Spec } (R[t]/(t^n - 1))$ with the natural multiplicative group structure on $\mu_n(B) = \{ b \in B : b^n = 1 \}$ for each R-algebra B. In fact, we can regard μ_n as a closed subgroup scheme of \mathbb{G}_m by the map $R[t, t^{-1}] \to R[t]/(t^n - 1)$ with the comultiplication, counit, and coinverse as in (2).

4. If R has characteristic p, then we have a group scheme $\alpha_p := \text{Spec } (R[t]/t^p)$ with the natural additive group structure on $\alpha_p(B) = \{ b \in B : b^p = 0 \}$ for each R-algebra B. In fact, we can regard α_p as a closed subgroup scheme of \mathbb{G}_a by the map $R[t] \to R[t]/(t^p)$ with the comultiplication, counit, and coinverse as in (1).

5. If A is an abelian scheme over R, its n-torsion subgroup $A[n] := \ker([n]_A)$ is an affine group scheme over R since $[n]_A$ is a finite morphism.

6. If M is an abstract group, the constant group scheme on M over R is a scheme $M := \prod_{m \in M} \text{Spec } (R) \simeq \text{Spec } (A)$, where $A \simeq \prod_{m \in M} R$ is the ring of R-valued functions on M, with the natural group structure (induced by M) on
 \[M(B) = \{ \text{locally constant functions } \text{Spec } (B) \to M \} \]
 for each R-algebra B. Note that $A \otimes_R A$ is identified with the ring of R-values functions on $M \times M$. The comultiplication, counit, and coinverse are given by
 \[\mu(f)(m, m') = f(mm'), \quad \epsilon(f) = f(1_M), \quad \iota(f)(m) = f(m^{-1}). \]
Let us now introduce the objects of main interest for this section. For the rest of this section, we assume that \(R \) is noetherian unless stated otherwise.

Definition 1.1.7. Let \(G = \text{Spec} (A) \) be an affine group scheme over \(R \). We say that \(G \) is a (commutative) finite flat group scheme of order \(n \) if it satisfies the following conditions:

(i) \(G \) is locally free of rank \(n \) over \(R \); that is, \(A \) is a locally free \(R \)-algebra of rank \(n \).

(ii) \(G \) is commutative in the sense of the following commutative diagram

\[
G \times_R G \xrightarrow{(x,y) \mapsto (y,x)} G \times_R G
\]

where \(m \) denotes the multiplication of \(G \).

Remark. As a reality check, we have the following facts:

(1) \(G \) satisfies (i) if and only if the structure morphism \(G \to \text{Spec} (R) \) is finite flat.

(2) \(G \) satisfies (ii) if and only if \(G(B) \) is commutative for each \(R \)-algebra \(B \).

However, even if \(G \) is finite flat, \(G(B) \) can be infinite for some \(R \)-algebra \(B \) such as an infinite product of \(R \).

Example 1.1.8. Some of the group schemes that we introduced in Example 1.1.6 are finite flat group schemes, as easily seen by their affine descriptions.

(1) The \(n \)-th roots of unity \(\mu_n \) is a finite flat group scheme of order \(n \).

(2) The group scheme \(\alpha_p \) is a finite flat group scheme of order \(p \).

(3) If \(A \) is an abelian scheme of dimension \(g \) over \(R \), its \(n \)-torsion subgroup \(A[n] \) is a finite flat group scheme of order \(n^{2g} \).

(4) If \(M \) is an abelian group of order \(n \), the constant group scheme \(M \) is a finite flat group scheme of order \(n \).

Many basic properties of finite abelian groups extend to finite flat group schemes. Here we state two fundamental theorems without proof.

Theorem 1.1.9 (Grothendieck). Let \(G \) be a finite flat \(R \)-group scheme, and let \(H \) be a closed finite flat subgroup scheme of \(G \). Denote by \(m \) and \(n \) the orders of \(G \) and \(H \) over \(R \), respectively. Then the quotient \(G/H \) exists as a finite flat group scheme of order \(m/n \) over \(R \), thereby giving rise to a short exact sequence of group schemes

\[
0 \to H \to G \to G/H \to 0.
\]

Theorem 1.1.10 (Serre). Let \(G \) be a finite flat group scheme of order \(n \) over \(R \). Then \([n]_G \) annihilates \(G \); in other words, it factors through the unit section of \(G \).

Remark. It is unknown whether Theorem 1.1.10 holds if \(G \) is not assumed to be commutative.

We also note that finite flat group schemes behave well under base change.

Lemma 1.1.11. Let \(G = \text{Spec} (A) \) be a finite flat group scheme over \(R \). For any \(R \)-algebra \(B \), \(G_B \) is a finite flat group scheme over \(B \).

Proof. Let \(\mu, \epsilon \), and \(\iota \) be the comultiplication, counit, and coinverse of \(G \), respectively. It is straightforward to check that \(G_B = \text{Spec} (A \otimes_R B) \) is a group scheme with comultiplication, counit and coinverse given by \(\mu \otimes 1, \epsilon \otimes 1 \), and \(\iota \otimes 1 \). The finite flatness of \(G_B \) is immediate from the finite flatness of \(G \). \(\square \)
1.2. Cartier duality

In this subsection, we discuss an important notion of duality for finite flat group schemes.

Definition 1.2.1. Let $G = \text{Spec} (A)$ be a finite flat group scheme over R. We define the Cartier dual of G to be an R-group scheme G^\vee such that

$$G^\vee(B) = \text{Hom}_{\text{grp}}(G_B, (\mathbb{G}_m)_B)$$

for each R-algebra B, where the group structure on $\text{Hom}(G_B, (\mathbb{G}_m)_B)$ is induced by the multiplication map on $(\mathbb{G}_m)_B$.

Remark. Equivalently, we may define $G^\vee := \text{Hom}(G, \mathbb{G}_m)$ as a sheaf on the big fpqc site.

Lemma 1.2.2. Let G be a finite flat R-group scheme such that $[n]_G = 0$. Then we have

$$G^\vee(B) = \text{Hom}_{\text{grp}}(G_B, (\mu_n)_B).$$

Proof. The assertion follows immediately by observing $\mu_n = \ker([n]_{\mathbb{G}_m}).$ \hfill \Box

Theorem 1.2.3 (Cartier duality). Let $G = \text{Spec} (A)$ be a finite flat group scheme of order n over R. We let μ, ϵ, and ι respectively denote the comultiplication, counit, and coinverse of A. In addition, we let $s : R \to A$ be the structure morphism, and $m_A : A \otimes_R A \to A$ be the ring multiplication map. Define $A^\vee := \text{Hom}_{\text{mod}}(A, R)$ to be the dual R-module of A.

1. The dual maps μ^\vee and ϵ^\vee define an R-algebra structure on A^\vee.
2. We have an identification $G^\vee \cong \text{Spec} (A^\vee)$ with $m_A^\vee, s^\vee,$ and ι^\vee as the comultiplication, counit, and coinverse.
3. G^\vee is a finite flat group scheme of order n over R.
4. There is a canonical isomorphism $(G^\vee)^\vee \cong G$.

Proof. The proof of (1) is straightforward and thus omitted here.

Let us now prove (2). It is not hard to verify that $G^\vee := \text{Spec} (A^\vee)$ carries a structure of groups scheme with $m_A^\vee, s^\vee,$ and ι^\vee as the comultiplication, counit, and coinverse. Let B be an arbitrary R-algebra. We wish to establish a canonical isomorphism

$$G^\vee(B) \cong G^\vee(B).$$

(1.1)

Let us write $\mu_B := \mu \otimes 1, \epsilon_B := \epsilon \otimes 1,$ and $\iota_B : \iota \otimes 1$ for the comultiplication, counit, and coinverse of $A_B := A \otimes_R B$. We also write $s_B : s \otimes 1$ for the structure morphism $B \to A_B$. By the group scheme axioms, we have

$$(\epsilon_B \otimes \text{id}) \circ \mu_B = \text{id} \quad \text{and} \quad (\iota_B \circ \text{id}) \circ \mu_B = s_B \circ \epsilon_B.$$

(1.2)

Now we use Definition 1.2.1 and the affine description of \mathbb{G}_m given in Example 1.1.6 to obtain

$$G^\vee(B) = \text{Hom}_{\text{alg}}(G_B, (\mathbb{G}_m)_B)$$

$$\cong \{ f \in \text{Hom}_{\text{alg}}(B[t, t^{-1}], A_B) : \mu_B(f(t)) = f(t) \otimes f(t), \epsilon_B(f(t)) = 1, \iota_B(f(t)) = f(t)^{-1} \}$$

where the conditions on the last set come from compatibility with the comultiplications, counits, and coinverses on G_B and $(\mathbb{G}_m)_B$. Furthermore, an element of $\text{Hom}_{\text{alg}}(B[t, t^{-1}], A_B)$ is determined by its value at t, which must be a unit in A_B since t is a unit. We thus obtain

$$G^\vee(B) \cong \{ u \in A_B^\times : \mu_B(u) = u \otimes u, \epsilon_B(u) = 1, \iota_B(u) = u^{-1} \}.$$

Moreover, by (1.2) every element $u \in A_B^\times$ with $\mu_B(u) = u \otimes u, \epsilon_B(u) = 1,$ and $\iota_B(u) = u^{-1}$ must satisfy $\epsilon_B(u) = 1$ and $\iota_B(u) = u^{-1}$. Therefore we find an identification

$$G^\vee(B) \cong \{ u \in A_B^\times : \mu_B(u) = u \otimes u \}.$$

(1.3)
1. Finite Flat Group Schemes

Meanwhile, by (1) we have a B-algebra structure on $A^\vee_B := A^\vee \otimes_R B$ defined by $\mu^\vee_B := \mu^\vee \otimes 1$ and $\epsilon^\vee_B := \epsilon^\vee \otimes 1$. We also have an identification

$$G^\vee(B) \cong \text{Hom}_{\text{alg}}(A^\vee, B) \cong \text{Hom}_{\text{alg}}(A^\vee \otimes_R B, B). \quad (1.4)$$

Let $m_B : B \otimes B \to B$ be the ring multiplication map on B. Note that $\text{Hom}_{\text{alg}}(A^\vee \otimes R B, B)$ is the set B-module homomorphisms $A^\vee \otimes R B \to B$ through which μ^\vee_B and ϵ^\vee_B are compatible with m_B and id_B, respectively. Taking B-duals, we identify this set with the set of B-module homomorphisms $B \to A \otimes R B = A_B$ through which μ^\vee_B and id^\vee_B are compatible with μ_B and ϵ_B. Moreover, the dual maps m^\vee_B and ϵ^\vee_B send 1 to 1 and 1, respectively. Since every B-module homomorphism $B \to A_B$ is determined by its value at 1, we have obtained an identification

$$\text{Hom}_{\text{alg}}(A^\vee \otimes R B, B) \cong \{ u \in A_B : \mu_B(u) = u \otimes u, \epsilon_B(u) = 1 \}.$$

Then by (1.2) we find

$$\text{Hom}_{\text{alg}}(A^\vee \otimes R B, B) \cong \{ u \in A^\vee_B : \mu_B(u) = u \otimes u \},$$

which yields an identification

$$G^\vee(B) \cong \{ u \in A_B : \mu_B(u) = u \otimes u \} \quad (1.5)$$

by (1.4). We thus obtain the desired isomorphism (1.1) by (1.3) and (1.5), thereby completing the proof of (2).

Now (3) follows from (2) since A^\vee is a free R-module of rank n by construction. We also deduce (4) from (2) using the canonical isomorphism $(A^\vee)^\vee \cong A$. \hfill \square

We now exhibit some important examples of Cartier duality.

Lemma 1.2.4. Given a finite flat group scheme G over R, the dual map of $[n]_G$ is $[n]_G^\vee$.

Proof. For an arbitrary R-algebra B, the dual map of $[n]_G$ sends each $f \in G^\vee(B) = \text{Hom}_{\text{grf}}(G_B, (\mathbb{G}_m)_B)$ to $f \circ [n]_G = [n]_G^\vee(f)$. \hfill \square

Proposition 1.2.5. For every positive integer n, we have $(\mathbb{Z}/n\mathbb{Z})^\vee \simeq \mu_n$.

Proof. By the affine description given in Example 1.1.6, we can write $\mathbb{Z}/n\mathbb{Z} \simeq \text{Spec } A$ where $A \simeq \bigoplus_{i=0}^{n-1} R e_i$ with the comultiplication, counit, and coinverse given by

$$\mu(e_i) = \sum_{p+q=i} e_p \otimes e_q, \quad \epsilon(e_i) = \begin{cases} 1 & \text{for } i = 0 \\ 0 & \text{otherwise} \end{cases}, \quad \iota(e_i) = e_{-i}.$$

Let $m_A : A \otimes_R A \to A$ and $s : R \to A$ respectively denote the ring multiplication map and structure morphism. Let $\{ e_i^\vee \}$ be the dual basis for $A^\vee := \text{Hom}_{\text{mod}}(A, R)$ such that

$$e_i^\vee(e_j) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}.$$

By Theorem 1.1.3, we have an R-algebra structure on A^\vee, defined by μ^\vee and ϵ^\vee, and a group scheme structure on $(\mathbb{Z}/n\mathbb{Z})^\vee \cong \text{Spec } (A^\vee)$ with m^\vee_A, s^\vee, and ι^\vee as the comultiplication, counit, and coinverse. In addition, it is not hard to see that the dual maps are given by

$$\mu^\vee(e_i^\vee \otimes e_j^\vee) = e_{i+j}^\vee, \quad \epsilon^\vee(1) = e_0^\vee, \quad m_A(e_i^\vee) = e_i^\vee \otimes e_i^\vee, \quad s^\vee(e_i) = 1, \quad \iota^\vee(e_i^\vee) = e_{-i}^\vee.$$

Hence, by the affine description given in Example 1.1.6, the map $A^\vee \to R[t]/(t^n - 1)$ given by $e_i^\vee \mapsto t^i$ induces an isomorphism of R-group schemes $(\mathbb{Z}/n\mathbb{Z})^\vee \simeq \mu_n$ as desired. \hfill \square
Proposition 1.2.6. Suppose that R has characteristic p. Then the R-group scheme α_p is self-dual.

Proof. By the affine description given in Example 1.1.6, we have $\alpha_p = \text{Spec}(R[t]/(t^p))$ with the comultiplication, counit, and coinverse given by

$$\mu(t^i) = \sum_{p+q=i} \binom{i}{p} t^p \otimes t^q, \quad \epsilon(t^i) = \begin{cases} 1 & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}, \quad \iota(t^i) = (-t)^i.$$

Let us set $A := R[t]/(t^p)$ for notational simplicity. Let $m_A : A \otimes_R A \to A$ and $s : R \to A$ respectively denote the ring multiplication map and structure morphism. Let $\{ f_i \}$ be the dual basis for $A^\vee := \text{Hom}_{R\text{-mod}}(A, R)$ such that

$$f_i(t^j) = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise}. \end{cases}$$

By Theorem 1.2.3, we have an R-algebra structure on A^\vee, defined by μ^\vee and ϵ^\vee, and a group scheme structure on $\alpha_p^\vee \cong \text{Spec}(A^\vee)$ with m_A^\vee, s^\vee, and ι^\vee as the comultiplication, counit, and coinverse. In addition, it is not hard to see that the dual maps are given by

$$\mu^\vee(f_i \otimes f_j) = \binom{i + j}{i} f_{i+j}, \quad \epsilon^\vee(1) = 0,$$

$$m_A^\vee(f_i) = \sum_{p+q=i} f_p \otimes f_q, \quad s^\vee(f_i) = \begin{cases} 1 & \text{if } i = 0 \\ 0 & \text{otherwise} \end{cases}, \quad \iota^\vee(f_i) = (-1)^i f_i.$$

Hence the ring homomorphism $A^\vee \to A$ given by $f_i \mapsto t^i/i!$ induces an isomorphism of group schemes $\alpha_p^\vee \cong \alpha_p$ as desired. \hfill \square

Remark. When R has characteristic p, the underlying schemes of μ_p and α_p are isomorphic as we have a ring isomorphism $R[t]/(t^p) \to R[t]/(t^p - 1)$ given by $t \mapsto t + 1$. Propositions 1.2.5 and 1.2.6 together show that they are not isomorphic as group schemes.

Proposition 1.2.7. Let $f : A \to B$ be an isogeny of abelian schemes over a ring R. Then the kernel of the dual map f^\vee is naturally isomorphic to the Cartier dual of $\ker(f)$.

Proof. By definition, we have an exact sequence

$$0 \longrightarrow \ker(f) \longrightarrow A \overset{f}{\longrightarrow} B \longrightarrow 0$$

which gives rise to a long exact sequence

$$0 \longrightarrow \text{Hom}(B, \mathbb{G}_m) \longrightarrow \text{Hom}(A, \mathbb{G}_m) \longrightarrow \text{Hom}(\ker(f), \mathbb{G}_m) \longrightarrow \text{Ext}^1(B, \mathbb{G}_m) \longrightarrow \text{Ext}^1(A, \mathbb{G}_m).$$

Note that the first two group schemes are trivial; in fact, abelian schemes are proper and thus admit no nontrivial maps to any affine scheme. We also have identifications

$$\text{Hom}(\ker(f), \mathbb{G}_m) \cong \ker(f)^\vee, \quad \text{Ext}^1(B, \mathbb{G}_m) \cong B^\vee, \quad \text{Ext}^1(A, \mathbb{G}_m) \cong A^\vee$$

where A^\vee and B^\vee denote the dual abelian schemes of A and B, respectively. Furthermore, we may identify the last arrow in the above sequence as f^\vee. We thus obtain an exact sequence

$$0 \longrightarrow \ker(f)^\vee \longrightarrow B^\vee \overset{f^\vee}{\longrightarrow} A$$

which yields the desired isomorphism $\ker(f)^\vee \cong \ker(f^\vee)$. \hfill \square

Corollary 1.2.8. Given an abelian scheme A over a ring R with the dual abelian scheme A^\vee, we have a natural isomorphism $A[n]^\vee \cong A^\vee[n]$.

II. FONDATIONS OF p-ADIC HODGE THEORY
Let us conclude this subsection by the exactness of Cartier duality.

Lemma 1.2.9. Let $f : H \hookrightarrow G$ be a closed embedding of R-group schemes. Then we have $\ker(f^\vee) \cong (G/H)^\vee$, where f^\vee denotes the dual map of f.

Proof. For each R-algebra B we get
\[
\ker(f^\vee)(B) = \ker\left(\text{Hom}_{B\text{-grp}}(G_B, (\mathbb{G}_m)_B) \to \text{Hom}_{B\text{-grp}}(H_B, (\mathbb{G}_m)_B) \right) \\
\cong \text{Hom}_{B\text{-grp}}((G/H)_B, (\mathbb{G}_m)_B) = (G/H)^\vee(B)
\]
bys the universal property of the quotient group scheme $G_B/H_B \cong (G/H)_B$. □

Proposition 1.2.10. Given a short exact sequence of finite flat R-group schemes
\[
0 \to G' \to G \to G'' \to 0.
\]
the Cartier duality gives rise to a short exact sequence
\[
0 \to G''^\vee \to G^\vee \to G'^\vee \to 0.
\]

Proof. Let f and g respectively denote the maps $G' \to G$ and $G \to G''$ in the given short exact sequence, and let f^\vee and g^\vee denote their dual maps. Injectivity of g^\vee is easy to verify using surjectivity of g and Definition 1.2.1. In addition, Lemma 1.2.9 yields $\ker(f^\vee) \cong G'^\vee$. Hence it remains to prove that f^\vee is surjective. Since $G''^\vee \cong \ker(f^\vee)$ is a closed subgroup of G^\vee, we have a quotient G^\vee/G''^\vee as a finite flat group scheme by Theorem 1.1.9. Then f^\vee gives rise to a homomorphism $G'/G''^\vee \to G'^\vee$. This is an isomorphism since its dual map
\[
G' \to (G'/G''^\vee)^\vee \cong \ker((g^\vee)^\vee) \cong \ker(g)
\]
is an isomorphism by the given exact sequence, where we use Lemma 1.2.9 for the identification $(G^\vee/G'^\vee)^\vee \cong \ker((g^\vee)^\vee)$. Hence we obtain surjectivity of f^\vee as desired. □

1.3. Finite étale group schemes

In this subsection, we discuss several basic facts about finite étale group schemes. Such group schemes naturally arise in the study of Galois representations by the following fact:

Proposition 1.3.1. Assume that R is a henselian local ring with maximal ideal \mathfrak{m} and residue field $k := R/\mathfrak{m}$. There is an equivalence of categories
\[
\{ \text{finite étale group schemes over } R \} \sim \{ \text{finite abelian groups with a continuous } \Gamma_k\text{-action} \}
\]
defined by $G \mapsto G(k^{\text{sep}})$.

Proof. Let $\overline{\mathfrak{m}} : \text{Spec}(k) \to \text{Spec}(R)$ denote the geometric point associated to $\mathfrak{m} \in \text{Spec}(R)$. Then $\Gamma_k = \text{Gal}(k^{\text{sep}}/k)$ is identified with the étale fundamental group $\pi_1(\text{Spec}(R), \overline{\mathfrak{m}})$. Hence we have an equivalence of categories
\[
\{ \text{finite étale schemes over } R \} \sim \{ \text{finite sets with a continuous } \Gamma_k\text{-action} \}
\]
defined by $T \mapsto \Gamma_k \cdot T(k^{\text{sep}})$. The desired equivalence follows by passing to the corresponding categories of commutative group objects. □

Remark. It is not hard to see that the functor in Proposition 1.3.1 is compatible with the notion of order in both categories. Hence Proposition 1.3.1 provides an effective way to study finite étale group schemes in terms of finite groups.

Corollary 1.3.2. If R is a henselian local ring with the residue field k, the special fiber functor yields an equivalence of categories
\[
\{ \text{finite étale group schemes over } R \} \sim \{ \text{finite étale group schemes over } k \}.
\]
Let us now explain a very useful criteria for étaleness of finite flat group schemes.

Definition 1.3.3. Let \(G = \text{Spec}(A) \) be an affine group scheme over \(R \). We define the **augmentation ideal** of \(G \) to be the kernel of the counit \(\epsilon : A \to R \).

Lemma 1.3.4. Let \(G = \text{Spec}(A) \) be an affine group scheme over \(R \) with the augmentation ideal \(I \). Then \(A \simeq R \oplus I \) as an \(R \)-module.

Proof. The assertion follows from the observation that the structure morphism \(R \to A \) splits the exact sequence \(0 \to I \to A \xrightarrow{\epsilon} R \to 0 \). \(\square \)

Proposition 1.3.5. Let \(G = \text{Spec}(A) \) be an affine group scheme over \(R \) with the augmentation ideal \(I \). Then we have \(I/I^2 \otimes_R A \simeq \Omega_{A/R} \) and \(I/I^2 \simeq \Omega_{A/R} \otimes_A A/I \).

Proof. Let us write \(m, e \) and \(i \) respectively for the multiplication, unit section and inverse of \(G \). We have a commutative diagram

\[
\begin{array}{ccc}
G \times_R G & \xrightarrow{(g.h) \mapsto (g,gh^{-1})} & G \times_R G \\
\Delta & \downarrow & \downarrow (id,e) \\
G & \xrightarrow{(id,i)} & G
\end{array}
\]

where the horizontal map can be also written as \((\text{pr}_1, m) \circ (id, i)\). We verify that the horizontal map is an isomorphism by writing down the inverse map \((x,y) \mapsto (x, y^{-1} x)\).

Let us now consider the induced commutative diagram on the level of \(R \)-algebras

\[
\begin{array}{ccc}
A \otimes_R A & \xleftarrow{\sim} & A \otimes_R A \\
\xleftarrow{x \otimes y \mapsto xy} & & \xleftarrow{x \otimes y \mapsto x \cdot \epsilon(y)} \\
A & \xleftarrow{x \otimes y \mapsto x \cdot \epsilon(y)} & A
\end{array}
\]

where \(\epsilon \) denotes the counit of \(G \). Let \(J \) denote the kernel of the left downward map. Then we have an identification

\[
\Omega_{A/R} \simeq J/J^2. \tag{1.6}
\]

Moreover, as Lemma 1.3.4 yields a decomposition

\[
A \otimes_R A \simeq A \otimes_R R \oplus A \otimes_R I,
\]

we deduce that the kernel of the right downward map is \(A \otimes_R I \). Hence the horizontal map induces an isomorphism between the two kernels \(J \simeq A \otimes_R I \), which also yields an isomorphism \(J^2 \simeq (A \otimes_R I)^2 \simeq A \otimes_R I^2 \). We thus have

\[
J/J^2 \simeq (A \otimes_R I)/(A \otimes_R I^2) = A \otimes_R (I/I^2),
\]

thereby obtaining a desired isomorphism \(\Omega_{A/R} \simeq A \otimes_R (I/I^2) \) by (1.6). We then complete the proof by observing

\[
\Omega_{A/R} \otimes_A (A/I) \simeq ((I/I^2) \otimes_R A) \otimes_A A/I \cong (I/I^2) \otimes_R A/I \simeq I/I^2
\]

where the last isomorphism follows from the fact that \(A/I \simeq R \). \(\square \)

Remark. The multiplication map on \(G \) defines a natural action on \(\Omega_{A/R} \). We can geometrically interpret the statement of Proposition 1.3.5 as follows:

1. An invariant form under this action should be determined by its value along the unit section, or equivalently its image in \(I/I^2 \).
2. An arbitrary form should be written as a function on \(G \) times an invariant form.
Corollary 1.3.6. Let $G = \text{Spec} \,(A)$ be a finite flat group scheme over R with the augment ideal I. Then G is étale if and only if $I = I^2$.

Proof. Since G is flat over R, it is étale if and only if $\Omega_{A/R} = 0$. Hence the assertion follows from Proposition 1.3.5. □

We discuss a number of important applications of Corollary 1.3.6.

Proposition 1.3.7. Every finite flat constant group scheme is étale.

Proof. Let M be a finite group. By the affine description in Example 1.1.6, we have
$$M \cong \text{Spec} \left(\bigoplus_{i \in M} \mathbb{R}e_i \right)$$
with the counit given by the projection to $\mathbb{R}e_{1_M}$. Hence the augment ideal of M is given by
$$I = \bigoplus_{i \neq 1_M} \mathbb{R}e_i.$$
Since I has its own ring structure, we find $I = I^2$. Thus M is étale by Corollary 1.3.6. □

Proposition 1.3.8. Assume that R is an algebraically closed field of characteristic p. Then $\mathbb{Z}/p\mathbb{Z}$ is a unique finite étale group scheme of order p. In particular, μ_p and α_p are not étale.

Proof. Note that $\mathbb{Z}/p\mathbb{Z}$ is étale by Proposition 1.3.7. For uniqueness, we use Proposition 1.3.1 together with the fact that $\mathbb{Z}/p\mathbb{Z}$ is a unique group of order p. The last statement then follows by observing that μ_p and α_p are not isomorphic to $\mathbb{Z}/p\mathbb{Z}$ for being nonreduced. □

Proposition 1.3.9. Let G be a finite flat group scheme over R. Then G is étale if and only if the (scheme theoretic) image of the unit section is open.

Proof. Let us write $G = \text{Spec} \,(A)$ where A is a locally free R-algebra of finite rank. Let I denote the augment ideal of G so that the (scheme theoretic) image of the unit section is $\text{Spec} \,(A/I)$. By Corollary 1.3.6, G is étale if and only if $I = I^2$. It is thus enough to show that the closed embedding $\text{Spec} \,(A/I) \hookrightarrow \text{Spec} \,(A)$ is an open embedding if and only if $I = I^2$.

Suppose that $I = I^2$. By Nakayama’s lemma there exists an element $f \in A$ with $f - 1 \in I$ and $fI = 0$. Note that f is idempotent; indeed, we quickly check $f^2 = f(f - 1) + f = f$. Now consider the natural map $A \twoheadrightarrow A_f$. This map is surjective since we have
$$\frac{a}{f^n} = \frac{af}{f^{n+1}} = \frac{af}{f} = \frac{a}{1}$$
for any $a \in A$.
Moreover, as $fI = 0$, the last identity shows that I is contained in the kernel. Conversely, for any element a in the kernel we have $f^na = 0$ for some n, or equivalently $fa = 0$ as f is idempotent, and consequently see that $a = -(f - 1)a + fa = -(f - 1)a \in I$. We thus get a ring isomorphism $A/I \cong A_f$, thereby deducing that the closed embedding $\text{Spec} \,(A/I) \hookrightarrow \text{Spec} \,(A)$ is an open embedding.

For the converse, we now suppose that $\text{Spec} \,(A/I) \hookrightarrow \text{Spec} \,(A)$ is an open embedding. Then it is a flat morphism, implying that the ring homomorphism $A \twoheadrightarrow A/I$ is also flat. Hence we obtain a short exact sequence
$$0 \longrightarrow I \otimes A A/I \longrightarrow A \otimes A A/I \longrightarrow A/I \otimes A A/I \longrightarrow 0,$$
which reduces to
$$0 \longrightarrow I/I^2 \longrightarrow A/I \longrightarrow A/I \longrightarrow 0$$
where the third arrow is the identity map. We thus deduce that $I/I^2 = 0$ as desired. □
Theorem 1.3.10. Let G be a finite flat group scheme over R. If the order of G is invertible in R, then G is étale.

Proof. Let us write $G = \text{Spec}(A)$ where A is a locally free R-algebra of finite rank. As usual, we let $m, e, \mu,$ and ϵ respectively denote the multiplication map, unit section, comultiplication, and counit of G. We have commutative diagrams of schemes

\[
\begin{array}{ccc}
\text{Spec}(R) & \xrightarrow{e} & G \\
(m) & & \downarrow (id) \\
G \times_R G & & G
\end{array}
\]

which induce the following commutative diagrams of R-algebras:

\[
\begin{array}{ccc}
R & \xleftarrow{\epsilon} & A \\
\mu & & \downarrow \epsilon \otimes \epsilon \\
A \otimes_R A & \xleftarrow{id} & A
\end{array}
\quad \quad (1.7)
\]

Let $I = \ker(\epsilon)$ be the augmentation ideal of G, and let x be an arbitrary element in I. Since $\epsilon(x) = 0$, the first diagram in (1.7) implies $\mu(x) \in \ker(\epsilon \otimes \epsilon)$. Moreover, since Lemma 1.3.4 yields a decomposition

\[
A \otimes_R A \cong (R \otimes_R R) \oplus (I \otimes_R R) \oplus (R \otimes_R I) \oplus (I \otimes_R I)
\]

as an R-module, we deduce that

\[
\ker(\epsilon \otimes \epsilon) \cong (I \otimes_R R) \oplus (R \otimes_R I) \oplus (I \otimes_R I).
\]

Hence we have $\mu(x) \in a \otimes 1 + 1 \otimes b + I \otimes_R I$ for some $a, b \in I$. Then we find $a = b = x$ using the second diagram of (1.7), thereby deducing

\[
\mu(x) \in x \otimes 1 + 1 \otimes x + I \otimes_R I. \quad (1.8)
\]

We assert that $[n]_G$ for each $n \geq 1$ acts as multiplication by n on I/I^2. For each $n \geq 1$, let $[n]_A : A \to A$ denote the R-algebra map induced by $[n]_G$. We have commutative diagrams

\[
\begin{array}{ccc}
G & \xrightarrow{[n]_G} & G \\
(m) & & \downarrow (n-1)_G \otimes \text{id} \\
G \times_R G & & A \otimes_R A
\end{array}
\quad \quad (1.9)
\]

The second diagram and (1.8) together yield

\[
[n]_A(x) \in [n-1]_A(x) + x + I^2 \quad \text{for each } x \in I.
\]

Since $[1]_A = \text{id}_A$, the desired assertion follows by induction.

Now we let m be the order of G. Since $[m]_G$ factors through the unit section of G by Theorem 1.1.10, its induced map on $\Omega_{A/R}$ factors as $\Omega_{A/R} \to \Omega_{R/R} \to \Omega_{A/R}$. As $\Omega_{R/R} = 0$, we deduce that $[m]_G$ induces a zero map on $\Omega_{A/R}$, and also on $\Omega_{A/R} \otimes_A A/I \cong I/I^2$ by Proposition 1.3.5. On the other hand, as noted in the preceding paragraph $[m]_G$ acts as a multiplication by m on I/I^2, which is an isomorphism if m is invertible in R. Hence we have $I/I^2 = 0$ if m is invertible in R, thereby completing the proof by Corollary 1.3.6. \qed

Corollary 1.3.11. Every finite flat group scheme over a field of characteristic 0 is étale.
1.4. The connected-étale sequence

For this subsection, we assume that R is a henselian local ring with residue field k. Under this assumption, we have a number of useful criteria for connectedness or étaleness of finite flat R-group schemes.

Lemma 1.4.1. A finite flat R-scheme is étale if and only if its special fiber is étale.

Proof. This is immediate from a general fact as stated in [Sta, Tag 02GM]. □

Lemma 1.4.2. Let T be a finite scheme over R. Then the following conditions are equivalent:

(i) T is connected.

(ii) T is a spectrum of a henselian local finite R-algebra.

(iii) The action of Γ_k on $T(\overline{k})$ is transitive.

Proof. Let us write $T \simeq \text{Spec}(B)$ where B is a finite R-algebra. Since R is a henselian local ring, we have

$$B \simeq \prod_{i=1}^n B_i$$

where each B_i is a henselian local ring. Note that each $T_i := \text{Spec}(B_i)$ corresponds to a connected component of T. Hence we see that (i) implies (ii). Conversely, (ii) implies (i) since the spectrum of a local ring is connected.

Let k_i denote the residue field of B_i for each i. Then we have

$$T(\overline{k}) = \text{Hom}_{R\text{-alg}}(B, \overline{k}) \cong \prod_{i=1}^n \text{Hom}_{k}(k_i, \overline{k})$$

where Γ_k acts through \overline{k}. Since each $\text{Hom}_{k}(k_i, \overline{k})$ is the orbit of the action of Γ_k, we deduce the equivalence between (i) and (iii). □

Corollary 1.4.3. A finite R-scheme is connected if and only if its special fiber is connected.

Remark. This is a special case of SGA 4 1/2, Exp. 1, Proposition 4.2.1, which says that for every proper R-scheme the special fiber functor induces a bijection between the connected components.

Definition 1.4.4. Given a finite flat group scheme G over R, we denote by G° the connected component of the unit section.

Proposition 1.4.5. For a finite flat R-group scheme G, we have $G^\circ(\overline{k}) = 0$.

Proof. As usual, we write $G = \text{Spec}(A)$ with some free R-algebra A of finite rank. By Lemma 1.4.2, we have $G^\circ = \text{Spec}(A^\circ)$ for some henselian local free R-algebra A° of finite rank. As the unit section factors through G°, it induces a surjective ring homomorphism $A^\circ \twoheadrightarrow R$. Denoting its kernel by J, we obtain an isomorphism $A^\circ/J \simeq R$, which induces an isomorphism between the residue fields of A° and R. We thus find that

$$G^\circ(\overline{k}) = \text{Hom}_{R\text{-alg}}(A^\circ, \overline{k}) \cong \text{Hom}_{k}(k, \overline{k}) = 0$$

as desired. □

Theorem 1.4.6. Let G be a finite flat group scheme over R. Then G° is a closed subgroup scheme of G such that the quotient $G^\text{ét} := G/G^\circ$ is étale, thereby giving rise to a short exact sequence of finite flat group schemes

$$0 \longrightarrow G^\circ \longrightarrow G \longrightarrow G^\text{ét} \longrightarrow 0.$$
Proof. Proposition 1.4.5 implies that \((G^0 \times_R G^0)(\overline{k}) \cong G^0(\overline{k}) \times G^0(\overline{k})\) is trivial. Therefore \(G^0 \times_R G^0\) is connected by Lemma 1.4.2.

We assert that \(G^0\) is a closed subgroup of \(G\). By construction, the unit section of \(G\) factors through \(G^0\). Moreover, as \(G^0 \times_R G^0\) is connected, its image under the multiplication map is a connected subscheme of \(G\) containing the unit section, and thus lies in \(G^0\). Similarly, the inverse of \(G\) maps \(G^0\) into itself by connectedness. We thus obtain the desired assertion.

Since \(G^0\) is a closed subgroup of \(G\), the quotient \(G^\text{ét} = G/G^0\) is a finite flat group scheme. Its unit section \(G^\text{ét}/G^0\) has an open image as the connected component \(G^0\) is open in \(G\) by the noetherian hypothesis on \(R\). Hence we find that \(G^\text{ét}\) is étale by Proposition 1.3.9, thereby completing the proof. □

Remark. We make several remarks about Theorem 1.4.6 and its proof.

1. Theorem 1.4.6 essentially reduces the study of finite flat group schemes over \(R\) to two cases, namely the connected case and the étale case. We have seen in the previous subsection that finite étale group schemes are relatively easy to understand (in terms of finite groups with a Galois action). Hence most technical difficulties for us will arise in trying to understand (a system of) connected finite flat group schemes.

2. Theorem 1.4.6 also holds when \(G\) is not commutative. To see this, we only have to prove that \(G^0\) is a normal subgroup scheme of \(G\). Let us consider the map \(\nu : G^0 \times_R G^0 \to G\) defined by \((g, h) \mapsto hgh^{-1}\). Let \(H\) be an arbitrary connected component of \(G\). As \(G^0 \times_R H\) is connected by Lemma 1.4.2 and Proposition 1.4.5, its image under \(\nu\) is a connected subscheme of \(G\) containing the unit section, and thus lies in \(G^0\). Since \(G\) is a disjoint union of its connected component, we find that the image of \(\nu\) lies in \(G^0\), thereby deducing the desired assertion.

3. We present an alternative proof of the fact that \(G^0 \times_R G^0\) is connected. By Corollary 1.4.3, connectedness of \(G^0\) implies connectedness of \(G^0_k\). Moreover, the image of the unit section yields a \(k\)-point in \(G^0_k\). Hence \(G^0_k\) is geometrically connected by a general fact as stated in [Sta, Tag 04KV]. Then another general fact as stated in [Sta, Tag 0385] implies that \(G^0_k \times_{\text{Spec}(k)} G^0_k\) is connected. We thus deduce the desired assertion by Corollary 1.4.3.

Definition 1.4.7. Given a finite flat group scheme \(G\) over \(R\), we refer to the exact sequence in Theorem 1.4.6 as the connected-étale sequence of \(G\).

Corollary 1.4.8. A finite flat scheme \(G\) is connected if and only if \(G(\overline{k}) = 0\).

Proof. This follows from Lemma 1.4.2, Proposition 1.4.5, and Theorem 1.4.6. □

Corollary 1.4.9. A finite flat group scheme \(G\) over \(R\) is étale if and only if \(G^0 = 0\).

Proof. If \(G^0 = 0\), then \(G\) is étale by Theorem 1.4.6. Conversely, if \(G\) is étale, the (scheme theoretic) image of the unit section is closed by definition and open by Proposition 1.3.9, thereby implying that \(G^0\) is precisely the image of the unit section. □

Corollary 1.4.10. Let \(f : G \to H\) be a homomorphism of finite flat \(R\)-group schemes with \(H\) étale. Then \(f\) uniquely factors through \(G^\text{ét} := G/G^0\).

Proof. The image of \(G^0\) should lie in \(H^0\), which is trivial by Corollary 1.4.9. Hence the assertion follows from the universal property of the quotient \(G^\text{ét} = G/G^0\). □
Proposition 1.4.11. Assume that $R = k$ is a perfect field. For every finite flat group k-scheme G, the connected-étale sequence canonically splits.

Proof. Let us write $G^{\text{ét}} := G/G^\circ$ as in Theorem [1.4.6]. We wish to prove that the homomorphism $G \to G^{\text{ét}}$ admits a section. If k has characteristic 0, the assertion is obvious by Corollary [1.3.11] and Corollary [1.4.9]. Hence we may assume that k has characteristic p.

As usual, we write $G = \text{Spec}(A)$ with some free k-algebra A of finite rank. Let G^{red} be the reduction of G; in other words, $G^{\text{red}} = \text{Spec}(A/n)$ where n denotes the nilradical of A. Since k is perfect, the product of two reduced k-schemes is reduced by some general facts as stated in [Sta, Tag 0201] and [Sta, Tag 035Z]. In particular, $G^{\text{red}} \times_k G^{\text{red}}$ must be reduced. Hence its image under the multiplication map should factor through G^{red}. Similarly, the inverse of G maps G^{red} into itself by reducedness. In addition, the unit section of G factors through G^{red} as k is reduced. We thus deduce that G^{red} is a closed subgroup of G.

Note that G^{red} is étale for being finite and reduced over k. Hence it suffices to prove that the homomorphism $G \to G^{\text{ét}}$ induces an isomorphism $G^{\text{red}} \simeq G^{\text{ét}}$. We have an identification $G^{\text{red}}(\overline{k})$ by reducedness of \overline{k}. Moreover, the homomorphism $G \to G^{\text{ét}}$ induces an isomorphism $G(\overline{k}) \simeq G^{\text{ét}}(\overline{k})$ by Theorem [1.4.6] and Corollary [1.4.8]. We thus find that the homomorphism $G^{\text{red}} \simeq G^{\text{ét}}$ induces an isomorphism $G^{\text{red}}(\overline{k}) \simeq G^{\text{ét}}(\overline{k})$ which is clearly Γ_k-equivariant. The desired assertion now follows by Proposition [1.3.1].

Remark. Interested readers can find an example of non-split connected-étale sequence over a non-perfect field in [Pin §15].

Example 1.4.12. Let E be an elliptic curve over $\overline{\mathbb{F}}_p$. By Theorem [1.4.6], the group scheme $E[p]$ admits a connected-étale sequence

$$0 \to E[p]^{\circ} \to E[p] \to E[p]^{\text{ét}} \to 0.$$

Moreover, we have $E[p](\overline{\mathbb{F}}_p) \simeq E[p]^{\text{ét}}(\overline{\mathbb{F}}_p)$ by Proposition [1.4.5]. Hence Proposition [1.3.1] implies that $E[p]^{\text{ét}}$ has order 1 when E is supersingular and order p when E is ordinary.

Let us now assume that E is ordinary. We have $E[p]^{\text{ét}} \simeq \mathbb{Z}/p\mathbb{Z}$ by Proposition [1.3.8] and thus obtain

$$\mu_p \simeq (\mathbb{Z}/p\mathbb{Z})^\vee \hookrightarrow E[p]^{\text{ét}} \simeq E^\vee[p] \simeq E[p]$$

by Proposition [1.2.5], Proposition [1.2.10], Corollary [1.2.8] and self-duality of E. Since μ_p is of order p and not étale as noted in Proposition [1.3.8], it must be connected by Theorem [1.4.6]. We thus have an embedding $\mu_p \hookrightarrow E[p]^{\circ}$, which must be an isomorphism by order consideration. Hence the connected-étale sequence for $E[p]$ becomes

$$0 \to \mu_p \to E[p] \to \mathbb{Z}/p\mathbb{Z} \to 0.$$

We thus find $E[p] \simeq \mu_p \times \mathbb{Z}/p\mathbb{Z}$ by Proposition [1.4.11].

Remark. If E is supersingular, it is quite difficult to describe the p-torsion subgroup scheme $E[p]$. Note that $E[p]$ must be a self-dual connected finite flat group scheme of order p^2 over $\overline{\mathbb{F}}_p$. It is known that the only simple objects in the category of finite flat group schemes over $\overline{\mathbb{F}}_p$ are $\mu_p, \alpha_p, \mathbb{Z}/p\mathbb{Z}$, and $\mathbb{Z}/\ell\mathbb{Z}$ for all $\ell \neq p$. In particular, α_p is the only connected simple object with connected Cartier dual. Hence $E[p]$ should fit into an exact sequence

$$0 \to \alpha_p \to E[p] \to \alpha_p \to 0.$$

It turns out that $E[p]$ is a unique self-dual finite flat group scheme over $\overline{\mathbb{F}}_p$ which arises as a non-splitting self-extension of α_p.

1.5. The Frobenius morphism

For this subsection, we assume that \(R = k \) is a field of characteristic \(p \). We let \(\sigma \) denote the Frobenius endomorphism of \(k \).

We introduce several crucial notions for studying finite flat group schemes over \(k \).

Definition 1.5.1. Let \(T = \text{Spec}(B) \) be an affine \(k \)-scheme.

1. We define the Frobenius twist of \(T \) by \(T^{(p)} := T \times_{k, \sigma} k \). In other words, \(T^{(p)} \) fits into the cartesian diagram

\[
\begin{array}{ccc}
T^{(p)} & \longrightarrow & T \\
\downarrow & & \downarrow \\
\text{Spec}(k) & \longrightarrow & \text{Spec}(k)
\end{array}
\]

where the bottom map is induced by \(\sigma \).

2. The absolute Frobenius of \(T \) is the morphism \(\text{Frob}_T : T \rightarrow T \) induced by the \(p \)-th power map on \(B \).

3. The relative Frobenius of \(T \) (over \(k \)) is the morphism \(\varphi_T : T \rightarrow T^{(p)} = T \times_{\text{Spec}(k), \sigma} k \) defined by \(\text{Frob}_T, s \) where \(s \) denotes the structure morphism of \(T \) over \(k \).

4. For any \(r \geq 1 \), we inductively define the \(p^r \)-Frobenius twist and the relative \(p^r \)-Frobenius of \(T \) as follows:

\[
T^{(p^r)} := (T^{(p^{r-1})})^{(p)} \quad \text{and} \quad \varphi_T^r := \varphi_{T^{(p^{r-1})}} \circ \varphi_T^{r-1}.
\]

Lemma 1.5.2. Let \(T = \text{Spec}(B) \) be an affine \(k \)-scheme. Then \(\varphi_T^r \) is induced by the \(k \)-algebra homomorphism \(B^{(p^r)} := B \otimes_{k, \sigma^r} k \rightarrow B \) defined by \(x \otimes c \mapsto c \cdot x^{p^r} \).

Proof. The assertion follows from alternative identifications

\[
T^{(p^r)} \cong T \times_{k, \sigma^r} k \quad \text{and} \quad \varphi_T^r = (\text{Frob}_T^r, s) : T \rightarrow T^{(p^r)} \cong T \times_{k, \sigma^r} k
\]

where \(s \) denotes the structure morphism of \(T \) over \(k \).

Lemma 1.5.3. Let \(T \) and \(U \) be \(k \)-schemes.

(a) We have identifications \((T \times_k U)^{(p)} \cong T^{(p)} \times_k U^{(p)} \) and \(\varphi_{(T \times_k U)} = (\varphi_T, \varphi_U) \).

(b) Any \(k \)-scheme morphism \(T \rightarrow U \) yields a commutative diagram

\[
\begin{array}{ccc}
T & \xrightarrow{\varphi_T} & T^{(p)} \\
\downarrow & & \downarrow \\
U & \xrightarrow{\varphi_U} & U^{(p)}
\end{array}
\]

where the second vertical arrow is the induced by the first vertical arrow.

Proof. Considering the Frobenius twist as a functor on \(k \)-schemes, both statements are straightforward to verify using Definition 1.5.1.

Corollary 1.5.4. Let \(G \) be a finite flat \(k \)-scheme, and let \(q = p^r \) for some \(r \geq 1 \).

1. The \(q \)-Frobenius twist \(G^{(q)} \) is a finite flat \(k \)-group scheme.

2. The relative \(q \)-Frobenius \(\varphi^r_G \) is a group scheme homomorphism.

Proof. By induction, we immediately reduce to the case \(p = q \). Then the desired assertions easily follow from Lemma 1.5.3.
Definition 1.5.5. Let G be a finite flat k-group scheme. We define the Verschiebung of G by $\psi_G := \varphi_G^\vee$, i.e., the dual map of the relative Frobenius of G^\vee.

Remark. From the affine description of the Frobenius twist as noted in Lemma 1.5.2, we obtain a natural identification $((G^\vee)^{(p)})^\vee \cong G^{(p)}$. We can thus regard ψ_G as a homomorphism from $G^{(p)}$ to G.

Lemma 1.5.6. Let G and H be finite flat k-group schemes.

(a) We have an identification $\psi_{G \times_k H} = (\psi_G, \psi_H)$.

(b) Any k-group scheme homomorphism $G \rightarrow H$ yields a commutative diagram

$$
\begin{array}{ccc}
G & \xrightarrow{\psi_G} & G^{(p)} \\
\downarrow & & \downarrow \\
H & \xleftarrow{\psi_H} & H^{(p)}
\end{array}
$$

where the second vertical arrow is the induced by the first vertical arrow.

Proof. This is obvious by Lemma 1.5.3 and Definition 1.5.5.

Proposition 1.5.7. We have the following statements:

(1) $\varphi_{\alpha_p} = \psi_{\alpha_p} = 0$.

(2) $\varphi_{\mu_p} = 0$ and ψ_{μ_p} is an isomorphism.

(3) $\varphi_{\mathbb{Z}/p\mathbb{Z}}$ is an isomorphism and $\psi_{\mathbb{Z}/p\mathbb{Z}} = 0$.

Proof. All statements are straightforward to verify using the affine descriptions from Example 1.1.6 and the duality results from Propositions 1.2.5 and 1.2.6.

The Frobenius and Verschiebung turn out to satisfy a very simple relation.

Proposition 1.5.8. Given a finite flat k-group scheme G, we have

$$
\psi_G \circ \varphi_G = [p]_G \quad \text{and} \quad \varphi_G \circ \psi_G = [p]_{G^{(p)}}.
$$

Proof. The following proof is excerpted from [Pin §14].

Let us write $G = \text{Spec} (A)$ and $G^\vee = \text{Spec} (A^\vee)$ with some free k-algebra A of finite rank. We also write $A^{(p)} := A \otimes_{k,\sigma} k$ and $(A^\vee)^{(p)} := A^\vee \otimes_{k,\sigma} k$. We let φ_A and φ_{A^\vee} denote the k-algebra maps inducing φ_G and φ_{G^\vee}, respectively. Note that, by definition, ψ_G is induced by φ_{A^\vee}.

By the Lemma 1.5.2 the map $\varphi_A : A^{(p)} \rightarrow A$ is given by $x \otimes c \mapsto c \cdot x^p$. We also have a similar description for φ_{A^\vee}, which yields a commutative diagram

$$
\begin{array}{ccc}
(A^\vee)^{(p)} = A^\vee \otimes_{k,\sigma} k & \xrightarrow{f \otimes c \mapsto [c \cdot f^{\otimes p}]} & \text{Sym}^p A^\vee \\
\downarrow & & \downarrow \\
(A^\vee)^{\otimes p} & \otimes f_i \twoheadrightarrow & A^\vee
\end{array}
$$

(1.9)
where \prod_A denotes the ring multiplication in $A \lor$. Note that the left horizontal map is k-algebra homomorphism since k has characteristic p. By dualizing (1.9) over k, we obtain a commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\varphi^\lor_A} & (A \otimes p)^{S_p} \\
\downarrow & & \downarrow \lambda \\
A^\otimes p & \xrightarrow{\varphi_A} & A \otimes_{k,\sigma} k = A^{(p)}
\end{array}
\]

(1.10)

where S_p denotes the symmetric group of order p.

Let us give an explicit description of the map λ in (1.10). It is not hard to see that any nontrivial S_p-orbit in $(A \otimes p)^{S_p}$ has p terms and thus maps to 0 as k has characteristic p. Hence we only need to specify $\lambda(a \otimes p)$ for each $a \in A$. By the isomorphism $A \cong (A \lor) \lor$, we may identify each $a \in A$ with $\epsilon_a \in (A \lor) \lor$ defined by $\epsilon_a(f) = f(a)$ for all $f \in A \lor$. Since λ is the dual map of the left horizontal map in (1.9), for each $f \otimes c \in A \lor \otimes_{k,\sigma} k \cong (A \otimes_{k,\sigma} k)^\lor$ we have

$\lambda(a \otimes p)(f \otimes c) = (\epsilon_a \otimes p)((c \cdot f \otimes p)) = c \cdot f(a)^p = (f \otimes c)(a \otimes 1) = (\epsilon_a \otimes 1)(f \otimes c)$

where the third equality follows from the identity $f(a) \otimes c = 1 \otimes c \cdot f(a)^p$ in $A \otimes_{k,\sigma} k$. We thus find $\lambda(a \otimes p) = a \otimes 1$.

By our discussion in the preceding paragraph, the diagram (1.10) extends to a commutative diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\varphi^\lor_A} & (A \otimes p)^{S_p} \\
\downarrow & & \downarrow \lambda \\
A^\otimes p & \xrightarrow{\otimes x_i \mapsto \prod_A x_i} & A
\end{array}
\]

where \prod_A denotes the ring multiplication in A. Note that the diagonal map is given by the comultiplication of A, as it is the dual of the diagonal map in (1.10) given by the ring multiplication in $A \lor$. Hence we obtain a commutative diagram of k-group schemes

\[
\begin{array}{ccc}
G & \xrightarrow{\psi_G} & G^{(p)} \\
\downarrow \scriptstyle{(x_1,\ldots,x_p) \mapsto (x_1,\ldots,x_p)} & & \downarrow \scriptstyle{\varphi_G} \\
G^{\times p} & \xleftarrow{(x,\ldots,x) \mapsto x} & G
\end{array}
\]

which yields $\psi_G \circ \varphi_G = [p]_G$. Then we use Lemma 1.5.3 and Lemma 1.5.6 to obtain a commutative diagram

\[
\begin{array}{ccc}
G^{(p)} & \xrightarrow{\varphi_G^{(p)}} & G^{(p^2)} \\
\downarrow \scriptstyle{\psi_G} & & \downarrow \scriptstyle{\psi_G^{(p)}} \\
G & \xrightarrow{\varphi_G} & G^{(p)}
\end{array}
\]

which yields $\varphi_G \circ \psi_G = \psi_G^{(p)} \circ \varphi_G^{(p)} = [p]_{G^{(p)}}$.

Let us now present a couple of important applications of the Frobenius morphism.
Proposition 1.5.9. Let $G = \text{Spec } (A)$ be a finite flat k-group scheme.

(1) G is connected if and only if φ_G^r vanishes for some r.
(2) G is étale if and only if φ_G is an isomorphism.

Proof. Let I denote the augmentation ideal of A. Note that I is a maximal ideal since $A/I \simeq k$. We also have a k-space decomposition $A \simeq k \oplus I$ by Lemma 1.3.4.

Suppose that G is connected. Lemma 1.4.2 implies that A is a local ring, which is artinian for being finite over a field k. Hence its maximal ideal I is nilpotent, implying that there exists some r with $x^r = 0$ for all $x \in I$. We thus find $\varphi_G^r = 0$ by the decomposition $A \simeq k \oplus I$ and Lemma 1.5.2.

Conversely, suppose that $\varphi_G^r = 0$ for some r. By observing that φ_G^r induces an isomorphism $G(\overline{k}) \simeq G^{(p^r)}(\overline{k})$, we find that $G(\overline{k})$ is trivial. Hence G is connected by Corollary 1.4.8. We have thus proved (1).

Next we suppose that φ_G is an isomorphism. Then φ_G induces an isomorphism on G^o; in other words, $\varphi_G^{(p^r)}$ is an isomorphism. This inductively implies that $\varphi_{(G^o)^{(p^r)}}$ is an isomorphism for all r, and consequently that φ_{G^o} is an isomorphism for all r. On the other hand, we have $\varphi_{G^o}^r = 0$ for some r by (1). We thus find $G^o = 0$, which implies étaleness of G by Corollary 1.4.9.

Conversely, we assume that G is étale. Note that ker(φ_G) is connected by (1) which must be trivial as G^o is trivial by Corollary 1.4.9. We then conclude that φ_G is an isomorphism by comparing the orders of G and $G^{(p^r)}$. □

Proposition 1.5.10. The order of a connected finite flat k-group scheme is a power of p.

Proof. Let $G = \text{Spec } (A)$ be a connected finite flat k-group scheme of order n. We proceed by induction on n. The assertion is trivial when $n = 1$, so we only need to consider the inductive step.

Let us set $H := \ker(\varphi_G)$. Denote by I be the augmentation ideal of G, and choose elements $x_1, \ldots, x_d \in I$ which lift a basis of I/I^2. Connectedness of G implies that A is a local ring with maximal ideal I, as noted in the proof of Proposition 1.5.9. Hence x_1, \ldots, x_d generate I by Nakayama’s Lemma. In turn we have

$$H \simeq \text{Spec } (A/(x_1^p, \ldots, x_d^p)) \quad (1.11)$$

by the affine description of φ_G as noted in Lemma 1.5.2. We also have $d > 0$ by Corollary 1.3.6 as G is not étale by Corollary 1.4.9.

We assert that the order of H is p^d. It suffices to show that the map

$$\lambda : k[t_1, \ldots, t_d]/(t_1^p, \ldots, t_d^p) \longrightarrow A/(x_1^p, \ldots, x_d^p)$$

defined by $t_i \mapsto x_i$ is an isomorphism. Surjectivity is clear by definition, so we only need to show injectivity. Recall that we have a k-space decomposition $A \simeq k \oplus I$ by Lemma 1.3.4.

We let $\pi : A \longrightarrow I/I^2$ be the natural projection map, and denote by μ the comultiplication of A. For each $j = 1, \ldots, d$, we define a k-algebra map

$$D_j : A \overset{\mu}{\longrightarrow} A \otimes_k A \overset{(\text{id}, \pi)}{\longrightarrow} A \otimes_k I/I^2 \longrightarrow A$$

where the last arrow is induced by the map $I/I^2 \rightarrow k$ taking x_j to 1 and x_i to 0 for all $i \neq j$. Note that

$$\mu(x_i) \in x_i \otimes 1 + 1 \otimes x_i + I \otimes_k I \quad \text{for all } i = 1, \ldots, d$$
as noted in (1.8) in the proof of Theorem 1.3.10. We thus find $\lambda \frac{\partial}{\partial t_j} = D_j \lambda$ as both sides agree on t_i’s. This means that $\ker(\lambda)$ is stable under $\frac{\partial}{\partial t_j}$ for each $j = 1, \cdots, d$. In particular, every nonzero element in $\ker(\lambda)$ with minimal degree must be constant. Hence $\ker(\lambda)$ is either the zero ideal or the unit ideal. However, the latter is impossible since λ is surjective. We thus deduce that $\ker(\lambda)$ is trivial as desired.

As G is connected, we have $\varphi_G^r = 0$ for some r by Proposition 1.5.9. Then $\varphi_G^r = 0$ induces a trivial map on G/H, which means that G/H is also connected by Proposition 1.5.9. Hence its order n/p^d must be a power of p by the induction hypothesis. We thus conclude that n is a power of p as desired. □

Corollary 1.5.11. Let G be a connected finite flat k-group scheme with the augmentation ideal I. If $\varphi_G = 0$, the order of G is p^d where d is the dimension of I/I^2 over k.

Proof. This follows from the proof of Proposition 1.5.10. □

Remark. Proposition 1.5.9 and Proposition 1.5.10 will be very useful for us, even when the base ring is not necessarily a field. In fact, if the base ring is a local ring with perfect residue field of characteristic p, we can check the order, connectedness, or étaleness of a finite flat group scheme by passing to the special fiber as noted in Lemma 1.4.1 and Lemma 1.4.2.

As a demonstration, we present another proof of Theorem 1.3.10 in the case where R is a local ring, without using Theorem 1.1.10. As remarked above, we may assume that R is a field by passing to the special fiber. By Corollary 1.4.9 it suffices to prove that G° is trivial. When R has characteristic p, this immediately follows from Proposition 1.5.10 by invertibility of the order. Let us now suppose that R has characteristic 0. Arguing as in the proof of Proposition 1.5.10, we can show

$$G^\circ \simeq \text{Spec } (R[t_1, \cdots, t_d])$$

for some d. Then we must have $d = 0$ as G is finite over R, thereby deducing that G° is trivial as desired.

In fact, with some additional work we can even prove Theorem 1.1.10 when the base ring is a field, as explained in [Tat97 §3.7]. The curious reader can also find Deligne’s proof of Theorem 1.1.10 in [Sti §3.3]. We are also very close to a complete classification of all simple objects in the category of finite flat group schemes over \overline{k} as remarked after Example 1.4.12. Instead of pursuing it here, we refer the readers to [Sti Theorem 54] for a proof.
2. \(p\)-divisible groups

While finite flat group schemes have an incredibly rich theory, their structure is too simple to capture much information about \(p\)-adic Galois representations. More explicitly, as stated in Proposition 1.3.1, they are only capable of carrying information about Galois actions on finite groups. This fact leads us to consider a system of finite flat group schemes.

In this section, we develop some basic theory about \(p\)-divisible groups, which play a crucial role in many parts of \(p\)-adic Hodge theory and arithmetic geometry. While our focus is on their relation to the study of \(p\)-adic Galois representations, we also try to indicate their applications to the study of abelian varieties. The primary references for this section are Demazure’s book [Dem72] and Tate’s paper [Tat67].

2.1. Basic definitions and properties

Throughout this section, we let \(R\) denote a noetherian base ring.

Definition 2.1.1. Let \(G = \varprojlim G_v\) be an inductive limit of finite flat group schemes over \(R\) with group scheme homomorphisms \(i_v : G_v \to G_{v+1}\). We say that \(G\) is a \(p\)-divisible group of height \(h\) over \(R\) if the following conditions are satisfied:

(i) Each \(G_v\) has order \(p^{vh}\).

(ii) Each \(i_v\) fits into an exact sequence

\[
0 \longrightarrow G_v \overset{i_v}{\longrightarrow} G_{v+1} \overset{[p^v]}{\longrightarrow} G_{v+1}.
\]

For each \(v\) and \(t\), we often write \(G_v[p^t] := \ker([p^t]_{G_v})\).

Remark. The condition (ii) amounts to saying that each \(G_v\) is identified via \(i_v\) with \(G_{v+1}[p^v]\). We may thus regard \(G\) as an fpqc sheaf where \(G(T) := \varprojlim G_v(T)\) for each \(R\)-scheme \(T\).

Example 2.1.2. We present some important examples of \(p\)-divisible groups.

1. The constant \(p\)-divisible group over \(R\) is defined by \(\mathbb{Q}_p/\mathbb{Z}_p := \varprojlim \mathbb{Z}/p^v\mathbb{Z}\) with the natural inclusions. Note that the height of \(\mathbb{Q}_p/\mathbb{Z}_p\) is 1.

2. The \(p\)-power roots of unity over \(R\) is defined by \(\mu_{p^\infty} := \varprojlim \mu_{p^v}\) with the natural inclusions. Note that the height of \(\mu_{p^\infty}\) is 1.

3. Given an abelian scheme \(A\) over \(R\), we define its \(p\)-divisible group by \(A[p^\infty] := \varprojlim A[p^v]\) with the natural inclusions. The height of \(A[p^\infty]\) is \(2g\) where \(g\) is the dimension of \(A\).

Remark. Another standard notation for \(\mu_{p^\infty}\) is \(\mathbb{G}_m[p^\infty]\). Tate used a similar notation \(\mathbb{G}_m(p)\) in [Tat67]. These notations are motivated by the identifications \(\mu_{p^v} \cong \mathbb{G}_m[p^v] := \ker([p^v]_{\mathbb{G}_m})\).

Definition 2.1.3. Let \(G = \varprojlim G_v\) and \(H = \varprojlim H_v\) be \(p\)-divisible groups over \(R\).

1. A system \(f = (f_v)\) of group scheme homomorphisms \(f_v : G_v \to H_v\) is called a homomorphism from \(G\) to \(H\) if it is compatible with the transition maps for \(G\) and \(H\) in the sense of the commutative diagram

\[
\begin{align*}
G_v & \xrightarrow{f_v} H_v \\
\downarrow i_v & \quad \downarrow j_v \\
G_{v+1} & \xrightarrow{f_{v+1}} H_{v+1}
\end{align*}
\]

where \(i_v\) and \(j_v\) are transition maps of \(G\) and \(H\), respectively.
(2) Given a homomorphism \(f = (f_v) \) from \(G \) to \(H \), we define its \textit{kernel} by \(\ker(f) := \lim \ker(f_v) \).

Example 2.1.4. Given a \(p \)-divisible group \(G = \lim G_v \) over \(R \), we define the \textit{multiplication} by \(n \) on \(G \) by a homomorphism \([n]_G := ([n]_{G_v})\).

Lemma 2.1.5. Let \(G = \lim G_v \) be a \(p \)-divisible group over \(R \). There exist homomorphisms \(i_v:t : G_v \to G_{v+t} \) and \(j_v:t : G_{v+t} \to G_t \) for each \(v \) and \(t \) with the following properties:

(i) The map \(i_v:t \) induces an isomorphism \(G_v \cong G_{v+t}[p^n] \).

(ii) There exists a commutative diagram

\[
\begin{array}{ccc}
G_{v+t} & \xrightarrow{[p^n]} & G_{v+t} \\
\downarrow{j_v} & & \downarrow{i_v} \\
G_t & & \\
\end{array}
\]

(iii) We have a short exact sequence

\[
0 \to G_v \xrightarrow{i_v} G_{v+t} \xrightarrow{j_v} G_t \to 0.
\]

Proof. Let us denote the transition map \(G_v \to G_{v+1} \) by \(i_v \), and take \(i_v:t := i_{v+1} \circ \cdots \circ i_v \) for each \(v \) and \(t \). We may regard \(G_v \) as a closed subgroup scheme of \(G_{v+t} \) via \(i_v:t \). The property [i] is then obvious for \(t = 1 \) by definition. For \(t > 1 \), we inductively proceed by observing

\[
G_{v+t}[p^n] \cong G_{v+t}[p^{n+t-1}] \cap G_v[p^n] \cong G_{v+t-1} \cap G_{v+t}[p^n] \cong G_{v+t-1}[p^n].
\]

Now [i] implies that each \(G_v \) is annihilated by \([p^n] \). More generally, the image of \([p^n]_{G_{v+t}} \) is annihilated by \([p^t] \) for each \(v \) and \(t \). Hence the map \([p^n]_{G_{v+t}} \) uniquely factors over a map \(j_v:t : G_{v+t} \to G_t \), thereby yielding a commutative diagram as stated in (ii)

We now have left exactness of the sequence in (iii) by (i) and (ii). Moreover, \(j_{v+t} \) induces a closed embedding \(G_{v+t}/G_v \to G_t \), which is easily seen to be an isomorphism by comparing the orders. We thus deduce the exactness of the sequence in (iii). \(\square \)

Corollary 2.1.6. Let \(G = \lim G_v \) be a \(p \)-divisible group over \(R \).

(1) We have an identification \(G_v \cong \ker([p^n]_G) \) for each \(v \).

(2) The homomorphism \([p] \) is surjective as a map of fpqc sheaves.

Remark. Corollary 2.1.6 shows that the kernel of a homomorphism between two \(p \)-divisible groups may not be a \(p \)-divisible group.

We note some fundamental properties of \(p \)-divisible groups inherited from finite flat group schemes.

Proposition 2.1.7. Let \(G = \lim G_v \) be a \(p \)-divisible group of height \(h \) over \(R \).

(1) For each \(v \), we have an exact sequence

\[
G_{v+1} \xrightarrow{[p^n]} G_{v+1} \xrightarrow{j_v} G_v \to 0.
\]

(2) The inductive system \(G^\vee := \lim G^\vee_v \) with the \(j^\vee_v \) as transition maps is a \(p \)-divisible group of height \(h \) over \(R \).

(3) There is a canonical isomorphism \((G^\vee)^\vee \cong G \).
Proof. Let us take $i_{v,t}$ and $j_{v,t}$ as in Lemma 2.1.5. Then we have a commutative diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & G_v & \rightarrow & G_{v+1} & \rightarrow & 0 \\
& & \downarrow_{i_{v,t}=i_{v,1}} & & \downarrow_{j_{v,t}=j_{v,1,v}} & & \\
0 & \rightarrow & G_v & \rightarrow & G_{v+1} & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \\
0 & \rightarrow & G_v & \rightarrow & G_{v+1} & \rightarrow & 0 \\
\end{array}
\]

where the horizontal arrows form an exact sequence. In particular, we obtain an exact sequence as stated in (1). Moreover, as $[p^r]_G = [p^r]_{G_{v+1}}$ by Lemma 1.2.4, we have a dual exact sequence

\[
0 \rightarrow G_v^\vee \rightarrow G_{v+1}^\vee \rightarrow 0
\]

by Proposition 1.2.10. Hence we deduce (2) and (3) by Theorem 1.2.3.

Definition 2.1.8. Given a p-divisible group G over R, we refer to the p-divisible group G^\vee in Proposition 2.1.7 as the Cartier dual of G.

Example 2.1.9. The Cartier duals for p-divisible groups from Example 2.1.2 are as follows:

1. We have an identification $(\mathbb{Q}_p/\mathbb{Z}_p)^\vee \cong \mu_{p^\infty}$ by Proposition 1.2.5.
2. Given an abelian scheme \mathcal{A} over R, we have $\mathcal{A}[p^\infty]^\vee \cong \mathcal{A}^\vee[p^\infty]$ by Corollary 1.2.8 where \mathcal{A}^\vee denotes the dual abelian scheme of \mathcal{A}.

Proposition 2.1.10. Assume that R is a henselian local ring with residue field k. Let $G = \lim G_v$ be a p-divisible group over R, and write $G_v^{\acute{e}t} := G_v/G_v^\circ$ for each v. Then we have a short exact sequence of p-divisible groups

\[
0 \rightarrow G^\circ \rightarrow G \rightarrow G^{\acute{e}t} \rightarrow 0
\]

where $G^\circ = \lim G_v^\circ$ and $G^{\acute{e}t} = \lim G_v^{\acute{e}t}$.

Proof. Let $i_v : G_v \rightarrow G_{v+1}$ denote the transition map. It suffices to construct homomorphisms $i_v^\circ : G_v^\circ \rightarrow G_{v+1}^\circ$ and $i_v^{\acute{e}t} : G_v^{\acute{e}t} \rightarrow G_{v+1}^{\acute{e}t}$ so that the diagram

\[
\begin{array}{cccccc}
0 & \rightarrow & G_v^\circ & \rightarrow & G_v & \rightarrow & G_v^{\acute{e}t} & \rightarrow & 0 \\
& & \downarrow{i_v^\circ} & & \downarrow{i_v} & & \downarrow{i_v^{\acute{e}t}} & & \\
0 & \rightarrow & G_{v+1}^\circ & \rightarrow & G_{v+1} & \rightarrow & G_{v+1}^{\acute{e}t} & \rightarrow & 0 \\
& & \downarrow & & \downarrow & & \downarrow & & \\
0 & \rightarrow & G_v^{p^r} & \rightarrow & G_{v+1}^{p^r} & \rightarrow & 0 \\
\end{array}
\]

is commutative with exact rows and columns. Exactness of three rows directly follows from Theorem 1.4.6 while exactness of the middle column is immediate by definition. In addition, the bottom two squares clearly commute.

By Corollary 1.4.10, there is a unique choice of $i_v^{\acute{e}t}$ such that the top right square commutes. We assert that the third column is exact with this choice. By Proposition 1.3.1 we may work on the level of \overline{k}-points. Since the first column vanishes on \overline{k}-points by Proposition 1.4.5, all horizontal arrows between the second and the third column become isomorphism on k-points. Hence the desired exactness follows from exactness of the middle column.
Let us now regard G_v^o as a subgroup of G_{v+1} via the embedding i_v. Then G_v^o must lie in G_{v+1}^o for being connected. Hence there exists a unique closed embedding i_v^o which makes the top left square commutative.

It remains to show that the first column is exact with our choice of i_v^o. As i_v^o is a closed embedding by construction, we only need to show that G_v^o is a subgroup of both $G_v \cong G_{v+1}[p^v]$ and $G_v^o \cong G_{v+1}[p^v]$. Indeed, as G_v^o is a subgroup of both $G_v \cong G_{v+1}[p^v]$ and $G_v^o \cong G_{v+1}[p^v]$, it must be a subgroup of $G_v^o \cong G_{v+1}[p^v]$. Hence it remains to show that $G_v^o \cong G_{v+1}[p^v]$ is a subgroup of G_v^o. As $G_v^o \cong G_{v+1}[p^v]$ is a subgroup of $G_v^o \cong G_{v+1}[p^v]$, it suffices to show that $G_v^o \cong G_{v+1}[p^v]$ is connected. Since $G_{v+1}[k] = 0$ by Corollary 1.4.8, we have $G_{v+1}[p^v][k] = 0$ as well. Hence $G_{v+1}[p^v]$ is connected by Corollary 1.4.8. □

Definition 2.1.11. Assume that $R = k$ is a field of characteristic p. Let $G = \varprojlim G_v$ be a p-divisible group over k.

(1) The Frobenius twist of G is an inductive limit $G^{(p)} := \varprojlim G_v^{(p)}$ where the transition maps are induced by the transition maps for G.

(2) We define the Frobenius of G by $\varphi_G := (\varphi_{G_v})$ and the Verschiebung of G by $\psi_G := (\psi_{G_v})$.

Proposition 2.1.12. Assume that $R = k$ is a field of characteristic p. Let G be a p-divisible group of height h over k.

(1) The Frobenius twist $G^{(p)}$ is a p-divisible group of height h over k.

(2) The Frobenius φ_G and the Verschiebung ψ_G are homomorphisms.

(3) We have $\psi_G \circ \varphi_G = [p]_G$ and $\varphi_G \circ \psi_G = [p]_{G^{(p)}}$.

Proof. The statements (1) and (2) are straightforward to check using Lemma 1.5.3 and Lemma 1.5.6. The statement (3) is a direct consequence of Proposition 1.5.8. □

We finish this subsection by describing a connection between p-divisible groups and continuous Galois representations.

Definition 2.1.13. Assume that $R = k$ is a field. Given a p-divisible group $G = \varprojlim G_v$ over k, we define the Tate module of G by

$$T_p(G) := \varprojlim G_v(k)$$

where the transition maps are induced by the homomorphisms $j_{v,1} : G_{v+1} \rightarrow G_v$ from Lemma 2.1.5.

Proposition 2.1.14. Assume that $R = k$ is a field with characteristic not equal to p. Then we have an equivalence of categories

$$\{p\text{-divisible groups over } k\} \sim \{\text{finite free } \mathbb{Z}_p\text{-modules with a continuous } \Gamma_k\text{-action}\}$$

defined by $G \mapsto T_p(G)$.

Proof. Let us first verify that the functor is well-defined. Let $G = \varprojlim G_v$ be an arbitrary p-divisible group over k. Since G_v is killed by $[p^v]$ as noted in Lemma 2.1.5, each $G_v(k)$ is a finite free module over $\mathbb{Z}/p^v\mathbb{Z}$ with a continuous Γ_k-action. Hence $T_p = \varprojlim G_v(k)$ is a finite free \mathbb{Z}_p-module with a continuous Γ_k-action.

As all finite flat k-group schemes of p-power order are étale by Theorem 1.3.10, we deduce full faithfulness of the functor from Proposition 1.3.11. Hence it remains to prove essential surjectivity of the functor. Let M be a finite free \mathbb{Z}_p-module with a continuous Γ_k-action. As each $M_v := M/(p^v)$ gives rise to a finite étale group scheme G_v by Proposition 1.3.1, we form a p-divisible group $G = \varprojlim G_v$ with $T_p(G) = M$. □
2. **Serre-Tate equivalence for connected p-divisible groups**

In this subsection, we assume that R is a complete noetherian local ring with residue field k of characteristic p.

Definition 2.2.1. Let $G = \lim \to G_v$ be a p-divisible group over R.

1. We say that G is **connected** if each G_v is connected, and **étale** if each G_v is étale.

2. The p-divisible groups G^o and $G^{ét}$ as constructed in Proposition 2.1.10 are respectively called the connected part and the étale part of G.

Example 2.2.2. Below are essential examples of étale/connected p-divisible groups.

1. The constant p-divisible group $\mathbb{Q}_p/\mathbb{Z}_p$ is étale by Proposition 1.3.7.

2. The p-power roots of unity μ_p^∞ is connected by Corollary 1.4.8.

For the rest of this subsection, we let $\mathcal{A} := R[[t_1, \cdots, t_d]]$ denote the ring of power series over R with d variables. Note that $\mathcal{A} \hat{\otimes}_R \mathcal{A} \cong R[[t_1, \cdots, t_d, u_1, \cdots, u_d]]$. We often write $T := (t_1, \cdots, t_d)$ and $U := (u_1, \cdots, u_d)$.

Let us introduce the key objects for studying connected p-divisible groups over R.

Definition 2.2.3. A continuous ring homomorphism $\mu : \mathcal{A} \to \mathcal{A} \hat{\otimes}_R \mathcal{A}$ is called a (commutative) formal group law of dimension d over R if the power series $\Phi_i(T,U) := \mu(t_i) \in \mathcal{A} \hat{\otimes}_R \mathcal{A}$ form a family $\Phi(T,U) := (\Phi_i(T,U))$ that satisfies the axioms

(i) associativity: $\Phi(T,\Phi(U,V)) = \Phi(\Phi(T,U),V)$,

(ii) unit section: $\Phi(T,0_d) = T = \Phi(0_d,T)$,

(iii) commutativity: $\Phi(T,U) = \Phi(U,T)$

where $V = (v_1, \cdots, v_d)$ is a tuple of d independent variables.

Example 2.2.4. The multiplicative formal group law over R is a 1-dimensional formal group law $\mu_\mathbb{G}_m : R[[t]] \to R[[t,u]]$ defined by $\mu_\mathbb{G}_m(t) = t + u + tu = (1 + t)(1 + u) - 1$.

Lemma 2.2.5. Let μ be a formal group law of dimension d over R.

1. We have commutative diagrams

 $\mathcal{A} \xrightarrow{\mu} \mathcal{A} \hat{\otimes}_R \mathcal{A}$

 $\mathcal{A} \hat{\otimes}_R \mathcal{A} \xrightarrow{\mu \hat{\otimes} \text{id}} \mathcal{A} \hat{\otimes}_R \mathcal{A}$

 $\mathcal{A} \hat{\otimes}_R \mathcal{A} \xrightarrow{\text{id} \hat{\otimes} \mu} \mathcal{A} \hat{\otimes}_R \mathcal{A}$

2. The ring homomorphism $\epsilon : \mathcal{A} \to R$ given by $\epsilon(t_i) = 0$ fits into commutative diagrams

 $\mathcal{A} \xrightarrow{\text{id}} \mathcal{A} \xrightarrow{\sim} \mathcal{A} \hat{\otimes}_R R$

 $\mathcal{A} \hat{\otimes}_R \mathcal{A} \xrightarrow{\text{id} \hat{\otimes} \epsilon} \mathcal{A} \hat{\otimes}_R \mathcal{A}$

3. There exists a ring homomorphism $\iota : \mathcal{A} \to \mathcal{A}$ that fits into the commutative diagram

 $\mathcal{A} \xrightarrow{\mu} \mathcal{A} \hat{\otimes}_R \mathcal{A}$

 $\mathcal{A} \hat{\otimes}_R \mathcal{A} \xrightarrow{\iota \hat{\otimes} \text{id}} \mathcal{A} \hat{\otimes}_R \mathcal{A}$

 $R \xrightarrow{\epsilon \hat{\otimes} \text{id}} \mathcal{A}$
Let \(\Phi(T, U) \) be as in Definition \textbf{2.2.3}. The commutative diagrams in (1) and (2) immediately follow from the axioms in Definition \textbf{2.2.3}. Moreover, by setting \(I_1(t) := t(t_i) \), the statement (3) amounts to existence of a family \(I(T) = (I_i(T)) \) of \(d \) power series such that
\[
\Phi(T, I(T)) = 0 = \Phi(I(T), T).
\]
By the axiom (iii) in Definition \textbf{2.2.3}, we only need to consider the equation \(\Phi(T, I(T)) = 0 \); in fact, we can get the same reduction by using the axioms (i) and (ii) in Definition \textbf{2.2.3}. We wish to present the desired family as a limit \(I(T) = \lim_{j \to \infty} P_j(T) \) where each \(P_j \) is a family of degree \(j \) polynomials in \(t_1, \cdots, t_d \) such that
\[
\begin{align*}
(a) & \quad P_j = P_{j-1} \mod (t_1, \cdots, t_d)^j, \\
(b) & \quad \Phi(P_j(T), T) = 0 \mod (t_1, \cdots, t_d)^{j+1}.
\end{align*}
\]
As \(\Phi(T, U) = T + U \mod (t_1, \cdots, t_d, u_1, \cdots, u_d)^2 \) by the axiom (ii) in Definition \textbf{2.2.3}, we must set \(P_1(T) := -T \). Now we proceed by induction on \(j \) to construct \(P_j(T) \) for all \(j \geq 1 \).

By the property (b) for \(P_j \), there exists a unique homogeneous polynomial \(\Delta_j(T) \) of degree \(j + 1 \) such that
\[
\Delta_j(T) = -\Phi(P_j(T), T) \mod (t_1, \cdots, t_d)^{j+2}.
\]
Setting \(P_{j+1}(T) := P_j(T) + \Delta_j(T) \), we immediately verify the property (a) for \(P_{j+1} \), and also verify the property (b) for \(P_{j+1} \) by
\[
\Phi(P_{j+1}(T), T) = \Phi(P_j(T) + \Delta_j(T), T) = \Phi(P_j(T), T) + \Delta_j(T) = 0 \mod (t_1, \cdots, t_d)^{j+2}
\]
where the second equality comes from observing \(\Delta_j(T)^2 = 0 \mod (t_1, \cdots, t_d)^{j+2} \) by degree consideration. \(\square \)

\textbf{Remark.} Lemma \textbf{2.2.5} shows that a formal group law \(\mu \) over \(R \) amounts to a formal group structure on the formal scheme \(\text{Spf}(\mathcal{A}) \) with \(\mu, \epsilon \), and \(\iota \) as the comultiplication, counit, and coinverse.

\textbf{Definition 2.2.6.} Let \(\mu \) and \(\nu \) be formal group laws of dimension \(d \) over \(R \). A continuous ring homomorphism \(\gamma : \mathcal{A} \to \mathcal{A} \) is called a \textit{homomorphism} from \(\mu \) to \(\nu \) if the following diagram commutes:
\[
\begin{array}{ccc}
\mathcal{A} & \xrightarrow{\nu} & \mathcal{A} \\
\downarrow{\gamma} & & \downarrow{\gamma \otimes \gamma} \\
\mathcal{A} & \xrightarrow{\mu} & \mathcal{A} \otimes_R \mathcal{A}
\end{array}
\]

\textbf{Remark.} Note that \(\gamma \) goes from the power series ring for \(\nu \) to the power series ring for \(\mu \). This is so that \(\gamma \) corresponds to a formal group homomorphism between the formal groups associated to \(\mu \) and \(\nu \) in the sense of the remark after Lemma \textbf{2.2.5}.

\textbf{Lemma 2.2.7.} Let \(\mu \) and \(\nu \) be formal group laws of dimension \(d \) over \(R \), represented by families of power series \(\Phi(T, U) := (\Phi_i(T, U)) \) and \(\Psi(T, U) := (\Psi_i(T, U)) \) with \(\Phi_i(T, U) := \mu(t_i) \) and \(\Psi_i(T, U) := \nu(t_i) \). A continuous ring homomorphism \(\gamma : \mathcal{A} \to \mathcal{A} \) is a homomorphism from \(\mu \) to \(\nu \) if and only if the family \(\Xi(T) = (\Xi_i(T)) \) of \(d \) power series (in \(d \) variables) defined by \(\Xi_i(T) := \gamma(t_i) \) satisfies \(\Psi(\Xi(T), \Xi(U)) = \Xi(\Phi(T, U)) \).

\textbf{Proof.} The diagram in Definition \textbf{2.2.6} becomes commutative if and only if we have \(f(\Psi(\Xi(T), \Xi(U))) = f(\Xi(\Phi(T, U))) \) for every \(f(T) \in \mathcal{A} \). \(\square \)

\textbf{Example 2.2.8.} Let \(\mu \) be a formal group law of dimension \(d \) over \(R \). The multiplication by \(n \) on \(\mu \), denoted by \([n]_{\mu} \), is inductively defined by \([1]_{\mu} := \text{id}_{\mathcal{A}} \) and \([n]_{\mu} := ([n-1]_{\mu} \otimes \text{id}) \circ \mu \).
Remark. As expected, \([n]_\mu\) corresponds to the multiplication by \(n\) map on the formal group associated to \(\mu\) in the sense of the remark after Lemma \[2.2.5\]

Definition 2.2.9. Let \(\mu\) be a formal group law of dimension \(d\) over \(R\).

1. The ideal \(\mathcal{I} := (t_1, \ldots, t_d)\) is called the *augmentation ideal* of \(\mu\).
2. We say that \(\mu\) is *\(p\)-divisible* if \([p]_\mu : \mathcal{I} \to \mathcal{I}\) is finite flat in the sense that it makes \(\mathcal{I}\) a free module of finite rank over itself.

Remark. The ideal \(\mathcal{I}\) is the kernel of the ring homomorphism \(\epsilon : \mathcal{A} \to R\) from Lemma \[2.2.5\], which corresponds to the counit of the formal group associated to \(\mu\) as remarked after Lemma \[2.2.5\]. Hence the notion of augmentation ideal for formal group laws is coherent with the notion of augmentation ideal for affine group schemes as defined in Definition \[1.3.3\].

It turns out that every \(p\)-divisible formal group law yields a connected \(p\)-divisible group.

Proposition 2.2.10. Let \(\mu\) be a \(p\)-divisible formal group law over \(R\) with the augmentation ideal \(\mathcal{I}\). Define \(A_v := \mathcal{A} / [p^v]_\mu(\mathcal{I})\) and \(\mu[p^v] := \text{Spec}(A_v)\) for each \(v\).

1. Each \(\mu[p^v]\) carries the natural structure of a connected finite flat \(R\)-group scheme.
2. The inductive limit \(\mu[p^{\infty}] := \varinjlim \mu[p^v]\) with the natural transition maps is a connected \(p\)-divisible group law over \(R\).

Proof. Let us take \(\epsilon\) and \(\iota\) as in Lemma \[2.2.5\]. For each \(v\), we have

\[A_v = \mathcal{A} / [p^v]_\mu(\mathcal{I}) \cong \mathcal{A} / \mathcal{I} \otimes_{\mathcal{A}[p^v]} \mathcal{A} \cong R \otimes_{\mathcal{A}[p^v]} \mathcal{A}. \]

(2.1)

Hence \(\mu[p^v] = \text{Spec}(A_v)\) has the structure of an \(R\)-group scheme with \(1 \otimes \mu\), \(1 \otimes \epsilon\), and \(1 \otimes \iota\) as the comultiplication, counit, and coinverse.

Denote by \(r\) the rank of \(\mathcal{I}\) over \([p]_\mu(\mathcal{I})\) as a free module. A simple induction shows that the rank of \(\mathcal{I}\) over \([p]_\mu(\mathcal{I})\) is \(r^v\). We then deduce from (2.1) that \(A_v\) is finite free over \(R\) of rank \(r^v\). Thus \(\mu[p^v]\) is indeed finite flat of order \(r^v\) over \(R\).

Moreover, as \(R\) is a local ring, the power series ring \(\mathcal{A}\) is also a local ring. Hence \(A_v = \mathcal{A} / [p^v]_\mu(\mathcal{I})\) is a local ring as well. We thus deduce that \(\mu[p^v]\) is connected.

By Proposition \[1.5.10\] the order of \(\mu[p]\) is \(p^h\) for some \(h\). Then our discussion above shows that \(\mu[p^v]\) has order \(p^{hv}\). Furthermore, the ring homomorphism

\[A_v = \mathcal{A} / [p^v]_\mu(\mathcal{I}) \to [p]_\mu(\mathcal{I}) / [p^{v+1}]_\mu(\mathcal{I}) \]

induced by \([p]\) is an isomorphism for being a surjective map between two free \(R\)-algebras of the same rank. Hence we get a surjective ring homomorphism

\[A_{v+1} = \mathcal{A} / [p^{v+1}]_\mu(\mathcal{I}) \to [p]_\mu(\mathcal{I}) / [p^{v+1}]_\mu(\mathcal{I}) \cong A_v, \]

which induces an embedding \(i_v : \mu[p^v] \to \mu[p^{v+1}]\). It is then straightforward to check that \(i_v\) identifies \(\mu[p^v]\) as the kernel of \([p^v]\) on \(\mu[p^{v+1}]\). We thus conclude that \(\mu[p^{\infty}] := \varinjlim \mu[p^v]\) is a connected \(p\)-divisible group of height \(h\) over \(R\).

Remark. Let \(\mathcal{G}_\mu\) denote the formal group associated to \(\mu\). Then by construction we have \(\mu[p^v] \cong \mathcal{G}_\mu[p^v]\) for each \(v\). With this observation the proof of (2) becomes almost trivial.

Example 2.2.11. Consider the multiplicative formal group law \(\mu_{\mathbb{G}_m}\) introduced in Example \[2.2.4\]. An easy induction shows \([p^v]_{\mu_{\mathbb{G}_m}}(t) = (1+t)^p^v - 1\) for each \(v\). We then find \(\mu_{\mathbb{G}_m}[p^v] \cong \mu_{p^v}\) for each \(v\) by the affine description in Example \[1.1.6\] thereby deducing \(\mu_{\mathbb{G}_m}[p^{\infty}] = \mu_{p^{\infty}}\).
The association described in Proposition 2.2.10 defines a functor from the category of p-divisible formal group laws to the category of connected p-divisible groups. Our next goal is to prove a theorem of Serre and Tate that this functor is an equivalence of categories.

Proposition 2.2.12. Let $G = \varprojlim G_v$ be a connected p-divisible group over R with $G_v = \text{Spec}(A_v)$ for each v. We have a continuous isomorphism

$$\varprojlim (A_v \otimes_R k) \simeq k[[t_1, \ldots, t_d]]$$

for some positive integer d.

Proof. Let us write $\overline{G} := G \times_k k$ and $\overline{G_v} := G_v \times_R k$. As G is connected, each $\overline{G_v}$ is connected by Corollary 1.4.3. Hence each $A_v \otimes_R k$ is a local ring by Lemma 1.4.2.

Let $H_v := \ker(\varphi_v)$. Note that each H_v must be a closed subgroup scheme of \overline{G}. Since $\psi \circ \varphi = [p] \overline{\varphi}$ by Proposition 2.1.12, we have $H_v \simeq \text{Spec}(B_v)$ for some free k-algebra B_v with a surjective k-algebra map $A_v \otimes_R k \to B_v$. In addition, B_v is a local ring for being a quotient of a local ring A_v. We also note that each $\overline{G_v}$ is a subgroup of $\ker(\varphi) = H_w$ for some large w by Proposition 1.5.9. In other words, for each v there is a surjective k-algebra map $B_w \to A_v \otimes_R k$. Hence we obtain a continuous isomorphism

$$\varprojlim A_v \otimes_R k \simeq \varprojlim B_v. \quad (2.2)$$

Let J_v be the augmentation ideal of H_v, and take $J := \varprojlim J_v$. By definition, we have $B_v/J_v \simeq k$. Let y_1, \ldots, y_d be elements of J which lift a basis for J_1/J_1^2. As $H_1 \simeq \ker(\varphi_{H_v})$ by construction, we use Lemma 1.5.2 to obtain a cartesian diagram

$$
\begin{array}{ccc}
B_v^{(p)} \cong B_v \otimes_{R, \sigma} k & \xrightarrow{x \otimes \sigma - x^p} & B_v
\end{array}
$$

which yields $B_1 \cong B_v/J_v^{(p)}$ where $J_v^{(p)}$ denotes the ideal generated by p-th powers of elements in J_v. We thus find $J_1 \cong J_v/J_v^{(p)}$ and consequently $J_1/J_1^2 \cong J_v/J_v^2$. Therefore the images of y_1, \ldots, y_d form a basis of J_v/J_v^2, and thus generate the ideal J_v by Nakayama’s lemma. In particular, we have a surjective k-algebra map

$$k[[t_1, \ldots, t_d]] \to B_v$$

which sends each t_i to the image of y_i in B_v. Furthermore, as φ_{H_v} vanishes on H_v by construction, the above map induces a surjective k-algebra map

$$k[[t_1, \ldots, t_d]]/(t_1^{p^v}, \ldots, t_d^{p^v}) \to B_v$$

by Lemma 1.5.2. By passing to the limit we obtain a continuous ring homomorphism

$$k[[t_1, \ldots, t_d]] \to \varprojlim B_v.$$

By (2.2), it remains to prove that this map is an isomorphism. It suffices to prove that the k-algebra homomorphism (2.3) is an isomorphism for each v. By surjectivity, we only need to show that the source and the target have equal dimensions over k. In other words, it is enough to show that the dimension of B_v over k is p^{dv}, or equivalently that H_v has order p^{dv}. When $v = 1$, this is an immediate consequence of Corollary 1.5.11. Let us now proceed by induction on v. As $\varphi_{H_{v+1}}^{v+1} : H_{v+1} \to H_{v+1}^{(p)}$ vanishes, it should factor through $\ker(\varphi_{G_v}^v) \cong H_{v}^{(p)}$. Moreover, as $\varphi_{G_v} \circ \psi_{G_v} = [p_{G_v}]$ is surjective by Corollary 2.1.6, $\varphi_{G_v}^v$ is also
surjective. Since the preimage of $H_v^{(p)} \cong \ker(\varphi^v_{\Omega(p)})$ under φ_{Ω} must lie in $\ker(\varphi^v_{\Omega} + 1) = H_v^{+1}$, we deduce that the map $H_v^{+1} \to H_v^{(p)}$ induced by $\varphi_{H_v^{+1}}$ is surjective. We thus obtain a short exact sequence

$$0 \longrightarrow H_1 \longrightarrow H_v^{+1} \xrightarrow{\varphi_{H_v^{+1}}} H_v^{(p)} \longrightarrow 0.$$

As the order of $H_v^{(p)}$ is the same as the order of H_v, we complete the induction step by the multiplicativity of orders in short exact sequences. □

Lemma 2.2.13. Let μ be a formal group law of dimension d over R with the augmentation ideal \mathcal{I}. For each positive integer n, we have

$$[n]_{\mu}(t_i) \in nt_i + \mathcal{I}^2.$$

Proof. For each n, we define the family $\Xi_n(T) = (\Xi_{n,i}(T))$ of d power series in d variables by $\Xi_{n,i}(T) := [n]_{\mu}(t_i)$. We can rewrite the desired assertion as

$$\Xi_n(T) = nT \mod \mathcal{I}^2. \quad (2.4)$$

Let us define the family $\Phi(T, U) = (\Phi_i(T, U))$ of d power series in $2d$ variables by $\Phi_i(T, U) := \mu(t_i)$. By the axiom (ii) in Definition 2.2.3 we have

$$\Phi(T, U) = T + U \mod (t_1, \ldots, t_d, u_1, \ldots, u_d)^2.$$

Hence the inductive formula $[n]_{\mu} = ([n-1]_{\mu} \circ \mu) \circ \mu$ yields

$$\Xi_n(T) = \Phi(\Xi_{n-1}(T), T) = \Xi_{n-1}(T) + T \mod \mathcal{I}^2.$$

Moreover, we have $\Xi_1(T) = T$ since $[1]_{\mu} = \text{id}_{\mathcal{I}}$. We thus obtain (2.4) by induction on n. □

Lemma 2.2.14. Let μ be a formal group law over R with the augmentation ideal \mathcal{I}. Define $A_v := \mathcal{A} / [p^v]_{\mu}(\mathcal{I})$ for each v. Then we have a natural continuous isomorphism

$$\mathcal{A} \cong \varprojlim A_v.$$

Proof. Let us write \mathfrak{m} for the maximal ideal of R and $\mathfrak{M} := \mathfrak{m} \mathcal{A} + \mathcal{I}$ for the maximal ideal of \mathcal{A}. For each v we define $A_v := \mathcal{A} / [p^v]_{\mu}(\mathcal{I})$, which is a free local R-algebra of finite rank by Proposition 2.2.10. For each i and v we have $\mathfrak{M}^w \subseteq [p^v]_{\mu}(\mathcal{I}) + \mathfrak{m}^i \mathcal{A}$ for some w since the algebra $\mathcal{A} / ([p^v]_{\mu}(\mathcal{I}) + \mathfrak{m}^i \mathcal{A}) = A_v / \mathfrak{m}^i A_v$ is local artinian. Moreover, by Lemma 2.2.13 we find $[p]_{\mu}(\mathcal{I}) \subseteq \mathcal{I}^2$ and thus $[p]_{\mu}([p^v]_{\mu}(\mathcal{I})) \subseteq \mathfrak{M}^w$ for all v. Hence for each i and v we have $[p^v]_{\mu}(\mathcal{I}) + \mathfrak{m}^i \mathcal{A} \subseteq \mathfrak{M}^w$ for some w. We thus obtain

$$\mathcal{A} \cong \varprojlim \mathcal{A} / \mathfrak{M}^w \cong \varprojlim \mathcal{A} / ([p^v]_{\mu}(\mathcal{I}) + \mathfrak{m}^i \mathcal{A}) \cong \varprojlim A_v / \mathfrak{m}^i A_v \cong \varprojlim A_v$$

where the last isomorphism comes from the fact that each A_v is \mathfrak{m}-adically complete for being finite free over R by a general fact as stated in [Sta Tag 031B]. □

Theorem 2.2.15 (Serre-Tate). There exists an equivalence of categories

$$\{ \text{p-divisible formal group laws over } R \} \sim \{ \text{connected p-divisible groups over } R \}$$

defined by $\mu \mapsto [p^\infty]$.

Proof. Let μ and ν be formal group laws of degree d over R. Let us define $A_v := \mathcal{A} / [p^v]_{\mu}(\mathcal{I})$ and $B_v := \mathcal{A} / [p^v]_{\nu}(\mathcal{I})$. By Proposition 2.2.10, $[p^v] := \text{Spec}(A_v)$ and $[p^v] := \text{Spec}(B_v)$ are connected finite flat R-group scheme. Let μ_v and ν_v denote the comultiplications of $[p^v]$ and $[p^v]$. We write $\text{Hom}_{\mu,\mu}(B_v, A_v)$ for the set of R-algebra maps $B_v \to A_v$ which are compatible with the comultiplications ν_v and μ_v, and $\text{Hom}_{\mu,\mu}(\mathcal{A}, \mathcal{A})$ for the set of
continuous ring homomorphisms $\mathcal{A} \to \mathcal{A}$ which are compatible with ν and μ in the sense of the commutative diagram in Definition 2.2.6. By Lemma 2.2.14 we have

$$\text{Hom}(\mu, \nu) = \text{Hom}_{\nu, \mu}(\mathcal{A}, \mathcal{A}) = \text{Hom}_{\nu, \mu}(\lim B_v, \lim A_v) = \lim_{\nu, \mu} \text{Hom}(\nu[p^v], \nu[p^\nu]) = \text{Hom}(\mu[p^\infty], \nu[p^\infty]).$$

We thus deduce that the functor is fully faithful.

Let $G = \lim G_v$ be an arbitrary connected p-divisible group over R. We write $G_v = \text{Spec}(A_v)$ where A_v is a free local R-algebra of finite rank. Let $p_v : A_{v+1} \to A_v$ denote the R-algebra homomorphism induced by the transition map $G_v \to G_{v+1}$. Note that each p_v is surjective as the corresponding transition map $G_v \to G_{v+1}$ is a closed embedding.

By Proposition 2.2.12 we have a continuous isomorphism

$$k[[t_1, \cdots, t_d]] \simeq \lim (A_v \otimes_R k). \tag{2.5}$$

We aim to lift this isomorphism to a homomorphism

$$f : \mathcal{A} = R[[t_1, \cdots, t_d]] \to \lim A_v.$$

In other words, we construct a lift $f_v : \mathcal{A} \to A_v$ of each projection $k[[t_1, \cdots, t_d]] \to A_v \otimes_R k$ so that the following diagram commutes:

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{f_v} & A_v+1 \\
\downarrow f_v & & \downarrow p_v \\
A_v & \xrightarrow{p_v \otimes \text{id}} & A_v \otimes_R k
\end{array}$$

After taking f_1 to be any lift of the projection $k[[t_1, \cdots, t_d]] \to A_1 \otimes_R k$, we proceed by induction on v. Let us choose $y_1, \cdots, y_d \in A_{v+1}$ which lift the images of t_1, \cdots, t_d under the projection $k[[t_1, \cdots, t_d]] \to A_{v+1} \otimes_R k$. Then $p_v(y_1), \cdots, p_v(y_d)$ should lift the images of t_1, \cdots, t_d under the projection $k[[t_1, \cdots, t_d]] \to A_v \otimes_R k$. Since f_v is a lift of the projection $k[[t_1, \cdots, t_d]] \to A_v \otimes_R k$, we have $f_v(t_i) - p_v(y_i) \in mA_v$ where m denotes the maximal ideal of R. By surjectivity of p_v, we may choose $z_1, \cdots, z_d \in mA_{v+1}$ with $p_v(z_i) = f_v(t_i) - p_v(y_i)$.

Let us now define $f_{v+1} : \mathcal{A} \to A_{v+1}$ by setting $f_{v+1}(t_i) = y_i + z_i$. From our construction, we quickly verify that f_{v+1} is a desired lift of the projection $k[[t_1, \cdots, t_d]] \to A_{v+1} \otimes_R k$.

We assert that f is indeed an isomorphism. Nakayama’s lemma implies surjectivity of each f_v, which in turn implies surjectivity of f. Moreover, we find $\lim A_v \simeq R[[u]]$ as an R-module since each $p_v : A_{v+1} \to A_v$ admits an R-module splitting for being a surjective map between two free R-modules. Hence f splits in the sense of R-modules as well. It is also clear that this splitting is compatible with passage to the quotient module m. In particular, by the isomorphism (2.5) we have $\ker(f) \otimes_R k = 0$, or equivalently $m \ker(f) = \ker(f)$. Denoting by \mathcal{M} the maximal ideal of \mathcal{A}, we find

$$\mathcal{M} \ker(f) = \ker(f).$$

As $\mathcal{A} = R[[t_1, \cdots, t_d]]$ is noetherian, we deduce $\ker(f) = 0$ by Nakayama’s lemma.

The formulation of f commutes with passage to quotients modulo m^n for any n. Moreover, the kernels of the projections $\mathcal{A} \to A_v$ form a system of open ideals in \mathcal{A} as the R-algebras A_v are of finite length. Hence by a theorem of Chevalley as stated in [Mat87, Exercise 8.7] we deduce that f is a continuous isomorphism.

Let us now denote the comultiplication of G_v by μ_v, and take $\mu : \mathcal{A} \to \mathcal{A} \otimes_R \mathcal{A}$ to be $\lim \mu_v$ via the isomorphism f. The axioms for each comultiplication μ_v implies that μ fits in the commutative diagrams in (1) and (2) of Lemma 2.2.5 which in turn implies that μ
is indeed a formal group law over \(R \). Now let \(\eta_{v,t} : A_t \hookrightarrow A_{v+t} \) denote the injective ring homomorphism induced by \(j_{v,t} : G_{v+t} \to G_t \) as defined in Lemma 2.1.5. Since \([p^v]_G = \lim j_{v,t} \), the isomorphism \(f \) yields an identification \([p^v]_\mu = \lim \eta_{v,t} \). It is then straightforward to check that \([p]_\mu\) is finite flat, which means that \(\mu \) is \(p \)-divisible. We then find \(\mu[p^\infty] \cong G_v \) and \(\mu[p^\infty] \cong G \), thereby establishing the essential surjectivity of the functor. \(\square \)

Remark. The last paragraph of the proof can be simplified by considering the formal group \(\mathcal{G}_\mu \) associated to \(\mu \). In fact, as it makes sense to write \(\mathcal{G}_{\mu[v]} \), we immediately obtain the identification \(\mathcal{G}_{\mu[p^v]} \cong G_v \), and the \(p \)-divisibility of \(\mathcal{G}_\mu \) by observing \([p^v]_G = \lim \eta_{v,t} \). Then we complete the proof by identifying \(\mu[p^v] \cong \mathcal{G}_{\mu[p^v]} \) for each \(v \) as remarked after Proposition 2.2.10.

Definition 2.2.16. Let \(G \) be a \(p \)-divisible group over \(R \). We define the dimension of \(G \) to be the dimension of the formal group law \(\mu \) over \(R \) such that \(\mu[p^\infty] \cong G^\circ \).

Corollary 2.2.17. Let \(G \) be a \(p \)-divisible group over \(R \). Let us write \(\overline{G} := G \times_R k \). Then \(\ker(\varphi) \) has order \(p^d \) where \(d \) is the dimension of \(G \).

Proof. Proposition 1.5.9 implies that \(\ker(\varphi) \) lies in \(\overline{G}^\circ := G^\circ \times_R k \). Hence the assertion follows from Proposition 2.2.12, Theorem 2.2.15, and their proofs. \(\square \)

We finish this subsection by discussing several important applications of Theorem 2.2.15.

Theorem 2.2.18. Let \(G \) be a \(p \)-divisible group of height \(h \) over \(R \). Let \(d \) and \(d^\vee \) denote the dimensions of \(G \) and \(G^\vee \), respectively. Then we have \(h = d + d^\vee \).

Proof. Let us write \(\overline{G} := G \times_R k \) and \(\overline{G} = \lim \overline{G}_v \) where each \(\overline{G}_v \) is a finite flat \(k \)-group scheme. Note that \(\ker(\varphi) \) must lie in \(\overline{G}^\circ := G^\circ \times_R k \) since \(\psi_\overline{G} \circ \varphi = [p^\circ]_\overline{G} \) by Proposition 2.1.12. In particular, we have \(\ker(\varphi) \cong \ker(\varphi_{G^1}) \). We similarly find \(\ker(\varphi) \cong \ker(\varphi_{G^1}) \).

Let us consider the diagram

\[
\begin{array}{ccccccc}
0 & \rightarrow & \ker(\varphi_G) & \rightarrow & \overline{G} & \xrightarrow{\varphi_G} & \overline{G}^{(p)} & \rightarrow & 0 \\
& & \downarrow{[p^\circ]} & \downarrow{\psi_{G^1}} & & & & \\
0 & \rightarrow & 0 & \rightarrow & \overline{G} & \xrightarrow{id} & \overline{G} & \rightarrow & 0
\end{array}
\]

The left square commutes since \(\ker(\varphi) \) must lie in \(\overline{G}^\circ \) as already noted, while the right square commutes by Proposition 2.1.12. In addition, the first row is exact since \(\varphi \) is surjective as noted in the proof of Proposition 2.2.12, while the second row is visibly exact. Hence by the snake lemma we obtain an exact sequence

\[
0 \rightarrow \ker(\varphi_G) \rightarrow \ker([p^\circ]_G) \rightarrow \ker(\psi_G) \rightarrow 0. \tag{2.6}
\]

We now compute the order of \(\ker(\psi_G) \cong \ker(\psi_{G^1}) \). As \(\psi_{G^1} = \varphi_{G^1}^\vee \) by definition, we may identify \(\ker(\psi_{G^1}) \) with the cokernel of \(\varphi_{G^1} \) by the exactness of Cartier duality. Moreover, since \(\overline{G}^\vee \) and \(\overline{G}^{(p)} \) have the same order, we use the multiplicity of orders in short exact sequences to find that the cokernel of \(\varphi_{G^1} \) has the same order as \(\ker(\varphi_{G^1}) \cong \ker(\varphi_{G^1}^{(p)}) \). We thus deduce from Corollary 2.2.17 that \(\ker(\psi_G) \) has order \(p^{d^\vee} \).

Note that \(\ker(\varphi_G) \) has order \(p^d \) by Corollary 2.2.17. Since \(\ker([p^\circ]_G) \cong G_1 \) has order \(p^h \), the multiplicity of orders in the exact sequence (2.6) yields \(p^h = p^{d+d^\vee} \), or equivalently \(h = d + d^\vee \) as desired. \(\square \)
Proposition 2.2.19. Assume that k is an algebraically closed field of characteristic p. Every p-divisible group of height 1 over k is isomorphic to either $\mathbb{Q}_p/\mathbb{Z}_p$ or μ_{p^∞}.

Proof. Let $G = \varprojlim G_v$ be an étale p-divisible group of height h over k. Proposition 2.1.10 implies that G is either étale or connected.

Let us first consider the case where G is étale. Then each G_v is a finite étale R-group scheme of order p^{hv} such that $G_v = G_{v+1}[p^v]$. By Proposition 1.3.1 each $G_v(\overline{k})$ is an abelian group of order p^{hv} such that $G_v(\overline{k})$ is the p^v-torsion subgroup of $G_{v+1}(\overline{k})$. An easy induction shows $G_v(\overline{k}) \cong \mathbb{Z}/p^v\mathbb{Z}$, which in turn implies $G_v \cong \mathbb{Z}/p^v\mathbb{Z}$ by Proposition 1.3.1. We thus find $G \cong \mathbb{Q}_p/\mathbb{Z}_p$.

Let us now turn to the case where G is connected. As G has dimension 1, Theorem 2.2.18 implies that G^\vee is zero dimensional and thus étale. Hence by the discussion in the preceding paragraph we find $G^\vee \cong \mathbb{Q}_p/\mathbb{Z}_p$ or equivalently $G \cong (\mathbb{Q}_p/\mathbb{Z}_p)^\vee \cong \mu_{p^\infty}$. \hfill \Box

Remark. The argument in the second paragraph readily extends to show that every étale p-divisible group of height h over k is isomorphic to $\mathbb{Q}_p/\mathbb{Z}_p^h$.

Example 2.2.20. Let E be an ordinary elliptic curve over \mathbb{F}_p. By Proposition 2.1.10 we have an exact sequence

$$0 \to E[p^\infty]^o \to E[p^\infty] \to E[p^\infty]^{\text{ét}} \to 0.$$

Note that both $E[p^\infty]^o$ and $E[p^\infty]^{\text{ét}}$ are nontrivial since both $E[p]^o$ and $E[p]^{\text{ét}} := E[p]/E[p]^o$ are nontrivial as seen in Example 1.4.12. Since $E[p^\infty]$ has height 2, we deduce that $E[p^\infty]^o$ and $E[p^\infty]^{\text{ét}}$ both have height 1. Hence the above exact sequence becomes

$$0 \to \mu_{p^\infty} \to E[p^\infty] \to \mathbb{Q}_p/\mathbb{Z}_p \to 0$$

by Proposition 2.2.19. Moreover, this exact sequence splits as it splits at every finite level by Proposition 1.4.11. We thus find

$$E[p^\infty] \cong \mathbb{Q}_p/\mathbb{Z}_p \times \mu_{p^\infty}.$$

Remark. Let us extend our discussion in Example 2.2.20 to describe the Serre-Tate deformation theory for ordinary elliptic curves. The general Serre-Tate deformation theory says that a deformation of an abelian variety over a perfect field of characteristic p is equivalent to a deformation of its p-divisible group. Hence the deformation theory of an ordinary elliptic curve E over \mathbb{F}_p is the same as the deformation theory for the p-divisible group $E[p^\infty] \cong \mathbb{Q}_p/\mathbb{Z}_p \times \mu_{p^\infty}$. Moreover, as our discussion in Example 1.4.12 equally applies for ordinary elliptic curves over any deformation ring, every deformation of E should be an extension of $\mathbb{Q}_p/\mathbb{Z}_p$ by μ_{p^∞}.

We thus find that the deformation space of E is naturally isomorphic to $\text{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^\infty})$. Furthermore, by the short exact sequence

$$0 \to \mathbb{Z}_p \to \mathbb{Q}_p \to \mathbb{Q}_p/\mathbb{Z}_p \to 0$$

we obtain an identification $\text{Ext}^1(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^\infty}) \cong \text{Hom}(\mathbb{Z}_p, \mu_{p^\infty})$, which has the natural structure of a formal torus of dimension 1 as described in Example 2.2.4. The unit section corresponds to a unique deformation of E, called the canonical deformation of E, for which the exact sequence as described in Example 1.4.12 splits. The canonical deformation is also a unique deformation of E which lifts all endomorphisms of E.
2.3. Dieudonné-Manin classification

For this subsection, we assume that \(R = k \) is a perfect field of characteristic \(p \). We write \(\sigma \) for the Frobenius automorphism of \(k \), \(W(k) \) for the ring of Witt vectors over \(k \), and \(K_0(k) \) for the fraction field of \(W(k) \). For every \(x \in k \), we let \([x] \) denote the Teichmüller lift of \(x \) in \(W(k) \).

Definition 2.3.1. The Frobenius automorphism of \(W(k) \) is the ring homomorphism \(\sigma_{W(k)} : W(k) \to W(k) \) defined by

\[
\sigma_{W(k)} \left(\sum_{n=0}^{\infty} [x_n] p^n \right) = \sum_{n=0}^{\infty} [x_n^p] p^n.
\]

The Frobenius automorphism of \(K_0(k) \) is the unique field endomorphism \(\sigma_{K_0(k)} \) on \(K_0(k) \) which extends \(\sigma_{W(k)} \).

Remark. We often abuse notation and simply write \(\sigma \) instead of \(\sigma_{W(k)} \) or \(\sigma_{K_0(k)} \), if there is no risk of confusion.

Example 2.3.2. We have canonical identifications \(W(\mathbb{F}_q) \cong \mathbb{Z}_p[\zeta_{q-1}] \) and \(K_0(\mathbb{F}_q) \cong \mathbb{Q}_p[\zeta_{q-1}] \) where \(\zeta_{q-1} \) denotes a primitive \((q-1)\)-st root of unity. The Frobenius automorphisms \(\sigma_{W(\mathbb{F}_q)} \) and \(\sigma_{K_0(k)} \) send \(\zeta_{q-1} \) to \(\zeta_{q-1}^p \) while acting trivially on \(\mathbb{Z}_p \) and \(\mathbb{Q}_p \), respectively.

We now discuss two fundamental theorems that relate \(p \)-divisible groups over \(k \) to certain semilinear algebraic objects. We won’t provide their proofs, as we will only use these theorems as motivations for some key constructions in Chapter III and IV. The readers may find an excellent exposition of these theorems in [Dem72], Chapters III and IV.

Definition 2.3.3. A Dieudonné module over \(k \) is a free \(W(k) \)-module \(M \) of finite rank together with an additive map \(\varphi_M : M \to M \) which satisfies the following properties:

1. \(\varphi_M \) is a \(\sigma \)-semilinear endomorphism in the sense that
 \[
 \varphi_M(\sigma(a)m) = \sigma(a)\varphi_M(m) \quad \text{for each } a \in W(k) \text{ and } m \in M.
 \]
2. \(pM \subseteq \varphi_M(M) \).

Theorem 2.3.4 (Dieudonné). There is an exact anti-equivalence of categories

\[
\mathbb{D} : \{ \text{\(p \)-divisible groups over } k \} \xrightarrow{\sim} \{ \text{Dieudonné modules over } k \}
\]

such that for an arbitrary \(p \)-divisible group \(G \) over \(k \) we have the following statements:

1. The rank of \(\mathbb{D}(G) \) is equal to the height of \(G \).
2. \(G \) is étale if and only if \(\varphi_{\mathbb{D}(G)} \) is bijective.
3. \(G \) is connected if and only if \(\varphi_{\mathbb{D}(G)} \) is topologically nilpotent.
4. \([p]_G \) induces the multiplication by \(p \) on \(\mathbb{D}(G) \).

Remark. The category of Dieudonné modules over \(k \) also admits a notion of duality which is compatible with the Cartier duality for \(p \)-divisible groups over \(k \).

Example 2.3.5. We describe the functor in Theorem 2.3.4 for some simple cases.

1. \(\mathbb{D}(\mathbb{Q}_p/\mathbb{Z}_p) \cong W(k) \) together with \(\varphi_{\mathbb{D}(\mathbb{Q}_p/\mathbb{Z}_p)} = \sigma_{W(k)} \).
2. \(\mathbb{D}(\mu_{p^n}) \cong W(k) \) together with \(\varphi_{\mathbb{D}(\mu_{p^n})} = p^\sigma_{W(k)} \).
3. If \(E \) is an ordinary elliptic curve over \(\bar{k} \), we have \(\mathbb{D}(E[p^\infty]) \cong W(\bar{k})^{\oplus 2} \) together with
 \[
 \varphi_{\mathbb{D}(E[p^\infty])} = \sigma_{W(\bar{k})} \oplus p^\sigma_{W(\bar{k})}.
 \]
Definition 2.3.6. A homomorphism $f : G \to H$ of p-divisible groups over k is called an isogeny if it is surjective (as a map of fpqc sheaves) with finite flat kernel.

Example 2.3.7. We present some important examples of isogenies between p-divisible groups.

(1) Given a p-divisible group G over k, the homomorphisms $[p]_{G}, \varphi_{G},$ and ψ_{G} are all isogenies.

(2) An isogeny $A \to B$ of two abelian varieties over k induces an isogeny $A[p^\infty] \to B[p^\infty]$.

Proposition 2.3.8. A homomorphism $f : G \to H$ is an isogeny if and only if the following equivalent conditions are satisfied.

(i) The induced map $\mathbb{D}(H) \to \mathbb{D}(G)$ is injective.

(ii) The induced map $\mathbb{D}(H)[1/p] \to \mathbb{D}(G)[1/p]$ is an isomorphism.

Definition 2.3.9. An isocrystal over k is a finite dimensional vector space N over $K_{0}(k)$ with a bijective additive map $\varphi_{N} : N \to N$ which is σ-linear in the sense that

$$\varphi_{N}(an) = \sigma(a)\varphi_{N}(n) \quad \text{for each } a \in K_{0}(k) \text{ and } n \in N.$$

Remark. An arbitrary p-divisible group G over k gives rise to an isocrystal $\mathbb{D}(G)[1/p] = \mathbb{D}(G) \otimes_{W(k)} K_{0}(k)$ over k. Proposition 2.3.8 implies that the isogeny class of G is determined by the isomorphism class of the isocrystal $\mathbb{D}(G)[1/p]$.

Example 2.3.10. Let $\lambda = d/r$ be a rational number written in lowest terms with $r > 0$. The simple isocrystal of slope λ over k is the $K_{0}(k)$-space $N(\lambda) := K_{0}(k)^{\oplus r}$ together with the σ-semilinear automorphism $\varphi_{N,\lambda}$ given by

$$\varphi_{N,\lambda}(e_{1}) = e_{2}, \ldots, \varphi_{N,\lambda}(e_{r-1}) = e_{r}, \varphi_{N,\lambda}(e_{r}) = p^{d}e_{1},$$

where e_{1}, \ldots, e_{r} denote the standard basis vectors.

Theorem 2.3.11 (Manin). The category of isocrystals over \overline{k} is semisimple with the N_{λ}’s as simple objects. In other words, every isocrystal N over \overline{k} admits a unique direct sum decomposition

$$N \simeq \bigoplus_{i=1}^{l} N(\lambda_{i})^{\oplus m_{i}}$$

with $\lambda_{1} < \lambda_{2} < \cdots < \lambda_{l}$.

Let us present some consequences of Theorem 2.3.4 and Theorem 2.3.11.

Definition 2.3.12. Let N be an isocrystal over \overline{k} with a direct sum decomposition

$$N \simeq \bigoplus_{i=1}^{l} N(\lambda_{i})^{\oplus m_{i}}$$

where $\lambda_{1} < \lambda_{2} < \cdots < \lambda_{l}$. For each i, let us write $\lambda_{i} = d_{i}/r_{i}$ for the lowest form with $r_{i} > 0$.

(1) The Newton polygon of N, denoted by Newt(N), is the lower convex hull of the points $(0, 0)$ and $(m_{1}r_{1} + \cdots + m_{i}r_{i}, m_{1}d_{1} + \cdots + m_{i}d_{i})$.

(2) The rank of N, denoted by rk(N), is the rank of N over $K_{0}(K)(\overline{k})$.

(3) The degree of N is defined by deg$(N) := m_{1}d_{1} + \cdots + m_{i}d_{i}$.

(4) The slope of N is defined by $\mu(N) := \frac{\deg(N)}{\rk(N)}$.

Remark. Each line segment in the Newton polygon of N represents a direct summand in N with a particular slope.
Example 2.3.13. Assume that $k = \overline{k}$.

1. $\mathbb{D}(\mathbb{Q}_p/\mathbb{Z}_p)[1/p] \simeq N(0)$ has rank 1 and degree 0. Its Newton polygon is a line segment from $(0, 0)$ to $(1, 0)$, as illustrated by the red line in Figure 1.

2. $\mathbb{D}(\mu_{p^\infty})[1/p] \simeq N(1)$ has rank 1 and degree 1. Its Newton polygon is a line segment from $(0, 0)$ to $(1, 1)$, as illustrated by the blue line in Figure 1.

3. For an ordinary elliptic curve E over \overline{k}, we have $\mathbb{D}(E[p^\infty])[1/p] \simeq N(0) \oplus N(1)$. Its Newton polygon connects the points $(0, 0), (1, 0)$, and $(2, 1)$, as illustrated by the green polygon in Figure 1.

![Figure 1. Examples of Newton polygons](image)

Proposition 2.3.14. Let N be an isocrystal over \overline{k} with a direct sum decomposition

$$N \simeq \bigoplus_{i=1}^{l} N(\lambda_i)^{\oplus m_i}$$

where $\lambda_1 < \lambda_2 < \cdots < \lambda_l$. Then $N \simeq \mathbb{D}(G)[1/p]$ for some p-divisible group G of height h and dimension d over \overline{k} if and only if the following conditions are satisfied:

(i) $0 \leq \lambda_i \leq 1$ for all i.

(ii) $\text{rk}(N) = h$ and $\deg(N) = d$.

Moreover, if $N \simeq \mathbb{D}(G)[1/p]$ for some p-divisible group G over \overline{k}, we get an isomorphism

$$\mathbb{D}(G^\vee)[1/p] \simeq \bigoplus_{i=1}^{l} N(1 - \lambda_i)^{\oplus m_i}.$$

Theorem 2.3.15 (Serre, Honda-Tate, Oort). Let N be an isocrystal over \overline{k} with a direct sum decomposition

$$N \simeq \bigoplus_{i=1}^{l} N(\lambda_i)^{\oplus m_i}$$

where $\lambda_1 < \lambda_2 < \cdots < \lambda_l$. Then $N \simeq \mathbb{D}(A[p^\infty])[1/p]$ for some principally polarized abelian variety A of dimension g over \overline{k} if and only if the following conditions are satisfied:

(i) For each i, we have $0 \leq \lambda_i = 1 - \lambda_{i+1} - \cdots - \lambda_l \leq 1$ and $m_i = m_{l+1-i}$.

(ii) $\text{rk}(N) = 2g$ and $\deg(N) = g$.

Remark. The conditions in Theorem 2.3.15 amounts to saying that Newt(N) is a symmetric polygon joining $(0, 0)$ and $(2g, g)$ with all slopes in the interval $[0, 1]$.

Note that the only if part of Theorem 2.3.15 follows immediately from Proposition 2.3.14. The main difficulty lies in the if part which was initially conjectured by Manin.

Example 2.3.16. Let A be a principally polarized abelian variety of dimension g over \overline{k}. We say that A is ordinary if its Newton polygon connects the points $(0, 0), (g, 0)$, and $(2g, g)$, and supersingular if its Newton polygon is a straight line segment from $(0, 0)$ to $(2g, g)$.

Remark. Let A be an ordinary abelian variety of dimension g over \overline{k}. A priori, this means that there exists an isogeny $A[p^\infty] \to \mu^g_{p^\infty} \times (\mathbb{Q}_p/\mathbb{Z}_p)^g$. We assert that

$$A[p^\infty] \simeq \mu^g_{p^\infty} \times (\mathbb{Q}_p/\mathbb{Z}_p)^g.$$

By Proposition 2.1.10 we have an exact sequence

$$0 \to A[p^\infty]^0 \to A[p^\infty] \to A[p^\infty]^\text{ét} \to 0.$$

Moreover, this sequence splits as it splits at every finite level by Proposition 1.4.11. Hence we have a decomposition

$$A[p^\infty] \simeq A[p^\infty]^0 \times A[p^\infty]^\text{ét}.$$

Proposition 2.3.14 implies that $A[p^\infty]^\text{ét}$ should correspond to the slope 0 part of $\text{Newt}(A[p^\infty])$, and thus have height g. We then deduce $A[p^\infty]^\text{ét} \simeq (\mathbb{Q}_p/\mathbb{Z}_p)^g$ by the remark after Proposition 2.2.19. Therefore we obtain a decomposition $A[p^\infty] \simeq \mu^g_{p^\infty} \times (\mathbb{Q}_p/\mathbb{Z}_p)^g$ as asserted. In addition, we can argue as in the remark after Example 2.2.20 to deduce that the deformation space of A has the structure of a formal torus of dimension $g(g + 1)/2$.

Our discussion in the preceding paragraph gives a good example of how we can study abelian varieties in characteristic p using their p-divisible groups and the associated isocrystals. In fact, for an abelian variety A over k, we have identifications

$$H^1_{\text{cris}}(A/W(k)) \cong D(A[p^\infty])$$

and

$$H^1_{\text{cris}}(A/W(k)) \otimes_{W(k)} K_0(k) \cong D(A[p^\infty])[1/p].$$

In light of the crystalline comparison theorem as introduced in Chapter I, Theorem 1.2.4, these identifications provide a powerful tool to study abelian varieties and their moduli spaces, such as (local) Shimura varieties of PEL or Hodge type, using p-adic Hodge theory and the theory of Dieudonné modules/isocrystals.

We conclude this subsection by describing a classification of p-divisible groups over $W(k)$ in terms of Dieudonné modules and some lifting data.

Definition 2.3.17. A Honda system over $W(k)$ is a Dieudonné module M over k together with a $W(k)$-submodule L such that φ_M induces an isomorphism $L/pL \simeq M/\varphi_M(M)$.

Theorem 2.3.18 (Fontaine). If $p > 2$, there exists an anti-equivalence of categories

$$\{ \text{p-divisible groups over } W(k) \} \sim \{ \text{Honda systems over } W(k) \}$$

such that for every p-divisible group G over $W(k)$ with the mod p reduction $\overline{G} := G \times_{W(k)} k$, the Dieudonné module of the associated Honda system coincides with $D(\overline{G})$.

3. Hodge-Tate decomposition

In this section, we finally enter the realm of p-adic Hodge theory. Assuming some technical results from algebraic number theory, we prove two fundamental theorems regarding p-divisible groups, namely the Hodge-Tate decomposition for the Tate modules and the full-faithfulness of the generic fiber functor. The primary reference for this section is Tate’s paper [Tat67].

3.1. The completed algebraic closure of a p-adic field

Throughout this course, we use the following definition of p-adic fields:

Definition 3.1.1. A p-adic field is a discretely valued complete nonarchimedean extension of \mathbb{Q}_p with perfect residue field.

Example 3.1.2. We present some essential examples of p-adic fields.

1. Every finite extension of \mathbb{Q}_p is a p-adic field.
2. Given a perfect field k of characteristic p, the fraction field of the ring of Witt vectors $W(k)$ is a p-adic field.

Remark. The fraction field of $W(\overline{\mathbb{F}}_p)$ is the p-adic completion of the maximal unramified extension of \mathbb{Q}_p. Hence it is a p-adic field which is not an algebraic extension of \mathbb{Q}_p.

For the rest of this section, we let K be a p-adic field with absolute Galois group Γ_K and valuation ring \mathcal{O}_K. We also write m and k for the maximal ideal and the residue field of \mathcal{O}_K.

Definition 3.1.3. We define the completed algebraic closure of K by $\mathbb{C}_K := \widehat{\mathcal{O}_K}$; in other words, \mathbb{C}_K is the p-adic completion of the algebraic closure of K. We denote by $\mathcal{O}_{\mathbb{C}_K}$ the valuation ring of \mathbb{C}_K.

Remark. The field \mathbb{C}_K is not a p-adic field as its valuation is not discrete. In fact, it is the first example of a characteristic 0 perfectoid field.

Lemma 3.1.4. The action of Γ_K on K uniquely extends to a continuous action on \mathbb{C}_K.

Proof. This is obvious by continuity of the Γ_K-action on K. \hfill \Box

For the rest of this section, we fix a valuation ν on \mathbb{C}_K such that $\nu(p) = 1$.

Proposition 3.1.5. The field \mathbb{C}_K is algebraically closed.

Proof. Let $p(t)$ be an arbitrary non-constant polynomial over \mathbb{C}_K. We wish to prove that $p(t)$ has a root in \mathbb{C}_K. By scaling the variable if necessary, we may assume that $p(t)$ is a monic polynomial over $\mathcal{O}_{\mathbb{C}_K}$. In other words, we may write

$$p(t) = t^d + a_1 t^{d-1} + \cdots + a_d$$

where $a_i \in \mathcal{O}_{\mathbb{C}_K}$. Let \mathcal{O}_K denote the valuation ring of K. For each n, we choose a polynomial

$$p_n(t) = t^d + a_{1,n} t^{d-1} + \cdots + a_{d,n}$$

where $a_i \in \mathcal{O}_K$ with $\nu(a_i - a_{i,n}) \geq dn$.

Let us choose $\alpha_1 \in \mathcal{O}_K$ with $p_1(\alpha_1) = 0$. We proceed by induction on n to choose $\alpha_n \in \mathcal{O}_K$ with $p_n(\alpha_n) = 0$ and $\nu(\alpha_n - \alpha_{n-1}) \geq n - 1$. Since $a_{i,n} - a_{i,n-1} = (a_{i,n} - a_{i}) + (a_{i} - a_{i,n-1})$ has valuation at least $d(n - 1)$, we find $\nu(p_n(\alpha_{n-1})) \geq d(n - 1)$ by observing

$$p_n(\alpha_{n-1}) = p_n(\alpha_{n-1}) - p_{n-1}(\alpha_{n-1}) = \sum_{i=1}^{d} (a_{i,n} - a_{i,n-1}) a_{n-1}^{d-i}.$$
Moreover, we have
\[p_n(\alpha_{n-1}) = \prod_{i=1}^{d}(\alpha_{n-1} - \beta_{n,i}) \]
where \(\beta_{n,1}, \cdots, \beta_{n,d} \) are roots of \(p_n(t) \). Note that \(\beta_{n,i} \in \mathcal{O}_K \) since \(\mathcal{O}_K \) is integrally closed. As \(\nu(p_n(\alpha_{n-1})) \geq d(n-1) \), we deduce that \(\nu(\alpha_{n-1} - \beta_{n,i}) \geq n-1 \) for some \(i \). We thus complete the induction step by taking \(\alpha_n := \beta_{n,i} \).

Since the sequence \((\alpha_n) \) is Cauchy by construction, it converges to an element \(\alpha \in \mathcal{O}_\mathbb{C}_K \). Moreover, for each \(n \) we find \(\nu(p(\alpha_n)) \geq dn \) by observing
\[p(\alpha_n) = p(\alpha_n) - p_n(\alpha_n) = \sum_{i=1}^{d}(a_i - a_{i,n})a_n^{d-i}. \]
We thus have \(p(\alpha) = 0 \), thereby completing the proof.

Let us now introduce the central objects for this course.

Definition 3.1.6. A \(p \)-adic representation of \(\Gamma_K \) is a finite dimensional \(\mathbb{Q}_p \)-vector space \(V \) together with a continuous homomorphism \(\Gamma_K \to \text{GL}(V) \). We denote by \(\text{Rep}_{\mathbb{Q}_p}(\Gamma_K) \) the category of \(p \)-adic \(\Gamma_K \)-representations.

Example 3.1.7. Below are two essential examples of \(p \)-adic representations.

1. By Proposition 2.1.14, every \(p \)-divisible group \(G \) over \(K \) gives rise to a \(p \)-adic \(\Gamma_K \)-representation \(V_p(G) := T_p(G) \otimes_{\mathbb{Q}_p} \mathbb{Q}_p \), called the rational Tate module of \(G \).
2. For an arbitrary variety \(X \) over \(K \), the \(\acute{e} \text{tale} \) cohomology \(H^i_{\acute{e}t}(X_K, \mathbb{Q}_p) \) is a \(p \)-adic \(\Gamma_K \)-representation.

Our main task in this section is to understand the \(p \)-adic \(\Gamma_K \)-representation on the rational Tate module of a \(p \)-divisible group over \(K \). We will make extensive use of the following notion:

Definition 3.1.8. Given a \(\mathbb{Z}_p \)-module \(M \) with a \(\Gamma_K \)-action, we define its \(n \)-th Tate twist by
\[M(n) := \begin{cases} M \otimes_{\mathbb{Z}_p} T_p(\mu_{p^n}) \otimes^n & \text{if } n \geq 0, \\ \text{Hom}_{\mathbb{Z}_p[\Gamma_K]}(T_p(\mu_{p^n}) \otimes^{-n}, M) & \text{if } n < 0, \end{cases} \]
with the natural action of \(\Gamma_K \).

Example 3.1.9. By definition, we have \(\mathbb{Z}_p(1) = T_p(\mu_{p^n}) = \varinjlim \mu_{p^n}(\overline{K}) \) which may be identified as the set of \(p \)-power roots of unity in \(\overline{K} \). The homomorphism \(\chi_K : \Gamma_K \to \text{Aut}(\mathbb{Z}_p(1)) \cong \mathbb{Z}_p^\times \) which represents the \(\Gamma_K \)-action on \(\mathbb{Z}_p(1) \) is called the \(p \)-adic cyclotomic character of \(K \). We will often simply write \(\chi \) instead of \(\chi_K \) to ease the notation.

Lemma 3.1.10. Let \(M \) be a \(\mathbb{Z}_p \)-module with an action of \(\Gamma_K \) given by a homomorphism \(\rho : \Gamma_K \to \text{Aut}(M) \). For each \(m, n \in \mathbb{Z} \), we have canonical \(\Gamma_K \)-equivariant isomorphisms
\[M(m) \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(n) \cong M(m+n) \quad \text{and} \quad M(n)^\vee \cong M^\vee(-n). \]

Proof. This is straightforward to check by definition. \(\square \)

Lemma 3.1.11. Let \(M \) be a \(\mathbb{Z}_p \)-module where \(\Gamma_K \) acts via a homomorphism \(\rho : \Gamma_K \to \text{Aut}(M) \). We may regard \(M(n) \) as the \(\mathbb{Z}_p \)-module \(M \) where each \(\gamma \in \Gamma_K \) acts as \(\chi(\gamma)^n \rho(\gamma) \).

Proof. Upon choosing a basis element \(e \) of \(\mathbb{Z}_p(n) \), we obtain an isomorphism \(M(n) \cong M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(n) \overset{\sim}{\longrightarrow} M \) given by \(m \otimes e \mapsto m \). The assertion now follows by observing that the \(\Gamma_K \)-action on \(M(n) \cong M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(n) \) is given by \(\rho \otimes \chi^n \). \(\square \)
We assume the following fundamental result about the Galois cohomology of the Tate twists of C_K.

Theorem 3.1.12 (Tate-Sen). We have canonical isomorphisms

$$H^i(\Gamma_K, C_K(n)) \cong \begin{cases} K & \text{if } i = 0 \text{ or } n = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Remark. The proof of this result requires the full power of the higher ramification theory as well as some knowledge about the local class field theory. We refer curious readers to [BC, §14] for a complete proof.

When $i = n = 0$, the theorem says that the fixed field of Γ_K in C_K is K. This particular statement has an elementary proof as sketched in [BC, Proposition 2.1.2].

We now introduce the first class of p-adic Γ_K-representations.

Lemma 3.1.13 (Serre-Tate). For every $V \in \text{Rep}_{Q_p}(\Gamma_K)$, the natural C_K-linear map

$$\tilde{\alpha}_V : \bigoplus_{n \in \mathbb{Z}} (V \otimes_{Q_p} C_K(-n))^e \otimes_K C_K(n) \rightarrow V \otimes_{Q_p} C_K$$

is Γ_K-equivariant and injective.

Proof. For each $n \in \mathbb{Z}$, we have a Γ_K-equivariant K-linear map

$$(V \otimes_{Q_p} C_K(-n))^e \otimes_K K(n) \rightarrow V \otimes_{Q_p} C_K(n) \cong V \otimes_{Q_p} C_K,$$

which gives rise to a Γ_K-equivariant C_K-linear map

$$\tilde{\alpha}_V^{(n)} : (V \otimes_{Q_p} C_K(-n))^e \otimes_K C_K(n) \rightarrow V \otimes_{Q_p} C_K$$

by extension of scalars. Hence we deduce that $\tilde{\alpha}_V = \bigoplus_{n \in \mathbb{Z}} \tilde{\alpha}_V^{(n)}$ is Γ_K-equivariant.

For each $n \in \mathbb{Z}$, we choose a basis $(v_{m,n})$ of $(V \otimes_{Q_p} C_K(-n))^e \otimes_K K(n)$ over K. We may regard $v_{m,n}$ as a vector in $V \otimes_{Q_p} C_K$ via the map (3.1). Moreover, the source of the map $\tilde{\alpha}_V$ is spanned by the vectors $(v_{m,n})$.

Assume for contradiction that the kernel of $\tilde{\alpha}_V$ is nontrivial. Then we have a nontrivial relation of the form $\sum c_{m,n} v_{m,n} = 0$. Let us choose such a relation with minimal length. We may assume that $c_{m_0,n_0} = 1$ for some m_0 and n_0. For every $\gamma \in \Gamma_K$ we find

$$0 = \gamma \left(\sum c_{m,n} v_{m,n} \right) - \chi(\gamma)^{n_0} \left(\sum c_{m,n} v_{m,n} \right) = \sum (\gamma(c_{m,n}) \chi(\gamma)^n - \chi(\gamma)^{n_0} c_{m,n}) v_{m,n}$$

by Γ_K-equivariance of $\tilde{\alpha}_V$ and Lemma [3.1.11]. Note that the coefficient of v_{m_0,n_0} in the last expression is 0. Hence the minimality of our relation implies that all coefficients in the last expression must vanish, thereby yielding relations

$$\gamma(c_{m,n}) \chi(\gamma)^{n-n_0} = c_{m,n} \quad \text{for all } \gamma \in \Gamma_K.$$

Then by Lemma [3.1.11] and Theorem [3.1.12] we find $c_{m,n} = 0$ for $n \neq n_0$ and $c_{m,n} \in K$ for $n = n_0$. Therefore our relation $\sum c_{m,n} v_{m,n} = 0$ becomes a nontrivial K-linear relation among the vectors v_{m,n_0}, thereby yielding a desired contradiction. \(\square\)

Definition 3.1.14. We say that $V \in \text{Rep}_{Q_p}(\Gamma_K)$ is Hodge-Tate if the map $\tilde{\alpha}_V$ in Lemma 3.1.13 is an isomorphism.

Remark. We will see in §3.4 that p-adic representations discussed in Example 3.1.7 are Hodge-Tate in many cases.
3.2. Formal points on p-divisible groups

For the rest of this section, we fix the base ring $R = \mathcal{O}_K$. We also let L be the p-adic completion of an algebraic extension of K. We denote by \mathcal{O}_L the valuation ring of L and by \mathfrak{m}_L its maximal ideal. We are particularly interested in the case where $L = \mathbb{C}_K$.

We investigate the notion of formal points on p-divisible groups over \mathcal{O}_K.

Definition 3.2.1. Let $G = \varprojlim G_v$ be a p-divisible group over \mathcal{O}_K. We define the *group of \mathcal{O}_L-valued formal points* on G by

$$G(\mathcal{O}_L) := \varprojlim_i \varprojlim_v G_v(\mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L).$$

Example 3.2.2. By definition, $\mu_{p^\infty}(\mathcal{O}_L) = \varprojlim_i \mu_{p^\infty}(\mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L)$ is the group of elements $x \in \mathcal{O}_L^\times$ such that $\nu(x^{p^i} - 1)$ can get arbitrarily large. Hence we clearly have $1 + \mathfrak{m}_L \subseteq \mu_{p^\infty}(\mathcal{O}_L)$. Moreover, as the residue field of \mathcal{O}_L has characteristic p, we also obtain the opposite inclusion by observing $x^{p^i} - 1 = (x - 1)^{p^i} \mod \mathfrak{m}_L$. We thus find $\mu_{p^\infty}(\mathcal{O}_L) \cong 1 + \mathfrak{m}_L$.

Remark. On the other hand, the group of “ordinary” \mathcal{O}_L-valued points on μ_{p^∞} is given by

$$\varprojlim_v \mu_{p^\infty}(\mathcal{O}_L) = \varprojlim_v \{ x \in \mathcal{O}_L^\times : x^{p^i} = 1 \}$$

which precisely consists of p-power torsion elements in \mathcal{O}_L^\times. We thus see that $\mu_{p^\infty}(\mathcal{O}_L)$ contains many “non-ordinary” points.

Proposition 3.2.3. Let $G = \varprojlim G_v$ be a p-divisible group over \mathcal{O}_K.

1. Writing $G_v = \text{Spec}(A_v)$ for each v, we have an identification

$$G(\mathcal{O}_L) \cong H_{\mathcal{O}_K - \text{cont}}(\varprojlim_v A_v, \mathcal{O}_L).$$

2. $G(\mathcal{O}_L)$ is a \mathbb{Z}_p-module with the torsion part given by

$$G(\mathcal{O}_L)_{\text{tors}} \cong \varprojlim_v \varprojlim_i G_v(\mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L).$$

3. If G is étale, then $G(\mathcal{O}_L)$ is isomorphic to a torsion group $G(k_L)$ where k_L denotes the residue field of \mathcal{O}_L.

Proof. Note that we have $\mathcal{O}_L = \varprojlim \mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L$ by completeness of \mathcal{O}_L. We also have $\varprojlim_v A_v = \varprojlim_i, v A_v/\mathfrak{m}_L^i A_v$ since each A_v is \mathfrak{m}-adically complete for being finite free over \mathcal{O}_K by a general fact as stated in [Sta Tag 031B]. We thus obtain an identification

$$G(\mathcal{O}_L) \cong \varprojlim_i \varprojlim_v \text{Hom}_{\mathcal{O}_K}(A_v, \mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L) \cong \varprojlim_i \varprojlim_v \text{Hom}_{\mathcal{O}_K}(A_v/\mathfrak{m}_L^i A_v, \mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L)$$

$$\cong \varprojlim_i \text{Hom}_{\mathcal{O}_K}(\varprojlim_v A_v/\mathfrak{m}_L^i A_v, \mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L)$$

$$\cong \text{Hom}_{\mathcal{O}_K - \text{cont}}(\varprojlim_i A_v/\mathfrak{m}_L^i A_v, \varprojlim_i \mathcal{O}_L/\mathfrak{m}_L^i \mathcal{O}_L)$$

$$\cong \text{Hom}_{\mathcal{O}_K - \text{cont}}(\varprojlim_v A_v, \mathcal{O}_L)$$

as asserted in [1].
Next we consider the statement [2]. Observe that \(G(\mathcal{O}_L) \) is a \(\mathbb{Z}_p \)-module since each \(G(\mathcal{O}_L/m^i\mathcal{O}_L) = \lim_{\rightarrow} G_v(\mathcal{O}_L/m^i\mathcal{O}_L) \) is a \(\mathbb{Z}_p \)-module by Corollary 2.1.6. Hence \(G(\mathcal{O}_L)_{\text{tors}} \) only contains \(p \)-power torsions. Moreover, by Corollary 2.1.6 we have an exact sequence
\[
0 \longrightarrow G_v(\mathcal{O}_L/m^i\mathcal{O}_L) \longrightarrow G(\mathcal{O}_L/m^i\mathcal{O}_L) \xrightarrow{[p^i]} G(\mathcal{O}_L/m^i\mathcal{O}_L),
\]
which in turn yields an exact sequence
\[
0 \longrightarrow \lim_{\rightarrow} G_v(\mathcal{O}_L/m^i\mathcal{O}_L) \longrightarrow G(\mathcal{O}_L) \xrightarrow{[p^i]} G(\mathcal{O}_L).
\]
We find that the \(p^i \)-torsion part of \(G(\mathcal{O}_L) \) is given by \(\lim_{\rightarrow} G_v(\mathcal{O}_L/m^i\mathcal{O}_L) \), thereby deducing the assertion [2] by taking the limit over \(v \).

If \(G \) is étale, we have identifications \(G_v(\mathcal{O}_L/m^i\mathcal{O}_L) \cong G_v(\mathcal{O}_L/m^{i+1}\mathcal{O}_L) \) by formal étaleness of étale morphisms as stated in [Sta Tag 04AL], thereby obtaining
\[
G(\mathcal{O}_L) = \lim_{\rightarrow} \lim_{\rightarrow} G_v(\mathcal{O}_L/m^i\mathcal{O}_L) \cong \lim_{\rightarrow} \lim_{\rightarrow} G_v(k_L) \cong G(k_L).
\]
We thus deduce the statement [3] by Corollary 2.1.6.

Remark. Arguing as in the proof of Theorem 2.2.15, we can show that the formal scheme \(\mathcal{G} := \text{Spf}(\lim A_v) \) carries the structure of a formal group induced by the finite flat \(\mathcal{O}_K \)-group schemes \(G_v \). Moreover, we can write the identification in [1] as \(G(\mathcal{O}_L) \cong \text{Hom}_{\mathcal{O}_K-\text{fomal}}(\text{Spf}(\mathcal{O}_L), \mathcal{G}) \).

Corollary 3.2.4. Let \(G \) be a connected \(p \)-divisible group dimension \(d \) over \(\mathcal{O}_K \). Let \(\mu \) be the associated \(d \)-dimensional formal group law in the sense of Theorem 2.2.15. Then we have a canonical isomorphism of \(\mathbb{Z}_p \)-modules
\[
G(\mathcal{O}_L) \cong \text{Hom}_{\mathcal{O}_K-\text{cont}}(\mathcal{O}_K[[t_1, \ldots, t_d]], \mathcal{O}_L)
\]
where the multiplication on the target is induced by \([p]_\mu \).

Remark. From the above isomorphism we obtain an identification \(G(\mathcal{O}_L) \cong \mathfrak{m}_L^d \) as a set. It is then straightforward to check that \(\mu \) induces the structure of a \(p \)-adic analytic group over \(L \) on \(\mathfrak{m}_L^d \) by Lemma 2.2.5 and the completeness of \(L \).

Proposition 3.2.5. Let \(G = \lim G_v \) be a \(p \)-divisible group over \(\mathcal{O}_K \). Then we have an exact sequence
\[
0 \longrightarrow G^\circ(\mathcal{O}_L) \longrightarrow G(\mathcal{O}_L) \longrightarrow G^{\text{ét}}(\mathcal{O}_L) \longrightarrow 0.
\]

Proof. Let us write \(G^\circ = \lim G_v^\circ \) and \(G^{\text{ét}} = \lim G_v^{\text{ét}} \) where \(G_v^{\text{ét}} := G_v/G_v^\circ \). We also write \(G_v = \text{Spec}(A_v), G_v^\circ = \text{Spec}(A_v^\circ), \) and \(G_v^{\text{ét}} = \text{Spec}(A_v^{\text{ét}}) \) where \(A_v, A_v^\circ, \) and \(A_v^{\text{ét}} \) are finite free \(\mathcal{O}_K \)-algebras. In addition, we define \(\mathcal{A} := \lim A_v \) and \(\mathcal{A}^{\text{ét}} := \lim A_v^{\text{ét}} \).

Proposition 2.1.10 yields an exact sequence
\[
0 \longrightarrow G^\circ \longrightarrow G \longrightarrow G^{\text{ét}} \longrightarrow 0.
\]
We wish to show that the induced sequence on the groups of \(\mathcal{O}_L \)-valued points is exact. The sequence is left exact by construction as limits and colimits are left exact in the category of abelian groups. Hence it remains to show surjectivity of the map \(G(\mathcal{O}_L) \rightarrow G^{\text{ét}}(\mathcal{O}_L) \). By Proposition 3.2.3 it suffices to prove surjectivity of the map
\[
\text{Hom}_{\mathcal{O}_K-\text{cont}}(\mathcal{A}, \mathcal{O}_L) \rightarrow \text{Hom}_{\mathcal{O}_K-\text{cont}}(\mathcal{A}^{\text{ét}}, \mathcal{O}_L).
\]
By the proof of Theorem 2.2.15 we have a continuous isomorphism
\[\lim_{\to} A^n_c \simeq \mathcal{O}_K[[t_1, \cdots, t_d]] \]
where \(d \) is the dimension of \(G \). Moreover, as the sequence (3.2) canonically splits after reduction to \(k \) by Proposition 1.4.11, we obtain a continuous isomorphism
\[(\mathcal{A}^{\text{ét}} \otimes \mathcal{O}_k) [[t_1, \cdots, t_d]] \simeq \mathcal{A} \otimes \mathcal{O}_k k. \]

Arguing as in the proof of Theorem 2.2.15 we can lift the above map to a continuous homomorphism
\[f : \mathcal{A}^{\text{ét}}[[t_1, \cdots, t_d]] \to \mathcal{A}. \]

We assert that \(f \) is surjective. Assume for contradiction that \(\text{coker}(f) \neq 0 \). Let \(\mathfrak{M} \) be a maximal ideal of \(\mathcal{A} \) such that \(\text{coker}(f)_{\mathfrak{M}} \neq 0 \). Since \(f \) becomes an isomorphism after reduction to \(k \), we have \(\text{coker}(f) \otimes \mathcal{O}_k k = 0 \), or equivalently \(\text{coker}(f) = \mathfrak{m} \text{coker}(f) \). In particular, we find \(\text{coker}(f)_{\mathfrak{M}} = \mathfrak{m} \text{coker}(f)_{\mathfrak{M}} \subseteq \mathfrak{M} \text{coker}(f)_{\mathfrak{M}} \). Since \(\text{coker}(f)_{\mathfrak{M}} \) is finitely generated (by one element) over the local ring \(\mathcal{A}_{\mathfrak{M}} \), we deduce \(\text{coker}(f)_{\mathfrak{M}} = 0 \) by Nakayama’s lemma, thereby obtaining the desired contradiction.

Let us now prove that \(f \) is injective. As in the previous paragraph, we find \(\ker(f) = \mathfrak{m} \ker(f) \) by the fact that \(f \) becomes an isomorphism after reduction to \(k \). Let us write \(\mathcal{I} := (t_1, \cdots, t_d) \), and denote by \(\widetilde{\mathcal{I}}^j \) the image of \(\mathcal{I}^j \) under \(f \). Then we have an exact sequence
\[
0 \to \ker(f)/\ker(f) \cap \mathcal{I}^j \to \mathcal{A}^{\text{ét}}[[t_1, \cdots, t_d]]/\mathcal{I}^j \to \mathcal{A}/\widetilde{\mathcal{I}}^j \to 0.
\]
Since \(\mathcal{A}^{\text{ét}}[[t_1, \cdots, t_d]]/\mathcal{I}^j \) is noetherian, we can argue as in the preceding paragraph with the identity \(\mathfrak{m} (\ker(f)/\ker(f) \cap \mathcal{I}^j) = \ker(f)/\ker(f) \cap \mathcal{I}^j \) to find \(\ker(f) = \ker(f) \cap \mathcal{I}^j \). As \(\cap_{j} \mathcal{I}^j = 0 \), we deduce \(\ker(f) = 0 \) as desired.

Now, since \(f \) is an isomorphism as seen above, it yields a surjective map \(\mathcal{A} \to \mathcal{A}^{\text{ét}} \) which splits the natural map \(\mathcal{A}^{\text{ét}} \to \mathcal{A} \). We thus deduce the desired surjectivity of the map (3.3), thereby completing the proof.

Corollary 3.2.6. For every \(x \in G(\mathcal{O}_L) \), we have \(p^n x \in G^\circ(\mathcal{O}_L) \) for all sufficiently large \(n \).

Proof. This is an immediate consequence of Proposition 3.2.3 and Proposition 3.2.5. \(\square \)

Proposition 3.2.7. Assume that \(L \) is algebraically closed. Then \(G(\mathcal{O}_L) \) is \(p \)-divisible in the sense that the multiplication by \(p \) on \(G(\mathcal{O}_L) \) is surjective.

Proof. By Proposition 3.2.5 it suffices to show the surjectivity of the multiplication by \(p \) on each \(G^{\text{ét}}(\mathcal{O}_L) \) and \(G^\circ(\mathcal{O}_L) \). The surjectivity on \(G^{\text{ét}}(\mathcal{O}_L) \) is obvious by Corollary 2.1.6 and Proposition 3.2.3. Hence it remains to prove the surjectivity on \(G^\circ(\mathcal{O}_L) \). Let \(\mu \) be the \(p \)-divisible formal group law associated to \(G^\circ \) in the sense of Theorem 2.2.15. Let us write \(\mathcal{A}^\circ := \mathcal{O}_K[[t_1, \cdots, t_d]] \) where \(d \) is the dimension of \(G \). By Corollary 3.2.4 the multiplication by \(p \) on \(G^\circ(\mathcal{O}_L) \simeq \text{Hom}_{\mathcal{O}_K-\text{cont}}(\mathcal{A}^\circ, \mathcal{O}_L) \) is induced by \([p]_\mu \) on \(\mathcal{A}^\circ \). Hence we deduce the desired surjectivity by the \(p \)-divisibility of \(\mu \). \(\square \)

Remark. If we let \(\mathcal{G}^\circ \) denote the formal group associated to \(G^\circ \), the surjectivity on \(G^\circ(\mathcal{O}_L) \) also follows from the \(p \)-divisibility of \(\mathcal{G}^\circ \) that we remarked after Theorem 2.2.15.
3.3. The logarithm for p-divisible groups

We retain the notations in the previous subsection. Our goal in this subsection is to construct and study the logarithm map for p-divisible groups over \mathcal{O}_K.

Definition 3.3.1. Let G be a p-divisible group over \mathcal{O}_K. We denote by μ the formal group law associated to G^0 in the sense of Theorem 2.2.15 and by \mathscr{I} the augmentation ideal of μ.

1. Given an \mathcal{O}_K-module M, we define the tangent space of G with values in M by
 \[t_G(M) := \text{Hom}_{\mathcal{O}_K}\text{-mod}(\mathscr{I}/\mathscr{I}^2, M), \]
 and the cotangent space of G with values in M by
 \[t^*_G(M) := \mathscr{I}/\mathscr{I}^2 \otimes_{\mathcal{O}_K} M. \]

2. We define the valuation filtration of $G^0(\mathcal{O}_L)$ by setting
 \[\text{Fil}^\lambda G^0(\mathcal{O}_L) := \{ f \in G^0(\mathcal{O}_L) : \nu(f(x)) \geq \lambda \text{ for all } x \in \mathscr{I} \} \]
 for all real number $\lambda > 0$, where we identify $G^0(\mathcal{O}_L) = \text{Hom}_{\mathcal{O}_K-\text{cont}}(\mathscr{I}^0, \mathcal{O}_L)$ as described in Corollary 3.2.4.

Remark. We may identify t_G and t^*_G respectively with the tangent space and cotangent space of the formal group \mathscr{G}_μ induced by μ.

Lemma 3.3.2. Let G be a p-divisible group over \mathcal{O}_K. For every $f \in \text{Fil}^\lambda G^0(\mathcal{O}_L)$, we have $pf \in \text{Fil}^\kappa G^0(\mathcal{O}_L)$ where $\kappa = \min(\lambda + 1, 2\lambda)$.

Proof. Let us define μ and \mathscr{I} as in Definition 3.3.1. Lemma 2.2.13 yields $[p]_\mu(x) = px + y$ for some $y \in \mathscr{I}^2$. We thus find
 \[(pf)(x) = f([p]_\mu(x)) = f(px + y) = pf(x) + f(y), \]
 which implies $\nu((pf)(x)) \geq \min(\lambda + 1, 2\lambda)$ as desired.

Lemma 3.3.3. Let G be a p-divisible group over \mathcal{O}_K, and define μ and \mathscr{I} as in Definition 3.3.1. Let us choose arbitrary elements $f \in G(\mathcal{O}_L)$ and $x \in \mathscr{I}$. Then $\lim_{n \to \infty} \left(\frac{(p^n f)(x)}{p^n} \right)$ exists in L, and equals zero if $x \in \mathscr{I}^2$.

Proof. By Lemma 2.2.13 we may write $[p]_\mu(x) = px + y$ for some $y \in \mathscr{I}^2$. In addition, by Corollary 3.2.6 we have $p^n f \in G^0(\mathcal{O}_L)$ for all sufficiently large n. Then an easy induction using Lemma 3.3.2 shows that there exists some constant c with $p^n f \in \text{Fil}^{n+c} G^0(\mathcal{O}_L)$ for all sufficiently large n. Hence for all sufficiently large n we find
 \[\frac{(p^{n+1} f)(x)}{p^{n+1}} - \frac{(p^n f)(x)}{p^n} = \frac{(p^n f)([p]_\mu(x))}{p^{n+1}} - \frac{(p^n f)(x)}{p^n} = \frac{(p^n f)(y)}{p^{n+1}}, \]
 which in turn yields
 \[\nu \left(\frac{(p^{n+1} f)(x)}{p^{n+1}} - \frac{(p^n f)(x)}{p^n} \right) \geq 2(n + c) - (n + 1) = n + (2c - 1). \]
 Therefore the sequence $\left(\frac{(p^n f)(x)}{p^n} \right)$ converges in L for being Cauchy. Moreover, if $x \in \mathscr{I}^2$ the sequence converges to 0 as
 \[\nu \left(\frac{(p^n f)(x)}{p^n} \right) \geq 2(n + c) - (n + 1) = n + (2c - 1) \]
 for all sufficiently large n. \qed
Lemma 3.3.3 allows us to make the following definition.

Definition 3.3.4. Let \(G \) be a \(p \)-divisible group over \(\mathcal{O}_K \), and let \(\mathcal{I} \) be as in Definition 3.3.1. We define the logarithm of \(G \) to be the map

\[
\log_G : G(\mathcal{O}_L) \to t_G(L)
\]

such that for every \(f \in G(\mathcal{O}_L) \) and \(x \in \mathcal{I}/\mathcal{I}^2 \) we have

\[
\log_G(f)(x) = \lim_{n \to \infty} \frac{(p^n f)(\hat{x})}{p^n}
\]

where \(\hat{x} \) is any lift of \(x \) to \(\mathcal{I} \).

Remark. Alternatively, we can construct \(\log_G \) using the theory of \(p \)-adic analytic groups. As remarked after Corollary 3.2.4, \(G^\circ(\mathcal{O}_L) \) carries the structure of a \(p \)-adic analytic group over \(L \). Moreover, we can identify its Lie algebra with \(t_G(L) \). Hence we have a map \(\log_{G^\circ} : G^\circ(\mathcal{O}_L) \to t_G(L) \) induced by the \(p \)-adic logarithm on the ambient analytic group. We then obtain \(\log_G : G(\mathcal{O}_L) \to t_G(L) \) by setting \(\log_G(f) := \frac{\log_{G^\circ}(p^n f)}{p^n} \) for any \(f \in G(\mathcal{O}_L) \) where \(n \) is chosen such that \(p^n f \in G^\circ(\mathcal{O}_L) \).

Example 3.3.5. As seen in Example 2.2.11 \(\mu_{p^\infty} \) is associated to the 1-dimensional formal group law \(\mu_{\mathbb{G}_m} \). Corollary 3.2.4 then yields an identification

\[
\mu_{p^\infty}(\mathcal{O}_L) \cong \text{Hom}_{\mathcal{O}_K-\text{cont}}(\mathcal{O}_L[[t]], \mathcal{O}_L) \cong \mathfrak{m}_L \cong 1 + \mathfrak{m}_L
\]

where the last two isomorphisms are given by \(f \mapsto f(t) \) and \(x \mapsto 1 + x \). Note that this identification agrees with the identification obtained in Example 3.2.2. In addition, writing \(\mathcal{I} := (t) \) for the augmentation ideal of \(\mu_{\mathbb{G}_m} \) we find

\[
t_{\mu_{p^\infty}}(L) = \text{Hom}_{\mathcal{O}_K-\text{mod}}(\mathcal{I}/\mathcal{I}^2, L) \cong L.
\]

We thus have a commutative diagram

\[
\begin{array}{ccc}
\mu_{p^\infty}(\mathcal{O}_L) & \xrightarrow{\log_{\mu_{p^\infty}}} & t_{\mu_{p^\infty}}(L) \\
f \mapsto 1 + f(t) & \downarrow & g \mapsto g(t) \\
1 + \mathfrak{m}_L & \xrightarrow{} & L
\end{array}
\]

Let us identify \(\log_{\mu_{p^\infty}} \) with the bottom arrow, which we denote by \(\log_p \). We also take an arbitrary element \(1 + x \in 1 + \mathfrak{m}_L \). As each \(f \in \mu_{p^\infty}(\mathcal{O}_L) \) satisfies

\[
(p^n f)(t) = f \left(\left[p^n \right]_{\mathbb{G}_m}(t) \right) = f \left((1 + t)^{p^n} - 1 \right) = (1 + f(t)p^n - 1,
\]

the diagram 3.4 yields an expression

\[
\log_p(1 + x) = \lim_{n \to \infty} \frac{(1 + x)^{p^n} - 1}{p^n} = \lim_{n \to \infty} \sum_{i=1}^{p^n} \frac{1}{p^n} \left(\binom{p^n}{i} \right) x^i.
\]

In addition, for each \(i \) and \(n \) we have

\[
\frac{1}{p^n} \left(\binom{p^n}{i} \right) - \frac{(-1)^{i-1}}{i} = \frac{(p^n - 1) \cdots (p^n - i + 1) - (-1)^{i-1}(i - 1)!}{i!}.
\]

Since the numerator is divisible by \(p^n \), we obtain an estimate

\[
\nu \left(\frac{1}{p^n} \left(\binom{p^n}{i} \right) x^i - \frac{(-1)^{i-1}}{i} x^i \right) \geq n + \nu(x) - \nu(i!) \geq n + \nu(x) - \frac{i}{p - 1}.
\]
Hence we may write the expression (3.5) as
\[\log_p(1 + x) = \sum_{i=1}^{\infty} \frac{(-1)^{i-1}}{i} x^i, \]
which coincides with the p-adic logarithm.

Let us collect some basic properties of the logarithm for p-divisible groups.

Proposition 3.3.6. Let G be a p-divisible group over \mathcal{O}_K. We define \mathcal{I} as in Definition 3.3.1.

1. \log_G is a group homomorphism.
2. \log_G is a local isomorphism in the sense that for each real number $\lambda \geq 1$ it induces an isomorphism
 \[\text{Fil}^\lambda G^\circ(\mathcal{O}_L) \longrightarrow \{ \tau \in t_G(L) : \nu(\tau(x)) \geq \lambda \text{ for all } x \in \mathcal{I}/\mathcal{I}^2 \}. \]
3. The kernel of \log_G is the torsion subgroup $G(\mathcal{O}_L)_{\text{tors}}$ of $G(\mathcal{O}_L)$.
4. \log_G induces an isomorphism $G(\mathcal{O}_L) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \simeq t_G(L)$.

Proof. We denote by μ the formal group law associated to G°, and by \mathcal{I} the augmentation ideal of μ. We also write $\mathcal{I}^\circ := \mathcal{O}_K[[t_1, \cdots, t_d]]$ where d is the dimension of G.

Take arbitrary elements $f, g \in G(\mathcal{O}_L)$ and $x \in \mathcal{I}$. Arguing as in Theorem 1.3.10 we find
\[\mu(x) \in 1 \otimes x + x \otimes 1 + \mathcal{I} \otimes_{\mathcal{I}^\circ} \mathcal{I}. \]
Hence for all sufficiently large n we have
\[(p^n(f + g))(x) = (p^n f + p^n g)(x) = (p^n f \otimes p^n g) \circ \mu(x) = (p^n f)(x) + (p^n g)(x) + y \]
for some $y \in (p^n f)(\mathcal{I}) : (p^n g)(\mathcal{I})$. Then a similar estimate as in Lemma 3.3.3 shows
\[\lim_{n \to \infty} \frac{(p^n f + g)(x)}{p^n} = \lim_{n \to \infty} \frac{(p^n f)(x)}{p^n} + \lim_{n \to \infty} \frac{(p^n g)(x)}{p^n}, \]
thereby implying that \log_G is a homomorphism.

Let us now fix an arbitrary real number $\lambda \geq 1$ and write
\[\text{Fil}^\lambda t_G(L) := \{ \tau \in t_G(L) : \nu(\tau(x)) \geq \lambda \text{ for all } x \in \mathcal{I}/\mathcal{I}^2 \}. \]
If $f \in \text{Fil}^\lambda G^\circ(\mathcal{O}_L)$, Lemma 3.3.2 yields an estimate $\nu(\frac{(p^n f)(x)}{p^n}) \geq \lambda$ for all $x \in \mathcal{I}$ and $n > 0$, thereby implying $\log_G(f) \in \text{Fil}^\lambda t_G(L)$. It is then straightforward to verify that \log_G on $\text{Fil}^\lambda G^\circ(\mathcal{O}_L)$ admits an inverse $\text{Fil}^\lambda t_G(L) \to \text{Fil}^\lambda G^\circ(\mathcal{O}_L)$ which sends each $\tau \in \text{Fil}^\lambda t_G(L)$ to the unique $f \in \text{Fil}^\lambda G^\circ(\mathcal{O}_L)$ with $f(t_i) = \tau(t_i)$. Therefore we deduce the statement (2).

Next we show $\ker(\log_G) = G(\mathcal{O}_L)_{\text{tors}}$ as asserted in (3). We clearly have $G(\mathcal{O}_L)_{\text{tors}} \subseteq \ker(\log_G)$ since $t_G(L)$ is torsion free for being a vector space over L. Hence we only need to establish the reverse inclusion $\ker(\log_G) \subseteq G(\mathcal{O}_L)$. Let f be an element in $\ker(\log_G)$. By (1) we have $p^n f \in \ker(\log_G)$ for all n. Moreover, Corollary 3.2.6 and Lemma 3.3.2 together yield $p^n f \in \text{Fil}^\lambda G^\circ(\mathcal{O}_L)$ for all sufficiently large n. We then find $p^n f = 0$ for all sufficiently large n by (2), thereby deducing that f is a torsion element as desired.

Now (3) readily implies the injectivity of the map $G(\mathcal{O}_L) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \to t_G(L)$ induced by \log_G. We also deduce the surjectivity of the map from (2) by observing that every element $\tau \in t_G(L)$ satisfies $p^n \tau \in \text{Fil}^\lambda t_G(L)$ for all sufficiently large n. \qed
3.4. Hodge-Tate decomposition for the Tate module

In this subsection, we derive the first main result for this chapter by exploiting our accumulated knowledge of finite flat group schemes and p-divisible groups.

Let us first present some easy but useful lemmas.

Lemma 3.4.1. Let $G = \varprojlim G_v$ be a p-divisible group over \mathcal{O}_K. For each v we have canonical isomorphisms

$$G_v(K) \cong G_v(\mathbb{C}_K) \cong G_v(\mathcal{O}_{\mathbb{C}_K}).$$

Proof. Since \mathbb{C}_K is algebraically closed as noted in Proposition 3.1.5, the first isomorphism follows from the fact that the generic fiber of G_v is étale by Corollary 1.3.11. The second isomorphism is a direct consequence of the valuative criterion. □

Lemma 3.4.2. For every p-divisible group G over \mathcal{O}_K we have

$$G(\mathcal{O}_{\mathbb{C}_K})^{G(K)} = G(\mathcal{O}_K) \quad \text{and} \quad t_G(\mathcal{O}_{\mathbb{C}_K})^{G(K)} = t_G(K).$$

Proof. By Theorem 3.1.12 we have $\mathbb{C}_K^{G(K)} = K$ and $\mathcal{O}_{\mathbb{C}_K}^{G(K)} = \mathcal{O}_K$. Hence the desired identifications immediately follow from Proposition 3.2.3 and Definition 3.3.1. □

Lemma 3.4.3. Given a p-divisible group G over \mathcal{O}_K we have

$$\bigcap_{n=1}^{\infty} p^n G^\circ(\mathcal{O}_K) = 0.$$

Proof. As the valuation on K is discrete, there exists a minimum positive valuation δ; indeed, we have $\delta = \nu(\pi)$ where π is a uniformizer of K. Then an easy induction using Lemma 3.2.3 yields $p^n G^\circ(\mathcal{O}_K) \subseteq \text{Fil}^n G^\circ(\mathcal{O}_K)$ for all $n \geq 1$. We thus deduce the desired assertion by observing $\bigcap_{n=1}^{\infty} \text{Fil}^n G^\circ(\mathcal{O}_K) = 0$. □

The main technical ingredient for this subsection is the interplay between the Tate modules and Cartier duality.

Definition 3.4.4. Let $G = \varprojlim G_v$ be a p-divisible group over \mathcal{O}_K. We define the Tate module of G by

$$T_p(G) := T_p(G \times_{\mathcal{O}_K} K) = \varprojlim G_v(K),$$

and the Tate comodule of G by

$$\Phi_p(G) := \varinjlim G_v(K).$$

Remark. The Tate comodule $\Phi_p(G)$ is nothing other than $G(K)$, where G is regarded as a fpqc sheaf.

Example 3.4.5. We have $T_p(\mu_p) = \mathbb{Z}_p(1)$ as noted in Example 3.1.9. In addition, $\Phi(\mu_p) = \varprojlim \mu_p(K) = \mu_p(\mathbb{Q}_p) = \mu_p(\mathbb{Q}_p(1))$ is the group of p-power roots of unity in \mathbb{Q}_p.

Proposition 3.4.6. Given a p-divisible group G over \mathcal{O}_K, Cartier duality induces natural Γ_K-equivariant isomorphisms

$$T_p(G) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mathbb{Z}_p(1)) \quad \text{and} \quad \Phi_p(G) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mu_p(\mathbb{Q}_p(1))).$$
3. HODGE-TATE DECOMPOSITION

Proof. Note that every finite flat group scheme over \(\overline{K} \) is étale by Corollary 1.3.11. For each \(v \) we have a natural identification

\[
G_v(\overline{K}) \cong (G_v^\vee)^\vee(\overline{K}) = \text{Hom}_{\mathcal{K}_{\text{grp}}}(\text{(}\mu_{p^\infty}(\overline{K}),\mu_{p^\infty}(\overline{K})\text{)} \cong \text{Hom}(G_v^\vee(\overline{K}), \mu_{p^\infty}(\overline{K})) \quad (3.6)
\]

by Theorem 1.2.3, Lemma 1.2.2, and Proposition 1.3.1. We then obtain a \(\Gamma_K \)-equivariant isomorphism

\[
T_p(G) = \lim_v G_v(\overline{K}) \cong \lim_v \text{Hom}(G_v^\vee(\overline{K}), \mu_{p^\infty}(\overline{K})) = \text{Hom}_{\mathbb{Z}_p}(\text{lim}_v G_v^\vee(\overline{K}), \text{lim}_v \mu_{p^\infty}(\overline{K}))
\]

In addition, by writing (3.6) as \(G_v(\overline{K}) \cong \text{Hom}(G_v^\vee(\overline{K}), \mu_{p^\infty}(\overline{K})) \) we find another \(\Gamma_K \)-equivariant isomorphism

\[
\Phi_p(G) = \lim_v G_v(\overline{K}) \cong \lim_v \text{Hom}(G_v^\vee(\overline{K}), \mu_{p^\infty}(\overline{K})) \cong \text{Hom}_{\mathbb{Z}_p}(\text{lim}_v G_v^\vee(\overline{K}), \mu_{p^\infty}(\overline{K}))
\]

thereby completing the proof. □

Proposition 3.4.7. Let \(G \) be a p-divisible group over \(\mathcal{O}_K \). We have an exact sequence

\[
0 \longrightarrow \Phi_p(G) \longrightarrow G(\mathcal{O}_C_K) \overset{\text{log}_G}{\longrightarrow} \mathcal{C}_K \longrightarrow 0.
\]

Proof. Since \(G(\mathcal{O}_C_K) \) is p-divisible by Proposition 3.1.5 and Proposition 3.2.7, we obtain the surjectivity of \(\text{log}_G \) by Proposition 3.3.6. We then use Proposition 3.3.6, Proposition 3.2.3, and Lemma 3.4.1 to find

\[
\text{ker}(\text{log}_G) = G(\mathcal{O}_C_K)_{\text{tors}} = \lim_v G_v(\mathcal{O}_{\mathcal{C}_K}/m^i\mathcal{O}_{\mathcal{C}_K}) = \lim_v G_v(\mathcal{O}_K) \cong \lim_v G_v(\overline{K}) = \Phi_p(G),
\]

thereby completing the proof. □

Example 3.4.8. For \(G = \mu_{p^\infty} \) Proposition 3.4.7 yields

\[
0 \longrightarrow \mu_{p^\infty}(\overline{K}) \longrightarrow 1 + m_{\mathcal{C}_K} \overset{\text{log}_{\mu_{p^\infty}}}{\longrightarrow} \mathcal{C}_K \longrightarrow 0.
\]

by Example 3.3.5 and Example 3.4.5.

Proposition 3.4.9. Every p-divisible group \(G \) over \(\mathcal{O}_K \) gives rise to a commutative diagram of exact sequences

\[
\begin{array}{cccccccc}
0 & \longrightarrow & \Phi_p(G) & \longrightarrow & G(\mathcal{O}_C_K) & \overset{\text{log}_G}{\longrightarrow} & t_G(\mathcal{C}_K) & \longrightarrow & 0 \\
& \downarrow i & & \downarrow \alpha & & \downarrow \text{d} \alpha & & \\
0 & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mu_{p^\infty}(\overline{K})) & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), 1 + m_{\mathcal{C}_K}) & \longrightarrow & \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mathcal{C}_K) & \longrightarrow & 0
\end{array}
\]

where \(\alpha \) and \(\text{d} \alpha \) are \(\Gamma_K \)-equivariant and injective.

Proof. The top row is as described in Proposition 3.4.7. The bottom row is induced by the short exact sequence in Example 3.4.8 and is exact since \(T_p(G^\vee) \) is free over \(\mathbb{Z}_p \). The left vertical arrow is the natural \(\Gamma_K \)-equivariant isomorphism given by Proposition 3.4.6.
Let us now construct the maps α and $d\alpha$. As usual, we write $G = \varprojlim G_v$ where G_v is a finite flat O_K-group scheme. Lemma 3.4.1 and Lemma 1.2.2 together yield

$$T_p(G^\vee) = \varprojlim G_v^\vee(K) \cong \varprojlim G_v^\vee(O_{C_K})$$

$$= \varprojlim \text{Hom}_{O_{C_K}}(G_v, (\mu_p^\infty)_{O_{C_K}})$$

$$= \text{Hom}_{p\text{-div \text{ grp}}}(G \times_{O_K} O_{C_K}, (\mu_p^\infty)_{O_K}).$$

(3.7)

We define the map $\alpha : G(O_{C_K}) \to \text{Hom}_{Z_p}(T_p(G^\vee), 1 + m_{C_K})$ by setting

$$\alpha(g)(u) := u_{O_{C_K}}(g) \quad \text{for each } g \in G(O_{C_K}) \text{ and } u \in T_p(G^\vee),$$

where $u_{O_{C_K}} : G(O_{C_K}) \to \mu_p^\infty(O_{C_K}) \cong 1 + m_{C_K}$ is the map induced by u under the identification (3.7). We also define the map $d\alpha : t_G(C_K) \to \text{Hom}_{Z_p}(T_p(G^\vee), C_K)$ by setting

$$d\alpha(z)(u) := du_{C_K}(z) \quad \text{for each } z \in t_G(C_K) \text{ and } u \in T_p(G^\vee),$$

where $du_{C_K} : t_G(C_K) \to t_{\mu_p^\infty}(C_K) \cong C_K$ is the map induced by u under the identification (3.7).

The maps α and $d\alpha$ are evidently Z_p-linear and Γ_K-equivariant by construction. The commutativity of the left square follows by observing that the left vertical arrow can be also defined as the restriction of α on $G(O_{C_K}) \cong \Phi_p(G)$. The commutativity of the right square amounts to the commutativity of the following diagram

$$\begin{array}{ccc}
G(O_{C_K}) & \xrightarrow{\log_G} & t_G(C_K) \\
\downarrow \mu_p^\infty(O_{C_K}) = 1 + m_{C_K} & & \downarrow t_{\mu_p^\infty} = C_K \\
\text{log}_{p\text{-div}} & & \\
\end{array}$$

which is straightforward to verify by definition; indeed, the logarithm map yields a natural transformation between the functor of O_{C_K}-valued formal points and the functor of tangent space with values in K.

It remains to prove that α and $d\alpha$ are injective. By snake lemma we have Z_p-linear isomorphisms

$$\ker(\alpha) \cong \ker(d\alpha) \quad \text{and} \quad \coker(\alpha) \cong \coker(d\alpha).$$

(3.8)

Hence it suffices to show that $d\alpha$ is injective.

As both $t_G(C_K)$ and $\text{Hom}_{Z_p}(T_p(G^\vee), C_K)$ are Q_p-vector spaces, the Z_p-linear map $d\alpha$ is indeed Q_p-linear. Therefore both $\ker(d\alpha)$ and $\coker(d\alpha)$ are Q_p-vector spaces. The isomorphisms (3.8) then tells us that both $\ker(\alpha)$ and $\coker(\alpha)$ are Q_p-vector spaces as well.

We assert that α is injective on $G(O_{C_K})$. Suppose for contradiction that $\ker(\alpha)$ contains a nonzero element $g \in G(O_{C_K})$. As $\ker(\alpha)$ is torsion free for being a Q_p-vector space, we may assume $g \in G^\circ(O_{C_K})$ by Corollary 3.2.6. Let us define the map

$$\alpha^\circ : G^\circ(O_{C_K}) \to \text{Hom}_{Z_p}(T_p((G^\circ)^\vee), 1 + m_{C_K})$$

in the same way we define the map α. Since the natural map $T_p(G^\vee) \to T_p((G^\circ)^\vee)$ is surjective, we obtain a commutative diagram

$$\begin{array}{c}
\xymatrix{G^\circ(O_{C_K}) \ar[d]_{\alpha^\circ} \ar[r] & G(O_{C_K}) \ar[d]^\alpha \\
\text{Hom}_{Z_p}(T_p((G^\circ)^\vee), 1 + m_{C_K}) & \text{Hom}_{Z_p}(T_p(G^\vee), 1 + m_{C_K})}
\end{array}$$
where both horizontal arrows are injective. In particular, we have \(g \in \ker(\alpha) \cap G^o(\mathcal{O}_K) \).
Moreover, Lemma \([3.4.2]\) yields \(\ker(\alpha) \cap G^o(\mathcal{O}_K) = \ker(\alpha)^\Gamma_K \), which is a \(\mathbb{Q}_p \)-vector space since \(\ker(\alpha) \) is a \(\mathbb{Q}_p \)-vector space by the same argument as in the preceding paragraph.
Therefore for every \(n \in \mathbb{Z} \) there exists an element \(g_n \in \ker(\alpha) \cap G^o(\mathcal{O}_K) \) with \(g = p^n g_n \).
However, this means \(g = 0 \) by Lemma \([3.4.3]\) yielding the desired contradiction.

Next we show that \(d\alpha \) is injective on \(t_G(K) \). Since \(\log_G(G(\mathcal{O}_K)) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = t_G(K) \) by Proposition \([3.3.6]\) it is enough to show the injectivity on \(\log_G(G(\mathcal{O}_K)) \).
Choose an arbitrary element \(h \in G(\mathcal{O}_K) \) such that \(\log_G(h) \in \ker(d\alpha) \). We wish to show that \(\log_G(h) = 0 \). As the isomorphism \(\ker(\alpha) \cong \ker(d\alpha) \) in \((3.8)\) is induced by \(\log_G \), we can find \(h' \in \ker(\alpha) \) with \(\log_G(h) = \log_G(h') \).
Then by Proposition \([3.3.6]\) we have \(h - h' \in \ker(\log_G) = G(\mathcal{O}_{C_K})_{\text{tors}} \), which means that there exists some \(n \) with \(p^n(h - h') = 0 \), or equivalently \(p^n h = p^n h' \).
We thus find \(p^n h \in \ker(\alpha) \cap G(\mathcal{O}_K) \), which implies \(p^n h = 0 \) by the injectivity of \(\alpha \) on \(G(\mathcal{O}_K) \).
Hence we have \(h \in G(\mathcal{O}_{C_K})_{\text{tors}} \), thereby deducing \(\log_G(h) = 0 \) by Proposition \([3.3.6]\).

As \(t_G(K) = t_G(\mathbb{C}_K)^\Gamma_K \) by Lemma \([3.4.2]\) we can factor \(d\alpha \) as
\[
d\alpha : t_G(\mathbb{C}_K) \cong t_G(K) \otimes_{\mathbb{C}_K} \mathbb{C}_K \longrightarrow \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mathbb{C}_K)^{\Gamma_K} \otimes_K \mathbb{C}_K \rightarrow \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mathbb{C}_K).
\]
The first arrow is injective by our discussion in the preceding paragraph. The second arrow is injective by Lemma \([3.1.13]\) since we have a canonical isomorphism
\[
\text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), \mathbb{C}_K) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G^\vee), K) \otimes_K \mathbb{C}_K
\]
due to the freeness of \(T_p(G^\vee) \) over \(\mathbb{Z}_p \). Hence we deduce the injectivity of \(d\alpha \) as desired, thereby completing the proof. \(\square \)

Theorem 3.4.10 (Tate). Let \(G \) be a \(p \)-divisible group over \(\mathcal{O}_K \). Define \(\alpha \) and \(d\alpha \) as in Proposition \([3.4.9]\). Then their restrictions to the \(\Gamma_K \)-invariant elements yield bijective maps
\[
\alpha_K : G(\mathcal{O}_K) \rightarrow \text{Hom}_{\mathbb{Z}_p}[\Gamma_K](T_p(G^\vee), 1 + m_{\mathbb{C}_K}),
\]
\[
d\alpha_K : t_G(K) \rightarrow \text{Hom}_{\mathbb{Z}_p}[\Gamma_K](T_p(G^\vee), \mathbb{C}_K).
\]

Proof. By Proposition \([3.4.9]\) we have a commutative diagram of exact sequences
\[
\begin{array}{ccc}
0 & \longrightarrow & G(\mathcal{O}_{C_K}) \quad \longrightarrow & \quad \longrightarrow & \text{coker}(\alpha) \quad \longrightarrow & 0 \\
\quad \downarrow{\log_G} & & & & \downarrow{\kappa} \\
0 & \longrightarrow & t_G(\mathbb{C}_K) \quad \longrightarrow & \quad \longrightarrow & \text{coker}(d\alpha) \quad \longrightarrow & 0
\end{array}
\]
where the bijectivity of the right vertical arrow follows from snake lemma as noted in \((3.8)\).
Taking \(\Gamma_K \)-invariants of the above diagram yields
\[
\begin{array}{ccc}
0 & \longrightarrow & G(\mathcal{O}_K) \quad \longrightarrow & \quad \longrightarrow & \text{coker}(\alpha)^{\Gamma_K} \\
\quad \downarrow{\alpha_K} & & & & \downarrow{\kappa} \\
0 & \longrightarrow & t_G(K) \quad \longrightarrow & \quad \longrightarrow & \text{coker}(d\alpha)^{\Gamma_K}
\end{array}
\]
which implies the injectivity of \(\alpha_K \) and \(d\alpha_K \). Moreover, by the exactness of the middle terms we obtain a commutative diagram
\[
\begin{array}{ccc}
\text{coker}(\alpha_K) & \longrightarrow & \text{coker}(\alpha)^{\Gamma_K} \\
\quad \downarrow{\kappa} & & \downarrow{\kappa} \\
\text{coker}(d\alpha_K) & \longrightarrow & \text{coker}(d\alpha)^{\Gamma_K}
\end{array}
\]
where the injectivity of the left vertical arrow follows from the injectivity of the other three arrows. Hence we only need to prove \(\text{coker}(d\alpha_K) = 0 \), or equivalently the surjectivity of \(d\alpha_K \).

Let \(h \) and \(d \) be the height and dimension of \(G \), and let \(d' \) be the dimension of \(G' \). Note that the \(\mathbb{C}_K \)-vector spaces

\[
V := \text{Hom}_{\mathbb{Z}_p}(T_p(G), \mathbb{C}_K) \quad \text{and} \quad W := \text{Hom}_{\mathbb{Z}_p}(T_p(G'), \mathbb{C}_K)
\]

are both \(h \)-dimensional. The injectivity of \(d\alpha_K \) yields

\[
\dim_K(W^{\Gamma_K}) \geq \dim_K(t_G(K)) = d
\]

where equality holds if and only if \(d\alpha_K \) is surjective. By switching the roles of \(G \) and \(G' \) we also find \(\dim_K(V^{\Gamma_K}) \geq d' \), thereby obtaining

\[
\dim_K(V^{\Gamma_K}) + \dim_K(W^{\Gamma_K}) \geq d + d' = h
\]

by Theorem 2.2.18.

By Proposition 3.4.6 we have a \(\Gamma_K \)-equivariant perfect pairing of \(\mathbb{Z}_p \)-modules

\[
T_p(G) \times T_p(G') \to \mathbb{Z}_p(1).
\]

The scalar extension to \(\mathbb{C}_K \) of the dual pairing yields a \(\Gamma_K \)-equivariant \(\mathbb{C}_K \)-linear pairing

\[
V \times W \to \mathbb{C}_K(-1),
\]

which is perfect since both \(T_p(G) \) and \(T_p(G') \) are free over \(\mathbb{Z}_p \). The image of \(V^{\Gamma_K} \times W^{\Gamma_K} \) should lie in \(\mathbb{C}_K(-1)^{\Gamma_K} \), which is zero by Theorem 3.1.12. This means that \(V^{\Gamma_K} \otimes_K \mathbb{C}_K \) and \(W^{\Gamma_K} \otimes_K \mathbb{C}_K \) are orthogonal under the perfect pairing \((3.11) \), which further implies

\[
\dim_K(V^{\Gamma_K}) + \dim_K(W^{\Gamma_K}) \leq \dim_{\mathbb{C}_K}(V) = h.
\]

We thus have equality in \((3.10) \), which in turn implies equality in \((3.9) \) and thereby yielding the desired surjectivity of \(d\alpha_K \).

Corollary 3.4.11. *For every \(p \)-divisible group \(G \) of dimension \(d \) over \(\mathcal{O}_K \), we have an identity*

\[
d = \dim_K(\text{Hom}_{\mathbb{Z}_p[\Gamma_K]}(T_p(G'), \mathbb{C}_K)) = \dim_K(T_p(G) \otimes_{\mathbb{Z}_p} \mathbb{C}_K(-1))^{\Gamma_K}.
\]

Proof. The first equality immediately follows from Theorem 3.4.10. The second equality follows by an identification

\[
T_p(G) \otimes_{\mathbb{Z}_p} \mathbb{C}_K(-1) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G'), \mathbb{Z}_p(1)) \otimes_{\mathbb{Z}_p} \mathbb{C}_K(-1) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G'), \mathbb{C}_K)
\]

where the isomorphisms are given by Proposition 3.4.6 and the freeness of \(T_p(G') \) over \(\mathbb{Z}_p \). □

We are finally ready to prove the first main result for this chapter.

Theorem 3.4.12 (Tate). *Let \(G \) be a \(p \)-divisible group over \(\mathcal{O}_K \). There is a canonical isomorphism of \(\mathbb{C}_K[\Gamma_K] \)-modules*

\[
\text{Hom}(T_p(G), \mathbb{C}_K) \cong t_G'(\mathbb{C}_K) \oplus t_G^*(\mathbb{C}_K)(-1).
\]

Proof. Theorem 3.4.10 yields natural isomorphisms

\[
t_G(\mathbb{C}_K) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G'), \mathbb{C}_K)^{\Gamma_K} \otimes_K \mathbb{C}_K,
\]

\[
t_G'(\mathbb{C}_K) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(G), \mathbb{C}_K)^{\Gamma_K} \otimes_K \mathbb{C}_K.
\]

Moreover, the proof of Theorem 3.4.10 shows that \(t_G(\mathbb{C}_K) \) and \(t_G'(\mathbb{C}_K) \) are orthogonal under the perfect pairing

\[
\text{Hom}_{\mathbb{Z}_p}(T_p(G), \mathbb{C}_K) \times \text{Hom}_{\mathbb{Z}_p}(T_p(G'), \mathbb{C}_K) \to \mathbb{C}_K(-1)
\]
as constructed in Definition 3.4.13, with equality
\[\dim_{\mathbb{C}_k}(t_G^\vee(\mathbb{C}_K)) + \dim_{\mathbb{C}_k}(t_{G^\vee}(\mathbb{C}_K)) = \dim_{\mathbb{C}_k}(\text{Hom}_{\mathbb{Z}_p}(T_p(G), \mathbb{C}_K)).\]
This means that \(t_G(\mathbb{C}_K)\) and \(t_{G^\vee}(\mathbb{C}_K)\) are orthogonal complements with respect to the above pairing, thereby yielding an exact sequence

\[0 \longrightarrow t_{G^\vee}(\mathbb{C}_K) \longrightarrow \text{Hom}_{\mathbb{Z}_p}(T_p(G), \mathbb{C}_K) \longrightarrow t_G^*(\mathbb{C}_K)(-1) \longrightarrow 0 \quad (3.12)\]

where for the last term we use the identification \(\text{Hom}_{\mathbb{C}_K}(t_G(\mathbb{C}_K), \mathbb{C}_K(-1)) \cong t_G^*(\mathbb{C}_K)(-1)\) that follows by observing that \(t_G^*(\mathbb{C}_K)\) is the \(\mathbb{C}_K\)-dual \(t_G(\mathbb{C}_K)\). Writing \(d := \dim_{\mathbb{C}_K}(t_G(\mathbb{C}_K))\) and \(d^\vee := \dim_{\mathbb{C}_K}(t_{G^\vee}(\mathbb{C}_K))\) we find

\[\text{Ext}^1_{\mathbb{C}_K[\Gamma_K]}(t_G^*(\mathbb{C}_K)(-1), t_{G^\vee}(\mathbb{C}_K)) \cong \text{Ext}^1_{\mathbb{C}_K[\Gamma_K]}(\mathbb{C}_K(1)^{\oplus d^\vee}, \mathbb{C}_K^{\oplus d}) \cong H^1(\Gamma_K, \mathbb{C}_K(1))^{\oplus dd^\vee} = 0\]

by Theorem 3.1.12, thereby deducing that the exact sequence (3.12) splits. Moreover, such a splitting is unique since we have

\[\text{Hom}_{\mathbb{C}_K[\Gamma_K]}(t_G^*(\mathbb{C}_K)(-1), t_{G^\vee}(\mathbb{C}_K)) \cong \text{Hom}_{\mathbb{C}_K[\Gamma_K]}(\mathbb{C}_K(1)^{\oplus d^\vee}, \mathbb{C}_K^{\oplus d}) \cong H^0(\Gamma_K, \mathbb{C}_K(1))^{\oplus dd^\vee} = 0\]

by Theorem 3.1.12. Hence we obtain the desired assertion. \(\square\)

Definition 3.4.13. Given a \(p\)-divisible group \(G\) over \(\mathcal{O}_K\), we refer to the isomorphism in Theorem 3.4.12 as the Hodge-Tate decomposition for \(G\).

Corollary 3.4.14. For every \(p\)-divisible group \(G\) over \(\mathcal{O}_K\), the rational Tate-module

\[V_p(G) := V_p(G \times_{\mathcal{O}_K} \overline{K}) = T_p(G) \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p\]

is a Hodge-Tate \(p\)-adic representation of \(\Gamma_K\).

Proof. As the \(\mathbb{C}_K\)-duals of \(t_{G^\vee}(\mathbb{C}_K)\) and \(t_G^*(\mathbb{C}_K)\) are respectively given by \(t_G^*(\mathbb{C}_K)\) and \(t_{G^\vee}(\mathbb{C}_K)\), Theorem 3.4.12 yields a decomposition

\[V_p(G) \otimes_{\mathbb{Q}_p} \mathbb{C}_K \cong t_{G^\vee}(\mathbb{C}_K) \oplus t_G(\mathbb{C}_K)(1).\]

Then for each \(n\) we find

\[(V_p(G) \otimes_{\mathbb{Q}_p} \mathbb{C}_K)(-n)_{\Gamma_K} = \begin{cases} t_{G^\vee}(\mathbb{C}_K) & \text{if } n = 0, \\ t_G(\mathbb{C}_K) & \text{if } n = 1, \\ 0 & \text{otherwise}, \end{cases}\]

by Theorem 3.1.12. The assertion is now obvious by Definition 3.1.6. \(\square\)

Let us conclude this subsection with a geometric application of Theorem 3.4.12.

Proposition 3.4.15. Let \(A\) be an abelian variety over \(K\) with good reduction. Then we have a canonical \(\Gamma_K\)-equivariant isomorphism

\[H^i_{et}(A_K^\vee, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_K \cong \bigoplus_{i+j=n} H^i(A, \Omega^j_{A/K}) \otimes_K \mathbb{C}_K(-j).\]

Proof. Let \(A^\vee\) denote the dual abelian variety of \(A\). Since \(A\) has good reduction, there exists an abelian scheme \(\mathcal{A}\) over \(\mathcal{O}_K\) with \(\mathcal{A}_K \cong A\). Then we have \(T_p(\mathcal{A}[p^\infty]) = T_p(\mathcal{A}[p^\infty])\) by definition, and \(A^\vee[p^\infty] \cong A[p^\infty]^\vee\) as noted in Example 2.1.9. In addition, we have the following standard facts:
(1) There is a canonical isomorphism
\[H^1_{\text{ét}}(A,\mathbb{Q}_p) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(A[p^\infty]),\mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p. \]

(2) The formal completion of \(A \) along the unit section yields the formal group law that corresponds to \(A[p^\infty] \) in the sense of Theorem 2.2.15.

(3) There are canonical isomorphisms
\[H^0(A,\Omega^1_{A/K}) \cong t^*_e(A) \quad \text{and} \quad H^1(A,\mathcal{O}_A) \cong t_e(A^\vee) \]
where \(t^*_e(A) \) and \(t_e(A) \) respectively denote the cotangent space of \(A \) and tangent space of \(A^\vee \) (at the unit section).

(4) We have identifications
\[H^1_{\text{ét}}(A,\mathbb{Q}_p) \cong \bigwedge^n H^1_{\text{ét}}(A,\mathbb{Q}_p), \]
\[H^i(A,\Omega^j_{A/K}) \cong \bigwedge^i H^1(A,\mathcal{O}_A) \otimes \bigwedge^j H^0(A,\Omega^1_{A/K}). \]

The statements (2) and (3) together yield identifications
\[H^0(A,\Omega^1_{A/K}) \cong t^*_A[p^\infty](K) \quad \text{and} \quad H^1(A,\mathcal{O}_A) \cong t_{A^\vee[p^\infty]}(K). \]

Hence Theorem 3.4.12 yields a canonical \(\Gamma_K \)-equivariant isomorphism
\[H^1_{\text{ét}}(A,\mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_K \cong (H^1(A,\mathcal{O}_A) \otimes_K \mathbb{C}_K) \oplus (H^0(A,\Omega^1_{A/K}) \otimes_K \mathbb{C}_K(-1)). \]

We then obtain the desired isomorphism by (4).

\[\square \]

Remark. Proposition 3.4.15 is a special case of the general Hodge-Tate decomposition theorem that we introduced in Chapter I, Theorem 1.2.1. The original proof by Faltings in [Fal88] relies on the language of almost mathematics. Recently, inspired by the work of Faltings, Scholze [Sch13] extended the Hodge-Tate decomposition theorem to rigid analytic varieties using his theory of perfectoid spaces. A good exposition of Scholze’s work can be found in Bhatt’s notes [Bha].

Corollary 3.4.16. For every abelian variety \(A \) over \(K \) with good reduction, the étale cohomology \(H^n_{\text{ét}}(A,\mathbb{Q}_p) \) is a Hodge-Tate \(p \)-adic representation of \(\Gamma_K \).

Proof. For each \(j \in \mathbb{Z} \) we find
\[(H^n_{\text{ét}}(A,\mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(j))^{\Gamma_K} \cong \begin{cases} H^{n-j}(A,\Omega^j_{A/K}) & \text{if } 0 \leq j \leq n, \\ 0 & \text{otherwise} \end{cases} \]
by Proposition 3.4.15 and Theorem 3.1.12. Hence we deduce the desired assertion by Definition 3.1.6.

\[\square \]

Remark. Corollary 3.4.16 readily extends to an arbitrary proper smooth variety \(X \) over \(K \), as for each \(j \in \mathbb{Z} \) the general Hodge-Tate decomposition theorem and Theorem 3.1.12 together yield an identification
\[(H^n_{\text{ét}}(X,\mathbb{Q}_p) \otimes_{\mathbb{Q}_p} \mathbb{C}_K(j))^{\Gamma_K} \cong \begin{cases} H^{n-j}(X,\Omega^j_{X/K}) & \text{if } 0 \leq j \leq n, \\ 0 & \text{otherwise}. \end{cases} \]

Moreover, the above identification shows that \(H^n_{\text{ét}}(X,\mathbb{Q}_p) \) recovers the Hodge number (and Hodge cohomology) of \(X \). This is a \(p \)-adic analogue of the fact from the classical Hodge theory that the Hodge numbers are topological invariants of a smooth proper variety over \(\mathbb{C} \).
3.5. Generic fibers of p-divisible groups

The main focus of this subsection is to prove the second main result for this chapter, which says that the generic fiber functor on the category of p-divisible groups over \mathcal{O}_K is fully faithful.

We assume the following technical result without proof.

Proposition 3.5.1. Let $G = \lim G_v$ be a p-divisible group of height h and dimension d over \mathcal{O}_K. Let us $G_v = \text{Spec} (A_v)$ where A_v is a finite free \mathcal{O}_K-algebra. Then the discriminant ideal of A_v over \mathcal{O}_K is generated by p^{depth_v}.

Remark. For curious readers, we briefly sketch the proof of Proposition 3.5.1. Let $\text{disc}(A_v)$ denote the discriminant ideal of A_v over \mathcal{O}_K. By Proposition 2.1.5 we have a short exact sequence

$$0 \longrightarrow G_1 \longrightarrow G_{v+1} \longrightarrow G_v \longrightarrow 0.$$

From this we can deduce a relation $\text{disc}(A_{v+1}) = \text{disc}(A_v)^{p^v} \text{disc}(A_1)^{p^{hv}}$, thereby reducing our proof to the case $v = 1$. Moreover, if we write $G_1^\Sigma = \text{Spec} (A_1^\Sigma)$ we can find $\text{disc}(A_1^\Sigma) = \text{disc}(A_1)$ from the connected-étale sequence of G_1. Hence it suffices to consider the case where G is connected. Let μ be the formal group law associated to G in the sense of Theorem 2.2.15. We also write $\mathcal{A} := \mathcal{O}_K[[t_1, \cdots, t_d]]$ and $\mathcal{I} = (t_1, \cdots, t_d)$ as usual. Then we have $A_1 \cong \mathcal{O}_K \otimes_{\mathcal{A}, [p]} \mathcal{I}$ as shown in the proof of Proposition 2.2.10. Therefore we can compute $\text{disc}(A_1)$ by the discriminant ideal of \mathcal{A} over $[p]_{\mathcal{O}}(\mathcal{A})$. This is the most technical part of the proof; the best reference that we can provide here is Haines’ notes [Hai. §2.3]

Our main strategy is to work on the level of Tate modules. The key ingredient is the fact that, for p-divisible groups over \mathcal{O}_K, the maps on the generic fibers are completely determined by the maps on the Tate modules by Proposition 2.1.14. Here we present two consequences of this fact as preparation for the proof of the main result.

Lemma 3.5.2. Let $f : G \rightarrow H$ be a homomorphism of p-divisible groups over \mathcal{O}_K. If the restriction of f on the generic fibers is an isomorphism, then f is an isomorphism.

Proof. Let us write $G = \lim G_v$ and $H = \lim H_v$ where $G_v = \text{Spec} (A_v)$ and $H_v = \text{Spec} (B_v)$ are finite flat group schemes over \mathcal{O}_K. Let $\alpha_v : B_v \rightarrow A_v$ be the map of \mathcal{O}_K-algebras induced by f. We wish to show that α_v is an isomorphism. Since $\alpha_v \otimes 1 : B_v \otimes_{\mathcal{O}_K} K \rightarrow A_v \otimes_{\mathcal{O}_K} K$ is an isomorphism, α_v must be injective by the freeness of B_v over \mathcal{O}_K. Hence it suffices to show that A_v and B_v have the same discriminant ideal over \mathcal{O}_K.

As the generic fibers $G \times_{\mathcal{O}_K} K$ and $H \times_{\mathcal{O}_K} K$ are isomorphic, we have $T_p(G) \cong T_p(H)$. In particular, by Corollary 3.4.11 we find that G and H have the same height and dimension. The desired assertion now follows from Proposition 3.5.1.

Remark. As the proof of Lemma 3.5.2 shows, Corollary 3.4.11 and Proposition 3.5.1 are the main technical inputs for our main result in this subsection. They reflect Tate’s key insight that the dimension of a p-divisible group should be encoded in the Tate module. Theorem 3.4.12 was indeed discovered as a byproduct in an attempt to verify his insight.

Proposition 3.5.3. Let G be a p-divisible group over \mathcal{O}_K, and let M a \mathbb{Z}_p-direct summand of $T_p(G)$ which is stable under the action of Γ_K. There exists a p-divisible group H over \mathcal{O}_K with a homomorphism $\iota : H \rightarrow G$ which induces an isomorphism $T_p(H) \cong M$.

Proof. As usual, let us write $G = \lim G_v$ where G_v is a finite flat group scheme over \mathcal{O}_K. By Proposition 2.1.14 the submodule M of $T_p(G)$ gives rise to a p-divisible group
\[\bar{H} = \lim_{\leftarrow} \bar{H}_v \text{ over } K \] with a homomorphism \(\bar{H} \to G \times_{\mathcal{O}_K} K \) which induces a closed embedding \(\bar{v} : \bar{H}_v \hookrightarrow G_v \times_{\mathcal{O}_K} K \) at each finite level. Let \(h \) be the height of \(\bar{H} \), and let \(\bar{H}_v \) denote the scheme theoretic closure of \(\bar{H}_v \) in \(G_v \). We then quickly verify that \(\bar{H}_v \) is a finite flat group scheme of order \(p^{vh} \). Moreover, the closed embedding \(\bar{H}_v \hookrightarrow \bar{H}_{v+1} \) extends to a closed embedding \(\bar{H}_v \hookrightarrow \bar{H}_{v+1} \).

Let us now consider the quotient \(\bar{H}_{v+1}/\bar{H}_v \). Observe that \([p] \) factors through the unit section on the generic fiber \(\bar{H}_{v+1}/\bar{H}_v \simeq \bar{H}_1 = \bar{H}[p] \). Passing to the scheme theoretic closure, we find that \([p] \) also factors through the unit section on \(\bar{H}_{v+1}/\bar{H}_v \). Therefore \([p] \bar{H}_{v+1} \) induces a homomorphism

\[\delta_v : \bar{H}_{v+2}/\bar{H}_{v+1} \rightarrow \bar{H}_{v+1}/\bar{H}_v \]

which yields an isomorphism on the generic fibers. Let us write \(\bar{H}_{v+1}/\bar{H}_v = \text{Spec}(B_v) \) where \(B_v \) is a finite free \(\mathcal{O}_K \)-algebra. The map \(B_v \to B_{v+1} \) induced by \(\delta_v \) is injective, as it becomes isomorphism upon tensoring with \(K \). Hence the \(B_v \)'s form an increasing sequence of \(\mathcal{O}_K \)-orders in the \(K \)-algebra \(B_1 \otimes_{\mathcal{O}_K} K \). In addition, since \(B_1 \otimes_{\mathcal{O}_K} K \) is finite étale by Corollary \[1.3.11\] we adapt the argument of [AM94, Proposition 5.17] to deduce that the integral closure of \(\mathcal{O}_K \) in \(B_1 \otimes_{\mathcal{O}_K} K \) is noetherian. Therefore there exists some \(v_0 \) such that \(B_v \simeq B_{v+1} \) for all \(v \geq v_0 \), or equivalently \(\delta_v \) is an isomorphism for all \(v \geq v_0 \).

Let us set \(H_v := \bar{H}_{v_0+v}/\bar{H}_{v_0} \). We have a closed embedding \(H_v \hookrightarrow H_{v+1} \) induced by the closed embedding \(\bar{H}_{v_0+v} \hookrightarrow \bar{H}_{v_0+v+1} \). We assert that \(H := \lim_{\leftarrow} H_v \) is a \(p \)-divisible group over \(\mathcal{O}_K \). By construction, \(H_v \) is a finite flat \(\mathcal{O}_K \)-group scheme of order \(p^{v+1} \). Moreover, we have a commutative diagram

\[
\begin{array}{ccc}
H_{v+1} = \bar{H}_{v_0+v+1}/\bar{H}_{v_0} & \xrightarrow{[p^v]} & \bar{H}_{v_0+v+1}/\bar{H}_{v_0} = H_{v+1} \\
\downarrow & & \uparrow \\
\bar{H}_{v_0+v+1}/\bar{H}_{v_0+v} & \xrightarrow{\sim} & \bar{H}_{v_0+1}/\bar{H}_{v_0} = H_1
\end{array}
\]

where the bottom arrow is given by \(\delta_{v_0} \circ \cdots \circ \delta_{v_0+v} \). We then find that the kernel of \([p^v]\) on \(H_{v+1} \) is equal to the kernel of the left vertical arrow, thereby deducing \(H_{v+1}[p^v] = \bar{H}_{v_0+v}/\bar{H}_{v_0} = H_v \).

We now define a homomorphism \(\iota_v : H_v \to G_v \) by the composition

\[
H_v = \bar{H}_{v_0+v}/\bar{H}_{v_0} \xrightarrow{[p^v]} \bar{H}_v \hookrightarrow G_v.
\]

It is straightforward to check that the maps \(\iota_v \) give rise to a homomorphism \(\iota : H \to G \). Moreover, on the generic fibers it induces a map

\[
\bar{H}_{v_0+v}/\bar{H}_{v_0} \xrightarrow{[p^v]} \bar{H}_v \hookrightarrow G_v \times_{\mathcal{O}_K} K
\]

where the first arrow is an isomorphism by the \(p \)-divisibility of \(\bar{H} \). Hence we find that \(\iota \) induces an isomorphism \(T_p(H) \simeq T_p(\bar{H}) \simeq M \), thereby completing the proof.

Let us now prove the second main result of this chapter.

Theorem 3.5.4. For arbitrary \(p \)-divisible groups \(G \) and \(H \) over \(\mathcal{O}_K \), the natural map

\[
\text{Hom}(G, H) \to \text{Hom}(G \times_{\mathcal{O}_K} K, H \times_{\mathcal{O}_K} K)
\]

is bijective.
PROOF. Let us write \(G = \lim G_v \) and \(H = \lim H_v \) where \(G_v = \text{Spec} (A_v) \) and \(H_v = \text{Spec} (B_v) \) are finite flat group schemes over \(\mathcal{O}_K \). Consider an arbitrary homomorphism \(\tilde{f} : G \times_{\mathcal{O}_K} K \to H \times_{\mathcal{O}_K} K \). We wish to show that \(\tilde{f} \) uniquely extends to a homomorphism \(f : G \to H \).

Let \(\tilde{\alpha}_v : B_v \otimes_{\mathcal{O}_K} K \to A_v \otimes_{\mathcal{O}_K} K \) be the map of \(K \)-algebras induced by \(\tilde{f} \). As \(B_v \) is free over \(\mathcal{O}_K \), there exists at most one \(\mathcal{O}_K \)-algebra homomorphism \(\alpha_v : B_v \to A_v \) such that \(\alpha_v \otimes 1 = \tilde{\alpha}_v \). Hence we deduce that there exists at most one homomorphism \(f : G \to H \) that extends \(\tilde{f} \).

It remains to construct an extension \(f : G \to H \) of \(\tilde{f} \). Recall that \(T_p(G \times_{\mathcal{O}_K} K) = T_p(G) \) and \(T_p(H \times_{\mathcal{O}_K} K) = T_p(H) \) by definition. Let \(\tau : T_p(G) \to T_p(H) \) be the map on the Tate modules induced by \(f \). Denote by \(M \) the graph of \(\tau \) in \(T_p(G) \oplus T_p(H) \). Clearly \(M \) is a \(\mathbb{Z}_p[\Gamma_K] \)-submodule of \(T_p(G) \oplus T_p(H) \). Moreover, the quotient \((T_p(G) \oplus T_p(H))/M \) is torsion-free as there is an injective \(\mathbb{Z}_p \)-linear map
\[
(T_p(G) \oplus T_p(H))/M \hookrightarrow T_p(H)
\]
defined by \((x, y) \mapsto y - \tau(x) \). Since \(\mathbb{Z}_p \) is a principal ideal domain, we find that \(T_p(G) \oplus T_p(H)/M \) is free over \(\mathbb{Z}_p \), thereby deducing that the exact sequence
\[
0 \longrightarrow M \longrightarrow T_p(G) \oplus T_p(H) \longrightarrow (T_p(G) \oplus T_p(H))/M \longrightarrow 0
\]
splits. This means that \(M \) is a \(\mathbb{Z}_p \)-direct summand of \(T_p(G) \oplus T_p(H) \cong T_p(G \times_{\mathcal{O}_K} H) \). Hence Proposition 3.5.3 yields a \(p \)-divisible group \(G' \) over \(\mathcal{O}_K \) with a homomorphism \(\iota : G' \to G \times_{\mathcal{O}_K} H \) which induces an isomorphism \(T_p(G') \cong M \). Let us now consider the projection maps \(\pi_1 : G \times_{\mathcal{O}_K} H \to G \) and \(\pi_2 : G \times_{\mathcal{O}_K} H \to H \). The map \(\pi_1 \circ \iota \) induces an isomorphism \(T_p(G') \cong T_p(G) \) by construction, and thus induces an isomorphism on the generic fibers by Proposition 2.1.14. Hence Lemma 3.5.2 implies that \(\pi_1 \circ \iota \) is an isomorphism. We then find that \(f := \pi_2 \circ \iota \circ (\pi_1 \circ \iota)^{-1} \) induces the map \(\tau \) on the Tate modules by construction, and thereby extends \(\tilde{f} \) by Proposition 2.1.14. \(\square \)

Remark. As a related fact, the special fiber functor on the category of \(p \)-divisible groups over \(\mathcal{O}_K \) is faithful. In other words, for arbitrary \(p \)-divisible groups \(G \) and \(H \) over \(\mathcal{O}_K \), the natural map
\[
\text{Hom}(G, H) \to \text{Hom}(G \times_{\mathcal{O}_K} k, H \times_{\mathcal{O}_K} k)
\]
is injective. A complete proof of this fact can be found in [CCO14, Proposition 1.4.2.3].

It is also worthwhile to mention that Theorem 3.5.4 remains true if the base ring \(\mathcal{O}_K \) is replaced by any ring \(R \) that satisfies the following properties:

(i) \(R \) is integrally closed and noetherian,

(ii) \(R \) is an integral domain whose fraction field has characteristic 0.

In fact, it is not hard to deduce the general case from Theorem 3.5.4 by algebraic Hartog's Lemma.

Corollary 3.5.5. For arbitrary \(p \)-divisible groups \(G \) and \(H \) over \(\mathcal{O}_K \), the natural map
\[
\text{Hom}(G, H) \to \text{Hom}_{\mathbb{Z}_p[\Gamma_K]}(T_p(G), T_p(H))
\]
is bijective.

PROOF. This is an immediate consequence of Proposition 2.1.14 and Theorem 3.5.4. \(\square \)
Remark. Let A be an abelian variety over K with good reduction. This means that there exists an abelian scheme \mathcal{A} over \mathcal{O}_K with $\mathcal{A}_K \cong A$. As noted in the proof of Proposition 3.4.15 we have canonical identifications

$$H^n_{\text{ét}}(A_K, \mathbb{Q}_p) \cong \bigwedge^n H^1_{\text{ét}}(A_K, \mathbb{Q}_p),$$

$$H^1_{\text{ét}}(A_K, \mathbb{Q}_p) \cong \text{Hom}_{\mathbb{Z}_p}(T_p(A[p^{\infty}]), \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} \mathbb{Q}_p.$$

Hence Corollary 3.5.5 implies that the Γ_K-action on $H^n_{\text{ét}}(A_K, \mathbb{Q}_p)$ is determined by $A[p^{\infty}]$.

Let us now assume that K is an unramified finite extension of \mathbb{Q}_p with $p > 2$. As noted in Example 2.3.2 we can identify \mathcal{O}_K with the ring of Witt vectors over k. Therefore we deduce from Theorem 2.3.18 that $A[p^{\infty}]$ is determined by the Dieudonné module $\mathbb{D}(A_k[p^{\infty}])$ over k equipped with some filtration. This implies that the study of the Γ_K-action on $H^n_{\text{ét}}(A_K, \mathbb{Q}_p)$ is equivalent to the study of the Dieudonné module $\mathbb{D}(A_k[p^{\infty}])$ over k equipped with some filtration.

Note that our discussion in the preceding paragraph recovers the toy example that we described in §1.1 of Chapter I as a special case. Furthermore, it turns out that the canonical isomorphism

$$H^1_{\text{cris}}(A_k/\mathcal{O}_K) \cong \mathbb{D}(A_k[p^{\infty}])$$

that we remarked after Example 2.3.16 is compatible with the filtrations on both sides. Hence we can rephrase the conclusion of the preceding paragraph as an equivalence between the study of the Γ_K-action on $H^n_{\text{ét}}(A_K, \mathbb{Q}_p)$ and the study of $H^1_{\text{cris}}(A_k/\mathcal{O}_K)$.

The discovery of this equivalence is what motivated the “mysterious functor” conjecture and ultimately led to the crystalline comparison theorem as stated in Conjecture 1.2.3 and Theorem 1.2.4 of Chapter I. In fact, in light of the canonical isomorphism

$$H^n_{\text{cris}}(A_k/\mathcal{O}_K) \cong \bigwedge^n H^1_{\text{cris}}(A_k/\mathcal{O}_K),$$

the equivalence that we discussed above can be realized as a special case of the crystalline comparison theorem.
CHAPTER III

Period rings and functors

1. Fontaine’s formalism on period rings

In this section, we discuss some general formalism for p-adic period rings and period functors, as originally developed by Fontaine in [Fon94]. Our primary reference for this section Brinon and Conrad’s notes [BC §5].

1.1. Basic definitions and examples

Throughout this chapter, we let K be a p-adic field with the absolute Galois group Γ_K, the inertia group I_K, and the residue field k.

Definition 1.1.1. Let B be a \mathbb{Q}_p-algebra with an action of Γ_K. We denote by C the fraction field of B, endowed with a natural action of Γ_K which extends the action on B. We say that B is (\mathbb{Q}_p, Γ_K)-regular if it satisfies the following conditions:

(i) We have an identity $B^{\Gamma_K} = C^{\Gamma_K}$.
(ii) An element $b \in B$ is a unit if the set $\mathbb{Q}_p \cdot b := \{ c \cdot b : c \in \mathbb{Q}_p \}$ is stable under the action of Γ_K.

Remark. For an arbitrary field F and an arbitrary group G, we can similarly define the notion of (F,G)-regular rings. Then the formalism that we develop in this section readily extends to (F,G)-regular rings. In particular, the topologies on \mathbb{Q}_p and Γ_K do not play any role in our formalism.

Example 1.1.2. Every field extension of \mathbb{Q}_p with an action of Γ_K is (\mathbb{Q}_p,Γ_K)-regular, as easily seen by Definition 1.1.1.

Definition 1.1.3. Let B be a (\mathbb{Q}_p,Γ_K)-regular ring. Let us write $E := B^{\Gamma_K}$, and denote by Vec_E the category of finite dimensional vector spaces over E.

(1) We define the functor $D_B : \text{Rep}_{\mathbb{Q}_p}(\Gamma_K) \rightarrow \text{Vec}_E$ by

$$D_B(V) := (V \otimes_{\mathbb{Q}_p} B)^{\Gamma_K}$$

for every $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$.

(2) We say that $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is B-admissible if

$$\dim_E D_B(V) = \dim_{\mathbb{Q}_p} V,$$

and denote by $\text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)$ the category of B-admissible p-adic Γ_K-representations.

Remark. Let us briefly describe a cohomological interpretation of the notion of B-admissibility. For any topological ring R with an action of Γ_K, there is a natural bijection between the pointed set $H^1(\Gamma_K, \text{GL}_d(R))$ and the set of isomorphism classes of continuous semilinear Γ_K-representation over R of rank d. Hence every $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ corresponds to a class $[V] \in H^1(\Gamma_K, \text{GL}_d(\mathbb{Q}_p))$, which in turn gives rise to a class $[V]_B \in H^1(\Gamma_K, \text{GL}_d(B))$. It turns out that $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is B-admissible if and only if $[V]_B$ is trivial.
Example 1.1.4. We record some simple (but not necessarily trivial) examples of admissible representations.

(1) For every \((\mathbb{Q}_p, \Gamma_K)\)-regular ring \(B\) with \(E := B^{\Gamma_K}\), we have \(\mathbb{Q}_p \in \text{Rep}_B^B(\Gamma_K)\) with trivial \(\Gamma_K\)-action since \(D_B(\mathbb{Q}_p) = B^{\Gamma_K} = E\).

(2) Essentially by Hilbert’s Theorem 90, a \(p\)-adic representation \(V\) of \(\Gamma_K\) is \(\mathbb{K}\)-admissible if and only if \(V\) is potentially trivial in the sense that the action of \(\Gamma_K\) on \(V\) factors through a finite quotient.

(3) By a hard result of Sen, a \(p\)-adic representation \(V\) of \(\Gamma_K\) is \(\mathbb{C}_K\)-admissible if and only if \(V\) is potentially unramified in the sense that the action of \(I_K\) on \(V\) factors through a finite quotient.

Theorem 1.1.5. Let \(B\) be a \((\mathbb{Q}_p, \Gamma_K)\)-regular ring with \(E := B^{\Gamma_K}\). For every \(V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)\), we have the following statements:

(1) The natural map \(\alpha_V : DB(V) \otimes_E B \rightarrow V \otimes_{\mathbb{Q}_p} B\) is \(B\)-linear, \(\Gamma_K\)-equivariant, and injective.

(2) We have an inequality

\[
\dim_E DB(V) \leq \dim_{\mathbb{Q}_p} V \quad (1.1)
\]

with equality if and only if \(\alpha_V\) is an isomorphism.

Proof. Let us first consider the statement \([1]\) The natural map \(\alpha_V\) is given by the composition

\[
\alpha_V : DB(V) \otimes_E B \rightarrow (V \otimes_{\mathbb{Q}_p} B) \otimes_E B \cong V \otimes_{\mathbb{Q}_p} (B \otimes_E B) \rightarrow V \otimes_{\mathbb{Q}_p} B,
\]

which is \(B\)-linear and \(\Gamma_K\)-equivariant by inspection. We need to show that \(\alpha_V\) is injective. By Example \([1.1.2]\) the fraction field \(C\) of \(B\) is \((\mathbb{Q}_p, \Gamma_K)\)-regular. We thus have a natural map

\[
\beta_V : DC(V) \otimes_E C \rightarrow V \otimes_{\mathbb{Q}_p} C
\]

which fits into a commutative diagram

\[
\begin{array}{ccc}
DB(V) \otimes_E B & \xrightarrow{\alpha_V} & V \otimes_{\mathbb{Q}_p} B \\
\downarrow & & \downarrow \\
DC(V) \otimes_E C & \xrightarrow{\beta_V} & V \otimes_{\mathbb{Q}_p} C
\end{array}
\]

where both vertical maps are injective. Therefore it suffices to prove the injectivity of \(\beta_V\).

Let \((x_i)\) be a basis of \(DC(V) = (V \otimes_{\mathbb{Q}_p} C)^{\Gamma_K}\) over \(E\). We regard each \(x_i\) as an element in \(V \otimes_{\mathbb{Q}_p} C\). Note that \((x_i)\) spans \(DC(V) \otimes_E C\) over \(C\).

Assume for contradiction that the kernel of \(\alpha_V\) is not trivial. Then we have a nontrivial relation of the form \(\sum b_ix_i = 0\) with \(b_i \in C\). Let us choose such a relation with minimal length. We may assume \(b_r = 1\) for some \(r\). For every \(\gamma \in \Gamma_K\) we find

\[
0 = \gamma \left(\sum b_ix_i\right) - \sum b_ix_i = \sum (\gamma(b_i) - b_i)x_i.
\]

Since the coefficient of \(x_r\) vanishes, the minimality of our relation yields \(b_i = \gamma(b_i)\) for each \(b_i\), or equivalently \(b_i \in C^{\Gamma_K} = E\). Hence our relation gives a nontrivial relation for \((x_i)\) over \(E\), thereby yielding a desired contradiction.
We now proceed to the statement (2). Since the extension of scalars from B to C preserves injectivity, α_V induces an injective map
\[D_B(V) \otimes_E C \hookrightarrow V \otimes_{\mathbb{Q}_p} C. \] (1.2)

The desired inequality (1.1) now follows by observing
\[\dim_C D_B(V) \otimes_E C = \dim_E D_B(V) \quad \text{and} \quad \dim_C V \otimes_{\mathbb{Q}_p} C = \dim_{\mathbb{Q}_p} V. \] (1.3)

Hence it remains to consider the equality condition.

If α_V is an isomorphism, the map (1.2) also becomes an isomorphism, thereby yielding equality in (1.1) by (1.3). Let us now assume that equality in (1.1) holds, and write
\[d := \dim_E D_B(V) = \dim_{\mathbb{Q}_p} V. \]

By (1.3) we find that the map (1.2) is an isomorphism for being an injective map between two vector spaces of the same dimension. Let us choose a basis (e_i) of $D_B(V) = (V \otimes_{\mathbb{Q}_p} B)^{\Gamma_K}$ over E and a basis (v_i) of V over \mathbb{Q}_p. Then we can represent α_V by a $d \times d$ matrix M_V. We wish to show $\det(M_V) \in B^\times$. We have $\det(M_V) \neq 0$ as α_V induces an isomorphism (1.2).

Let us now consider the identity
\[\alpha_V(e_1 \wedge \cdots \wedge e_d) = \det(M_V)(v_1 \wedge \cdots \wedge v_d). \]

For every $\gamma \in \Gamma_K$ we have
\[\gamma(v_1 \wedge \cdots \wedge v_d) = c_\gamma \cdot (v_1 \wedge \cdots \wedge v_d) \]
for some $c_\gamma \in \mathbb{Q}_p$. Since $e_1 \wedge \cdots \wedge e_d$ is Γ_K-invariant, we obtain
\[\gamma(\det(M_V)) = c_\gamma^{-1} \cdot \det(M_V) \quad \text{for every } \gamma \in \Gamma_K. \]

Hence we find $\det(M_V) \in B^\times$ as B is (\mathbb{Q}_p, Γ_K)-regular, thereby completing the proof.

We now describe how Hodge-Tate representations fit into the formalism that we have developed so far. For the rest of this section, we let χ denote the p-adic cyclotomic character of K as defined in Chapter II, Example 3.1.9.

Lemma 1.1.6. The group $\chi(I_K)$ is infinite.

Proof. By definition χ encodes the action of Γ_K on $\mu_p^\infty(\overline{K})$. More precisely, we have $\gamma(\zeta) = \chi(\zeta)$ for each $\zeta \in \mu_p^\infty(\overline{K})$ and $\gamma \in \Gamma_K$. In particular, χ is trivial on $\text{Gal}(K(\mu_p^\infty(\overline{K}))/K)$. Hence it suffices to show that $K(\mu_p^\infty(\overline{K}))$ is infinitely ramified over K.

Let e_n be the ramification degree of $K(\mu_{p^n}(\overline{K}))$ over K, and let e be the ramification degree of K over \mathbb{Q}_p. Then $e_n \cdot e$ is greater than equal to the ramification degree of $\mathbb{Q}_p(\mu_{p^n-1}(\overline{K}))$ over \mathbb{Q}_p, which is equal to $p^n-1(p-1)$. We thus find that e_n grows arbitrarily large as n goes to ∞, thereby deducing the desired assertion.

Theorem 1.1.7 (Tate). Let $\eta : \Gamma_K \rightarrow \mathbb{Z}_p^\times$ be a continuous character. Let $\mathbb{C}_K(\eta)$ denote \mathbb{C}_K where each $\gamma \in \Gamma_K$ acts as $\eta(\gamma)\gamma$. Then for $i = 0, 1$ we have
\[H^i(\Gamma_K, \mathbb{C}_K(\eta)) \cong \begin{cases} K & \text{if } \eta(I_K) \text{ is finite}, \\ 0 & \text{otherwise}. \end{cases} \]

Remark. This theorem extends the essential part of the Tate-Sen theorem as stated in Chapter II, Theorem 3.1.12. In fact, since we have $\mathbb{C}_K(n) \cong \mathbb{C}(\chi^n)$ for each $n \in \mathbb{Z}$ by Lemma 3.1.11 in Chapter II, Lemma 1.1.6 and Theorem 1.1.7 together yield
\[H^0(\Gamma_K, \mathbb{C}_K(n)) \cong H^1(\Gamma_K, \mathbb{C}_K(n)) \cong \begin{cases} K & \text{if } n = 0, \\ 0 & \text{otherwise}. \end{cases} \]
Definition 1.1.8. We define the *Hodge-Tate period ring* by

\[B_{HT} := \bigoplus_{n \in \mathbb{Z}} \mathbb{C}_K(n). \]

Proposition 1.1.9. The Hodge-Tate period ring \(B_{HT} \) is \((\mathbb{Q}_p, \Gamma_K)\)-regular.

Proof. Let us first check the condition [ii] in Definition 1.1.1. Let \(C_{HT} \) denote the fraction field of \(B_{HT} \). Since we have \(B_{HT} \) isomorphism (1.4) induces a \(\Gamma_K \)-equivariant injective homomorphism \(C_{HT} \simeq \mathbb{C}_K[t, t^{-1}] \)

\[(1.4) \]

where the action of \(\Gamma_K \) on \(\mathbb{C}_K[t, t^{-1}] \) is defined by

\[\gamma \left(\sum n c_n t^n \right) = \sum n \gamma(c_n) \chi(\gamma)^{n} t^n \quad \text{for every } \gamma \in \Gamma_K. \]

(1.5)

Let us similarly define the action of \(\Gamma_K \) on \(\mathbb{C}_K(t) \) and \(\mathbb{C}_K((t)) \), which respectively denote the field of rational functions and the field of formal Laurent series over \(\mathbb{C}_K \). Then the isomorphism (1.4) induces a \(\Gamma_K \)-equivariant injective homomorphism

\[C_{HT} \simeq \mathbb{C}_K((t)) \]

Hence it suffices to show \(\mathbb{C}_K((t))^{\Gamma_K} = K \).

Consider an arbitrary formal Laurent series \(p(t) = \sum c_n t^n \) over \(\mathbb{C}_K \). Then by (1.5) we have \(p(t) \in \mathbb{C}_K((t))^{\Gamma_K} \) if and only if \(c_n = \gamma(c_n) \chi(\gamma)^n \) for every \(n \in \mathbb{Z} \) and every \(\gamma \in \Gamma_K \), or equivalently \(c_n \in \mathbb{C}_K(n)^{\Gamma_K} \) for every \(n \in \mathbb{Z} \) by Lemma 3.1.11 in Chapter II. We thus obtain the desired assertion by Theorem 3.1.12 in Chapter II

It remains to check the condition [ii] in Definition 1.1.1. Let \(q(t) = \sum d_n t^n \) be an arbitrary nonzero element in \(\mathbb{C}_K[t, t^{-1}] \) such that \(q(t) \) is stable under the action of \(\Gamma_K \). We wish to show that \(q(t) \) is a unit in \(\mathbb{C}_K(t) \). Since \(q(t) \neq 0 \), we have \(d_m \neq 0 \) for some \(m \). It suffices to show that \(d_n = 0 \) if \(n \neq m \).

Let \(\eta : \Gamma_K \rightarrow \mathbb{Q}_p^* \) be the character that encodes the action of \(\Gamma_K \) on \(\mathbb{Q}_p \cdot q(t) \). Then it is continuous since the action of \(\Gamma_K \) on each \(\mathbb{C}_K(n) \) is continuous. In particular, we may consider \(\eta \) as a character with values in \(\mathbb{Z}_p^* \). Now for every \(n \in \mathbb{Z} \) and every \(\gamma \in \Gamma_K \) we have \(\eta(\gamma) \cdot d_n = \gamma(d_n) \chi(\gamma)^n \), or equivalently \(d_n = (\eta^{-1} \chi^n)(\gamma)(d_n) \). This means \(d_n \in \mathbb{C}_K(\eta^{-1} \chi^n)^{\Gamma_K} \) for every \(n \in \mathbb{Z} \), which implies that \((\eta^{-1} \chi^n)(I_K)\) is finite for any \(n \in \mathbb{Z} \) with \(d_n \neq 0 \).

Suppose for contradiction that we have \(d_n \neq 0 \) for some \(n \neq m \). Our discussion in the preceding paragraph shows that both \(\eta^{-1} \chi^n \) and \(\eta^{-1} \chi^m \) have finite images on \(I_K \). Hence \(\chi^{n-m} = (\eta^{-1} \chi^n) \cdot (\eta^{-1} \chi^m)^{-1} \) also has a finite image, thereby yielding a desired contradiction by Lemma 1.1.6 \(\square \)

Proposition 1.1.10. A \(p \)-adic representation \(V \) of \(\Gamma_K \) is Hodge-Tate if and only if it is \(B_{HT} \)-admissible.

Proof. By definition we have

\[D_{B_{HT}}(V) = (V \otimes_{\mathbb{Q}_p} B_{HT})^{\Gamma_K} = \bigoplus_{n \in \mathbb{Z}} (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K}. \]

(1.6)

Define \(\tilde{\alpha}_V \) as in Chapter II Lemma 3.1.13. Since \(\tilde{\alpha}_V \) is injective, it is an isomorphism if and only if the source and the target have the same dimension over \(\mathbb{C}_K \), which amounts to the identity \(\dim_K D_{B_{HT}}(V) = \dim_{\mathbb{Q}_p} V \). The desired assertion now follows from definition of Hodge-Tate representations and \(B_{HT} \)-admissibility. \(\square \)
Example 1.1.11. Let V be a p-adic representation of Γ_K which fits into an exact sequence

$$0 \longrightarrow \mathbb{Q}_p(l) \longrightarrow V \longrightarrow \mathbb{Q}_p(m) \longrightarrow 0$$

where l and m are distinct integers. We assert that V is Hodge-Tate. For every $n \in \mathbb{Z}$ we obtain an exact sequence

$$0 \longrightarrow \mathbb{C}_K(l+n) \longrightarrow V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n) \longrightarrow \mathbb{C}_K(m+n) \longrightarrow 0$$

as $\mathbb{C}_K(n)$ is flat over \mathbb{Q}_p, and consequently get a long exact sequence

$$0 \longrightarrow \mathbb{C}_K(l+n)^{\Gamma_K} \longrightarrow (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} \longrightarrow \mathbb{C}_K(m+n)^{\Gamma_K} \longrightarrow H^1(\Gamma_K, \mathbb{C}_K(l+n)).$$

Then by Theorem 3.1.12 in Chapter II we find

$$(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} \cong \begin{cases} K & \text{for } n = -l, -m, \\ 0 & \text{for } n \neq -l, -m. \end{cases}$$

Hence by (1.6) we have

$$\dim_K D_{\text{BT}}(V) = \sum_{n \in \mathbb{Z}} \dim_K (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} = 2 = \dim_{\mathbb{Q}_p} V,$$

thereby deducing the desired assertion.

Remark. On the other hand, a self extension of \mathbb{Q}_p may not be Hodge-Tate. For example, the two-dimensional vector space over \mathbb{Q}_p where each $\gamma \in \Gamma_K$ acts as the matrix

$$\begin{pmatrix} 1 & \log_p(\chi(\gamma)) \\ 0 & 1 \end{pmatrix}$$

is not Hodge-Tate. The proof of this statement requires some knowledge about the Sen theory.

Proposition 1.1.12. Let $\eta : \Gamma_K \longrightarrow \mathbb{Z}_p^\times$ be a continuous character. Then η yields a Hodge-Tate representation if and only if there exists some $n \in \mathbb{Z}$ such that $(\eta \chi^n)(I_K)$ is finite.

Proof. Let V denote the p-adic representation induced by η. Since V is 1-dimensional, Theorem 1.1.5 implies that η is Hodge-Tate if and only if $D_{\text{BT}}(V)$ is not zero, which means by (1.6) that there exists some $n \in \mathbb{Z}$ with $(V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} \neq 0$. We then obtain the desired assertion by Theorem 1.1.7, since Lemma 3.1.11 in Chapter II implies that the Γ_K-action on $V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n)$ is given by $\eta \chi^n$.

Definition 1.1.13. Let V be a Hodge-Tate representation. We say that an integer $n \in \mathbb{Z}$ is a Hodge-Tate weight of V with multiplicity m if we have

$$\dim_K (V \otimes_{\mathbb{Q}_p} \mathbb{C}_K(n))^{\Gamma_K} = m > 0.$$

Example 1.1.14. We record the Hodge-Tate weights for some Hodge-Tate representations.

1. For every $n \in \mathbb{Z}$ the Tate twist $\mathbb{Q}_p(n)$ of \mathbb{Q}_p is a Hodge-Tate representation with the Hodge-Tate weight $-n$.

2. For every p-divisible group G over \mathcal{O}_K, the rational Tate module $V_p(G)$ is a Hodge-Tate representation with the Hodge-Tate weights 0 and -1 by the proof of Corollary 3.4.14 in Chapter II.

3. For an abelian variety A over K with good reduction, the étale cohomology $H^1_{\text{et}}(A_{\overline{K}}, \mathbb{Q}_p)$ is a Hodge-Tate representation with the Hodge-Tate weights $0, 1, \cdots, n$ by the proof of Corollary 3.4.16 in Chapter II.

Remark. The readers should be aware that many authors use the opposite sign convention for Hodge-Tate weights. We will explain the reason for our choice in §2.4.
1.2. Formal properties of admissible representations

Throughout this subsection, we fix a \((\mathbb{Q}_p, \Gamma_K)\)-regular ring \(B\) and write \(E := B^{\Gamma_K}\).

Proposition 1.2.1. Let \(\text{Vec}_E\) denote the category of finite dimensional vector spaces over \(E\). The functor \(D_B\) is exact and faithful on \(\text{Rep}_{B}^{\text{Q}_p}(\Gamma_K)\).

Proof. Let \(V\) and \(W\) be \(B\)-admissible representations. Suppose that \(f \in \text{Hom}_{\mathbb{Q}_p^{\Gamma_K}}(V,W)\) induces a zero map \(D_B(V) \rightarrow D_B(W)\). Then \(f\) induces a zero map \(V \otimes_{\mathbb{Q}_p} B \rightarrow W \otimes_{\mathbb{Q}_p} B\) by Theorem 1.1.5, which means that \(f\) must be a zero map. We thus find that the functor \(D_B\) is faithful on \(\text{Rep}_{B}^{\text{Q}_p}(\Gamma_K)\).

It remains to verify that \(D_B\) is exact on \(\text{Rep}_{B}^{\text{Q}_p}(\Gamma_K)\). Suppose that we have a short exact sequence of \(B\)-admissible representations

\[
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0.
\]

Note that \(B\) is faithfully flat over both \(\mathbb{Q}_p\) and \(E\); indeed, every algebra over a field is faithfully flat. Therefore we find that the sequence

\[
0 \rightarrow U \otimes_{\mathbb{Q}_p} B \rightarrow V \otimes_{\mathbb{Q}_p} B \rightarrow W \otimes_{\mathbb{Q}_p} B \rightarrow 0
\]

is exact, which implies that the sequence

\[
0 \rightarrow D_B(U) \otimes_E B \rightarrow D_B(V) \otimes_E B \rightarrow D_B(W) \otimes_E B \rightarrow 0
\]

is also exact by Theorem 1.1.5. The desired assertion now follows by the fact that \(B\) is faithfully flat over \(E\).

Remark. In practice, we enhance the functor \(D_B\) to a functor that takes values in a category of \(E\)-spaces with some additional structures, as briefly described in Chapter I, §1.3. We often need some additional work to verify that the functor \(D_B\) remains to be exact after such an enhancement.

Proposition 1.2.2. The category \(\text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)\) is closed under taking subrepresentations and quotients.

Proof. Consider a short exact sequence of \(p\)-adic representations

\[
0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0 \quad (1.7)
\]

with \(V \in \text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)\). We wish to show that both \(U\) and \(W\) are \(B\)-admissible. Since the functor \(D_B\) is left exact on \(\text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)\) by definition, we have a left exact sequence

\[
0 \rightarrow D_B(U) \rightarrow D_B(V) \rightarrow D_B(W). \quad (1.8)
\]

In addition, by Theorem 1.1.5 we have inequalities

\[
\dim_E D_B(U) \leq \dim_{\mathbb{Q}_p} U \quad \text{and} \quad \dim_E D_B(W) \leq \dim_{\mathbb{Q}_p} W. \quad (1.9)
\]

Then the exact sequences (1.7) and (1.8) together yield inequalities

\[
\dim_E D_B(V) \leq \dim_E D_B(U) + \dim_E D_B(W) \leq \dim_{\mathbb{Q}_p} U + \dim_{\mathbb{Q}_p} W = \dim_{\mathbb{Q}_p} V,
\]

which are in fact equalities as \(V\) is \(B\)-admissible. We thus have equalities in (1.9), thereby deducing the desired assertion. \(\square\)

Remark. However, in general the category \(\text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)\) is not closed under taking extensions, as noted after Example 1.1.11.
Proposition 1.2.3. Given $V, W \in \text{Rep}_{Q_p}^B(\Gamma_K)$, we have $V \otimes_{Q_p} W \in \text{Rep}_{Q_p}^B(\Gamma_K)$ with a natural isomorphism

$$D_B(V) \otimes E D_B(W) \cong D_B(V \otimes_{Q_p} W).$$

PROOF. By Theorem 1.1.5 we have natural isomorphisms

$$\alpha_V : D_B(V) \otimes E B \overset{\sim}{\longrightarrow} V \otimes_{Q_p} B$$

and

$$\alpha_W : D_B(W) \otimes E B \overset{\sim}{\longrightarrow} W \otimes_{Q_p} B.$$

Let us consider the natural isomorphism

$$D_B(V) \otimes E D_B(W) \longrightarrow (V \otimes_{Q_p} B) \otimes E (W \otimes_{Q_p} B) \longrightarrow (V \otimes_{Q_p} W) \otimes_{Q_p} B. \quad (1.10)$$

The image of the first arrow is a Γ_K-invariant space $(V \otimes_{Q_p} B)^{\Gamma_K} \otimes (W \otimes_{Q_p} B)^{\Gamma_K}$, while the second arrow is evidently Γ_K-equivariant. Hence we obtain a natural E-linear map

$$D_B(V) \otimes E D_B(W) \longrightarrow ((V \otimes_{Q_p} W) \otimes_{Q_p} B)^{\Gamma_K} \cong D_B(V \otimes_{Q_p} W). \quad (1.11)$$

Moreover, this map is injective since the map (1.10) extends to a B-linear map

$$(D_B(V) \otimes E D_B(W)) \otimes E B \longrightarrow ((V \otimes_{Q_p} B) \otimes E (W \otimes_{Q_p} B)) \otimes E B \rightarrow (V \otimes_{Q_p} W) \otimes_{Q_p} B$$

which coincides with the isomorphism $\alpha_V \otimes \alpha_W$ under the identifications

$$(D_B(V) \otimes E D_B(W)) \otimes E B \cong (D_B(V)) \otimes B (D_B(W) \otimes E B),$$

$$(V \otimes_{Q_p} B) \otimes E (W \otimes_{Q_p} B) \otimes E B \cong (V \otimes_{Q_p} B \otimes E B) \otimes B (W \otimes_{Q_p} B \otimes E B),$$

and

$$(V \otimes_{Q_p} W) \otimes_{Q_p} B \cong (V \otimes_{Q_p} B) \otimes B (W \otimes_{Q_p} B).$$

Therefore the map (1.11) yields an inequality

$$\dim E D_B(V \otimes_{Q_p} W) \geq (\dim E D(V)) \cdot (\dim E D_B(W)) = \dim_{Q_p} V \otimes_{Q_p} W$$

where the equality follows from the B-admissibility of V and W. We then find that this in equality is indeed an equality by Theorem 1.1.5, thereby deducing that $V \otimes_{Q_p} W$ is a B-admissible representation with the natural isomorphism (1.11). \qed

Proposition 1.2.4. For every $V \in \text{Rep}_{Q_p}^B(\Gamma_K)$, we have $\wedge^n V \in \text{Rep}_{Q_p}^B(\Gamma_K)$ and $\text{Sym}^n V \in \text{Rep}_{Q_p}^B(\Gamma_K)$ with natural isomorphisms

$$\wedge^n(D_B(V)) \cong D_B(\wedge^n(V)) \quad \text{and} \quad \text{Sym}^n(D_B(V)) \cong D_B(\text{Sym}^n(V)).$$

PROOF. Let us only consider exterior powers here, as the same argument works with symmetric powers. By Proposition 1.2.3 we have $V \otimes^n \in \text{Rep}_{Q_p}^B(\Gamma_K)$ with a natural isomorphism $D_B(V \otimes^n) \cong D_B(V)^{\otimes n}$. Hence by Proposition 1.2.2 we have $\wedge^n V \in \text{Rep}_{Q_p}^B(\Gamma_K)$ with a natural E-linear map

$$D_B(V)^{\otimes n} \overset{\sim}{\longrightarrow} D_B(V \otimes^n) \longrightarrow D_B(\wedge^n V)$$

where the second arrow is surjective by Proposition 1.2.1. It is then straightforward to check that this map factors through the natural surjection $D_B(V)^{\otimes n} \twoheadrightarrow \wedge^n D_B(V)$. We thus obtain a natural surjective E-linear map

$$\wedge^n D_B(V) \longrightarrow D_B(\wedge^n V),$$

which turns out to be an isomorphism since we have

$$\dim E \wedge^n D_B(V) = \dim E D_B(\wedge^n V)$$

by the B-admissibility of V and $\wedge^n V$. \qed
\textbf{Proposition 1.2.5.} For every $V \in \text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)$, the dual representation V^\vee lies in $\text{Rep}_{\mathbb{Q}_p}^B(\Gamma_K)$. Moreover, the natural map

$$D_B(V) \otimes_E D_B(V^\vee) \cong D_B(V \otimes_{\mathbb{Q}_p} V^\vee) \longrightarrow D_B(\mathbb{Q}_p) \cong E$$

is a perfect pairing.

Proof. Let us first consider the case where $\dim_{\mathbb{Q}_p} V = 1$. We fix a basis vector v for V over \mathbb{Q}_p, and denote by v^\vee the corresponding basis vector for V^\vee over \mathbb{Q}_p. Then we have a character $\eta : \Gamma_K \rightarrow \mathbb{Q}_p^\times$ that satisfies

$$\gamma(v) = \eta(\gamma)v \quad \text{for every } \gamma \in \Gamma_K.$$

(1.13)

Since $D_B(V) = (V \otimes_{\mathbb{Q}_p} B)^{\Gamma_K}$ is 1-dimensional over E by the B-admissibility of V, it admits a Γ_K-invariant basis vector $v \otimes b$ for some $b \in B$. Hence by (1.13) we find

$$v \otimes b = \gamma(v \otimes b) = \gamma(v) \otimes \gamma(b) = \eta(\gamma)v \otimes \gamma(b) = v \otimes \eta(\gamma)\gamma(b) \quad \text{for every } \gamma \in \Gamma_K,$$

or equivalently

$$b = \eta(\gamma)\gamma(b) \quad \text{for every } \gamma \in \Gamma_K.$$

(1.14)

Moreover, we have $b \in B^\times$ as Theorem 1.1.5 yields a natural isomorphism

$$D_B(V) \otimes_E B \cong V \otimes_{\mathbb{Q}_p} B$$

which sends $v \otimes b$ to a basis vector for $V \otimes_{\mathbb{Q}_p} B$ over B. We then find by (1.14) that $D_B(V^\vee) = (V^\vee \otimes_{\mathbb{Q}_p} B)^{\Gamma_K}$ contains a nonzero vector $v^\vee \otimes b^{-1}$. Hence the inequality

$$\dim_E D_B(V^\vee) \leq \dim_{\mathbb{Q}_p} V^\vee = 1$$

given by Theorem 1.1.5 must be an equality, which implies that V^\vee is B-admissible. We also find that $v^\vee \otimes b^{-1}$ is a basis vector for $D_B(V^\vee)$ over E, and consequently verify that the map (1.12) is a perfect pairing.

We now prove the B-admissibility of V^\vee in the general case. Let us write $d := \dim_{\mathbb{Q}_p} V$. We have a natural Γ_K-equivariant isomorphism

$$\Phi : \text{det}(V^\vee) \otimes_{\mathbb{Q}_p} \wedge^{d-1} V \xrightarrow{\sim} V^\vee$$

such that

$$\Phi : ((f_1 \wedge \cdots \wedge f_d) \otimes (v_2 \wedge \cdots \wedge v_d)) (v_1) = \text{det}(f_i(v_j))$$

for all $f_i \in V^\vee$ and $v_j \in V$. Proposition 1.2.4 implies that both $\text{det}(V) = \wedge^d V$ and $\wedge^{d-1} V$ are B-admissible. Then our discussion in the preceding paragraph shows that $\text{det}(V^\vee) \cong \text{det}(V)^\vee$ is also B-admissible since $\dim_{\mathbb{Q}_p} \text{det}(V) = 1$. Therefore we find that V^\vee is B-admissible by Proposition 1.2.3.

It remains to show that the map (1.12) is a perfect pairing in the general case. Since both V and V^\vee are B-admissible, we have

$$d = \dim_E D_B(V) = \dim_E D_B(V^\vee).$$

Upon choosing bases for $D_B(V)$ and $D_B(V^\vee)$ over E, we can represent the map (1.12) as a $d \times d$ matrix M. Then the map (1.12) is perfect if and only if $\text{det}(M)$ is not zero, or equivalently the induced pairing

$$\text{det}(D_B(V)) \otimes_E \text{det}(D_B(V^\vee)) \longrightarrow E$$

is perfect. We thus deduce the desired assertion from the first paragraph using the identifications

$$\text{det}(D_B(V)) \cong D_B(\text{det}(V)) \quad \text{and} \quad \text{det}(D_B(V^\vee)) \cong D_B(\text{det}(V^\vee))$$

given by Proposition 1.2.4. \qed
2. de Rham representations

The main goal of this section is to define and study the de Rham period ring and de
Rham representations. We will use some basic theory of perfectoid fields to provide a modern
perspective of Fontaine’s original work. Our discussion will introduce many ideas that we
will further investigate in Chapter IV. The primary references for this section are Brinon and
Conrad’s notes [BC §4 and §6] and Scholze’s paper [Sch12].

2.1. Perfectoid fields and tilting

Definition 2.1.1. Let C be a complete nonarchimedean field of residue characteristic p.
Denote by O_C the valuation ring of C. We say that C is a perfectoid field if it satisfies the
following conditions:

(i) The valuation on C is nondiscrete.

(ii) The p-th power map on O_C/pO_C is surjective.

Lemma 2.1.2. Let C be a complete nonarchimedean field of residue characteristic p. Assume
that the p-th power map is surjective on C. Then C is a perfectoid field.

Proof. Let us write ν for the valuation on C, and O_C for the valuation ring of C. We
assert that ν is nondiscrete. Suppose for contradiction that ν is discrete. Take an element
$x \in C$ with a minimum positive valuation. Since the p-th power map is surjective on C, we
have $x = y^p$ for some $y \in C$. Then we find

$$0 < \nu(y) = \nu(x)/p < \nu(x),$$

thereby obtaining a desired contradiction.

It remains to verify that the p-th power map on O_C/pO_C is surjective. It suffices to show
that the p-th power map on O_C is surjective. Take an arbitrary element $z \in O_C$. We may
write $z = w^p$ for some $w \in C$ as the p-th power map is surjective on C by the assumption. Then we find $w \in O_C$ by observing

$$\nu(w) = \nu(z)/p > 0.$$

Hence we obtain the desired surjectivity of the p-th power map on O_C. \square

Proposition 2.1.3. The field \mathbb{C}_K is a perfectoid field.

Proof. The field \mathbb{C}_K is algebraically closed by Proposition 3.1.5 in Chapter II. Hence
the assertion follows by Lemma 2.1.2. \square

Proposition 2.1.4. A nonarchimedean field of characteristic p is perfectoid if and only if it
is complete and perfect.

Proof. By definition, every perfectoid field of characteristic p is complete and perfect.
Conversely, every complete nonarchimedean perfect field of characteristic p is perfectoid by
Lemma 2.1.2. \square

For the rest of this subsection, we let C be a perfectoid field. We also write ν for the
valuation on C, and O_C for the valuation ring of C.

Definition 2.1.5. We define the tilt of C by

$$C^\flat := \lim_{\substack{x \to x^p \rightarrow}} C$$

endowed with the natural multiplication.
Remark. If C is of characteristic p, we have a natural identification $C^\circ \cong C$ by Lemma 2.1.4.

A priori, the tilt of C is just a multiplicative monoid. We aim to show that it has a natural structure of a perfectoid field of characteristic p.

Lemma 2.1.6. Fix an element $\varpi \in C^\times$ with $0 < \nu(\varpi) \leq \nu(p)$. Then for arbitrary elements $x, y \in O_C$ with $x - y \in \varpi O_C$ we have
$$x^p - y^p \in \varpi^{n+1}O_C \quad \text{for each } n = 0, 1, 2, \ldots.$$

Proof. The inequality $\nu(\varpi) \leq \nu(p)$ implies that p is divisible by ϖ in O_C. We also have
$$x^p - y^p = \left(y^{p^{n-1}} + (x^{p^{n-1}} - y^{p^{n-1}}) \right)^p - y^p \quad \text{for each } n = 1, 2, \ldots.$$

Since we have $x - y \in \varpi O_C$, the desired assertion follows by induction.

Proposition 2.1.7. For every element $\varpi \in C^\times$ with $0 < \nu(\varpi) \leq \nu(p)$, the natural projection $O_C \rightarrow O_C/\varpi O_C$ induces a multiplicative bijection
$$\lim_{x \rightarrow x^p} O_C \simeq \lim_{x \rightarrow x^p} O_C/\varpi O_C.$$

Proof. We wish to construct an inverse
$$\ell : \lim_{x \rightarrow x^p} O_C/\varpi O_C \rightarrow \lim_{x \rightarrow x^p} O_C.$$

Take an arbitrary element $\bar{\ell} = (\ell_n) \in \lim_{x \rightarrow x^p} O_C/\varpi O_C$. For each n, we choose a lift $c_n \in O_C$ of ℓ_n. By construction we have
$$c_n^p - c_n \in \varpi O_C \quad \text{for all } n \geq 0, \quad \text{and consequently find}$$
$$c_n^{p+1} - c_n \in \varpi O_C \quad \text{for all } n \geq 0.$$

by Lemma 2.1.6. Hence for each $n \geq 0$ the sequence $(c_n^m)_{m \geq 0}$ converges in O_C for being Cauchy. In addition, the limit does not depend on the choice of the c_n’s by Lemma 2.1.6. Let us now write
$$\ell_n(\bar{\ell}) := \lim_{m \rightarrow \infty} c_n^m \quad \text{for each } n \geq 0.$$

We then obtain the desired inverse by setting
$$\ell(\bar{\ell}) := (\ell_n(\bar{\ell})) \in \lim_{x \rightarrow x^p} O_C,$$

thereby completing the proof.

Proposition 2.1.8. The tilt C° of C has a natural structure of a perfectoid field of characteristic p with the valuation ring
$$O_{C^\circ} := \lim_{x \rightarrow x^p} O_C.$$

Proof. Fix an element $\varpi \in C^\times$ with $0 < \nu(\varpi) \leq \nu(p)$. The ring $O_C/\varpi O_C$ is of characteristic p since ϖ divides p in O_C by construction. Hence the ring structure on $O_C/\varpi O_C$ induces a natural ring structure on $\lim_{x \rightarrow x^p} O_C/\varpi O_C$, which in turn yields a ring structure on O_{C° via the bijection
$$O_{C^\circ} = \lim_{x \rightarrow x^p} O_C \simeq \lim_{x \rightarrow x^p} O_C/\varpi O_C \quad (2.1)$$
as given by Proposition 2.1.7. Moreover, this ring structure on \mathcal{O}_{C^o} does not depend on the choice of ϖ; indeed, by the proof of Proposition 2.1.7 we find that the sum of two arbitrary elements $a = (a_n)$ and $b = (b_n)$ in \mathcal{O}_{C^o} is given by

$$(a + b)_n = \lim_{m \to \infty} (a_{m+n} + b_{m+n})^{p^m}.$$

We then identify C^o as the fraction field of \mathcal{O}_{C^o}. It is clear by construction that C^o is perfect of characteristic p.

We assert that C^o admits a valuation ν^\flat given by

$$\nu^\flat(c) := \nu(c_0) \quad \text{for every } c = (c_n)_{n \geq 0} \in C^o.$$

We immediately verify the multiplicativity of ν^\flat by construction. Let us now take arbitrary elements $a = (a_n)$ and $b = (b_n)$ in C^o. We wish to establish an inequality

$$\nu^\flat(a + b) \geq \min(\nu^\flat(a), \nu^\flat(b)).$$

We may assume $\nu^\flat(a) \geq \nu^\flat(b)$, or equivalently $\nu(a_0) \geq \nu(b_0)$. Then for each $n \geq 0$ we have

$$\nu(a_n) = \frac{1}{p^n} \nu(a_0) \geq \frac{1}{p^n} \nu(b_0) = \nu(b_n),$$

which means $a_n/b_n \in \mathcal{O}_C$. Therefore we may write $a = br$ for some $r \in \mathcal{O}_C$, and find

$$\nu^\flat(a + b) = \nu^\flat((r + 1)b) = \nu^\flat(r + 1)\nu^\flat(b) \geq \nu^\flat(b) = \min(\nu^\flat(a), \nu^\flat(b))$$

where the inequality follows by observing $r + 1 \in \mathcal{O}_{C^o}$.

Let us now take an arbitrary element $c = (c_n) \in C^o$. We have an inequality

$$\nu(c_n) = \frac{1}{p^n} \nu(c_0) = \frac{1}{p^n} \nu^\flat(c) \quad \text{for each } n \geq 0.$$

(2.2)

Hence we deduce that \mathcal{O}_{C^o} is the valuation ring. Moreover, given any $N > 0$ the inequality (2.2) implies that we have $\nu(c_n) \geq \nu(\varpi)$ for all $n \leq N$ if and only if $\nu^\flat(c) \geq p^N \nu(\varpi)$. Therefore the bijection (2.1) becomes a homeomorphism if we endow \mathcal{O}_{C^o} and $\varprojlim \mathcal{O}_C/\varpi \mathcal{O}_C$ respectively with the ν^\flat-adic topology and the inverse limit topology. As the latter topology is complete, it follows that C^o is complete. We thus conclude the proof by Proposition 2.1.4. \qed

Remark. Our proof of Proposition 2.1.8 differs from Scholze’s original proof in several details. First, Scholze shows that the bijection in Proposition 2.1.7 is a homeomorphism when both sides are given the inverse limit topology. Second, Scholze constructs the “sharp map” by composing (the inverse of) the bijection in Proposition 2.1.7 and the projection map onto the first component, and shows that there exists $\varpi^\flat \in \varprojlim_{x \to x^p} \mathcal{O}_C/\varpi \mathcal{O}_C$ whose image $(\varpi^\flat)^\sharp$ under the sharp map satisfies $\nu\left((\varpi^\flat)^\sharp\right) = \nu(\varpi)$. Third, Scholze defines the tilt of C by

$$C^o := \varprojlim_{x \to x^p} \mathcal{O}_C/\varpi \mathcal{O}_C[1/\varpi^\flat]$$

and obtain a homeomorphism

$$C^o \simeq \varprojlim_{x \to x^p} \mathcal{O}_C.$$

The main difference is the second point; indeed, all other differences essentially come from this difference. However, the existence of ϖ^\flat does not play any essential role in the proof of Proposition 2.1.8. Instead, it plays a significant role in proving the “tilting equivalence” that we briefly introduced in Chapter I, Theorem 2.2.3.
2.2. The de Rham period ring B_{dR}

For the rest of this chapter, we write $F := \mathbb{C}_K^\circ$ for the tilt of \mathbb{C}_K, and \mathcal{O}_F for the valuation ring of F. In addition, for every element $c = (c_n)_{n \geq 0}$ in F we write $c^\ast := c_0$. We also fix a valuation ν on \mathbb{C}_K with $\nu(p) = 1$, and let ν^\flat denote the valuation on F given by $\nu^\flat(c) = \nu(c^\ast)$ for every $c \in F$.

Definition 2.2.1. We define the infinitesimal period ring, denoted by A_{inf}, to be the ring of Witt vectors over \mathcal{O}_F. For every $c \in \mathcal{O}_F$ we denote by $[c]$ its Teichmüller lift in A_{inf}.

Remark. The terminology is potentially misleading, as the ring A_{inf} is not (\mathbb{Q}_p, Γ_K)-regular.

We recall without proof that the ring of Witt vectors over a perfect \mathbb{F}_p-algebra satisfies the following universal property:

Lemma 2.2.2. Let A be a perfect \mathbb{F}_p-algebra, and let R be a p-adically complete ring. Denote by $W(A)$ the ring of Witt vectors over A with the Teichmüller lift $\tau : A \to W(A)$. Let $\pi : A \to R/pR$ be a ring homomorphism. Then π uniquely lifts to a multiplicative map $\hat{\pi} : A \to R$ and a ring homomorphism $\pi : W(A) \to R$. In addition, we have

$$\pi \left(\sum [a_n]p^n \right) = \sum \hat{\pi}(a_n)p^n$$

for every $a_n \in A$.

Remark. There is another universal property for $W(A)$ as stated in [BC] Proposition 4.2.3. However, as pointed out in loc. cit., this universal property is not useful for our purpose. In fact, our first goal is to construct a ring homomorphism $\theta : W(\mathcal{O}_F) \to \mathcal{O}_{C_K}$ where \mathcal{O}_{C_K} is not a p-ring despite being p-adically complete.

Lemma 2.2.3. For every $x \in \mathcal{O}_{C_K}$ there exists an element $y \in \mathcal{O}_F$ with $x - y^\sharp \in p\mathcal{O}_{C_K}$.

Proof. Let \bar{x} denote the image of x in $\mathcal{O}_{C_K}/p\mathcal{O}_{C_K}$. Since the p-th power map on $\mathcal{O}_{C_K}/p\mathcal{O}_{C_K}$ is surjective, there exists an element $y' = (y'_n) \in \varprojlim_{x \to x^p} \mathcal{O}_{C_K}/p\mathcal{O}_{C_K}$ with $y'_0 = \bar{x}$. The assertion now follows by taking $y \in \mathcal{O}_F$ as the image of y' under the bijection $\mathcal{O}_F \simeq \varprojlim_{x \to x^p} \mathcal{O}_{C_K}/p\mathcal{O}_{C_K}$ as given by Proposition 2.1.7.

Proposition 2.2.4. There exists a surjective ring homomorphism $\theta : A_{inf} \to \mathcal{O}_{C_K}$ such that

$$\theta \left(\sum [c_n]p^n \right) = \sum \bar{c}_np^n$$ (2.3)

for every $c_n \in \mathcal{O}_F$.

Proof. Let us define a map $\bar{\theta} : \mathcal{O}_F \to \mathcal{O}_{C_K}/p\mathcal{O}_{C_K}$ by

$$\bar{\theta}(c) = \bar{c}^\ast$$

for every $c \in \mathcal{O}_F$.

where \bar{c}^\ast denotes the image of c^\ast in $\mathcal{O}_{C_K}/p\mathcal{O}_{C_K}$. It is straightforward to check that $\bar{\theta}$ is a ring homomorphism. Moreover, by construction $\bar{\theta}$ lifts to a map $\hat{\theta} : \mathcal{O}_F \to \mathcal{O}_{C_K}$ defined by

$$\hat{\theta}(c) = c^\ast$$

for every $c \in \mathcal{O}_F$.

Since $\hat{\theta}$ is clearly multiplicative, Lemma 2.2.2 yields a ring homomorphism $\theta : A_{inf} \to \mathcal{O}_{C_K}$ satisfying (2.3).
It remains to establish the surjectivity of θ. Let x be an arbitrary element in O_{C_K}. Since O_{C_K} is p-adically complete, it is enough to find elements $c_0, c_1, \cdots \in O_F$ with

$$x - \sum_{n=0}^{m} c_n^\sharp p^n \in p^{m+1}O_{C_K} \quad \text{for each } m = 0, 1, \cdots .$$

In fact, by Lemma 2.2.3 we can inductively define each c_m to be any element in O_F with

$$\frac{1}{p^m} \left(x - \sum_{n=0}^{m-1} c_n^\sharp p^n \right) - c_m^\sharp \in pO_{C_K},$$

thereby completing the proof. \qed

Remark. As explained in [BC, Lemma 4.4.1], it is possible to construct the homomorphism θ in Proposition 2.2.4 without using Lemma 2.2.2. In this approach, we first define θ as a set theoretic map given by (2.3), then show that θ is indeed a ring homomorphism using the explicit addition and multiplication rules for A_{\inf}.

For the rest of this chapter, we let $\theta : A_{\inf} \rightarrow O_{C_K}$ be the ring homomorphism constructed in Proposition 2.2.4 and let $\theta_Q : A_{\inf}[1/p] \rightarrow C_K$ be the induced map on $A_{\inf}[1/p]$. We also choose an element $p^e \in O_F$ with $(p^e)^p = p$, and set $\xi := [p^e] - p \in A_{\inf}$.

Definition 2.2.5. We define the de Rham period ring B_{dR}^+ as the fraction field of the ring

$$B_{\text{dR}}^+ := \lim_{\inf} A_{\inf}[1/p]/\ker(\theta_Q)^j.$$ We denote by θ_{dR}^+ the natural projection $B_{\text{dR}}^+ \rightarrow A_{\inf}[1/p]/\ker(\theta_Q)$.

Remark. At this point, it is instructive to explain Fontaine’s insight behind the construction of B_{dR}. As briefly discussed in Chapter I, the main motivation for constructing the de Rham period ring B_{dR} is to obtain the de Rham comparison isomorphism as stated in Chapter I, Theorem 1.2.2. Recall that the de Rham cohomology admits a canonical filtration, called the Hodge filtration, whose associated graded vector space recovers the Hodge cohomology. Since the Hodge-Tate decomposition can be stated in terms of the Hodge-Tate period ring B_{HT} as noted after Theorem 1.2.1 in Chapter I, Fontaine sought to construct B_{dR} as a ring with a canonical filtration which recovers B_{HT} as the associated graded algebra. His idea was to construct the subring B_{dR}^+ as a complete discrete valuation ring B_{dR}^+ with an action of Γ_K such that there exist Γ_K-equivariant isomorphisms

$$B_{\text{dR}}^+ / m_{\text{dR}} \simeq C_K \quad \text{and} \quad m_{\text{dR}} / m_{\text{dR}}^2 \simeq C_K(1)$$

where m_{dR} denotes the maximal ideal of B_{dR}^+. In characteristic p, the theory of Witt vectors provides a natural way to construct a complete discrete valuation ring with a specified perfect residue field. Fontaine judiciously applied the Witt vector construction to the field C_K of characteristic 0 by passing to characteristic p. More precisely, he first defined the ring A_{\inf} as the ring of Witt vectors over

$$R_K := \varprojlim_x O_{C_K}/pO_{C_K},$$

which is called the perfection of O_{C_K}/pO_{C_K}. Then constructed the homomorphism θ as in Proposition 2.2.3 to realize O_{C_K} as a quotient of A_{\inf}. Note that R_K can be identified with O_F by Proposition 2.1.7; indeed, our discussion in §2.1 can be regarded as a modern interpretation for the construction of R_K and A_{\inf}. We will soon see that the rings B_{dR} and B_{dR}^+ as defined in Definition 2.2.5 satisfy all the desired properties.
We now aim to show that B_{dR} is a complete discrete valuation ring with \mathbb{C}_K as the residue field. To this end we study several properties of $\ker(\theta)$.

Lemma 2.2.6. For each $n \geq 0$ we have $\ker(\theta) \cap p^n A_{\inf} = p^n \ker(\theta)$.

Proof. We only need to show $\ker(\theta) \cap p^n A_{\inf} \subseteq p^n \ker(\theta)$ since the reverse containment is obvious. Let x be an arbitrary element in $\ker(\theta) \cap p^n A_{\inf}$. We may write $x = p^n y$ for some $y \in A_{\inf}$. Then we have

$$0 = \theta(x) = \theta(p^n y) = p^n \theta(y),$$

and consequently find $\theta(y) = 0$ since $O_{\mathbb{C}_K}$ has no nonzero p-torsion. We thus deduce that $x = p^n y$ lies in $p^n \ker(\theta)$. \qed

Lemma 2.2.7. Every element $x \in \ker(\theta)$ is of the form $x = c\xi + dp$ for some $c, d \in A_{\inf}$.

Proof. We wish to show that x lies in the ideal $(\xi, p) = ([p^\flat], p)$. Let us write

$$x = \sum [c_n]p^n = [c_0] + \sum_{n \geq 1} [c_n]p^n$$

for some $c_n \in O_F$. It suffices to show that $[c_0]$ is divisible by $[p^\flat]$. By definition we have

$$0 = \theta(x) = \sum c_n^\flat p^n.$$

We then find that c_0^\flat is divisible by p, which in turn implies

$$\nu^\flat(c_0) = \nu(c_0^\flat) \geq \nu(p) = \nu((p^\flat)^\flat) = \nu^\flat(p^\flat).$$

Hence there exists some $r \in O_F$ with $c_0 = p^\flat r$, which yields $[c_0] = [p^\flat][r]$ as desired. \qed

Proposition 2.2.8. The ideal $\ker(\theta)$ in A_{\inf} is generated by ξ.

Proof. By definition we have

$$\theta(\xi) = \theta([p^\flat] - p) = (p^\flat)^\flat - p = p - p = 0.$$

Hence we only need to show that $\ker(\theta)$ lies in the ideal (ξ). Let x be an arbitrary element in $\ker(\theta)$. Since A_{\inf} is p-adically separated and complete by construction, it suffices to show that there exist elements $c_0, c_1, \cdots \in A_{\inf}$ with

$$x - \sum_{n=0}^m c_n \xi p^n \in p^{m+1} A_{\inf}$$

for each $m \geq 0$.

We proceed by induction on m to find such $c_0, c_1, \cdots \in A_{\inf}$. As both ξ and x lie in $\ker(\theta)$, we have

$$x - \sum_{n=0}^{m-1} c_n \xi p^n \in \ker(\theta) \cap p^m A_{\inf} = p^m \ker(\theta)$$

by the induction hypothesis and Lemma 2.2.6. Then by Lemma 2.2.7, we find some $c_m, d_m \in A_{\inf}$ with

$$x - \sum_{n=0}^{m-1} c_n \xi p^n = p^m (c_m \xi + pd_m),$$

or equivalently

$$x - \sum_{n=0}^m c_n \xi p^n = p^{m+1} d_m$$

as desired. \qed
Lemma 2.2.9. For all \(j \geq 1 \) we have \(A_{\inf} \cap \ker(\theta_Q)^j = \ker(\theta)^j \).

Proof. We clearly have \(\ker(\theta) \subseteq A_{\inf} \cap \ker(\theta_Q) \). Conversely, for every \(x \in A_{\inf} \cap \ker(\theta_Q) \) we have \(p^n x \in \ker(\theta) \) for some \(n \geq 0 \) and consequently find \(x \in \ker(\theta) \) by Lemma 2.2.6. Hence we verify the assertion for \(j = 1 \).

Let us now proceed by induction on \(j \). We only need to show \(A_{\inf} \cap \ker(\theta_Q)^j \subseteq \ker(\theta)^j \) since the reverse containment is obvious. Let \(x \) be an arbitrary element in \(A_{\inf} \cap \ker(\theta_Q)^j \).

Take some \(n \geq 0 \) with \(p^n x \in \ker(\theta)^j \). Then Proposition 2.2.8 yields some \(r \in A_{\inf} \) with \(p^n x = \xi^j r \). In addition, as we have \(A_{\inf} \cap \ker(\theta_Q)^j \subseteq A_{\inf} \cap \ker(\theta_Q)^{j-1} = \ker(\theta)^{j-1} \) by the induction hypothesis, we may write \(x = \xi^{j-1} s \) for some \(s \in A_{\inf} \). Therefore we find

\[
0 = p^n x - p^n x = \xi^j r - p^n \xi^{j-1} s = \xi^{j-1} (\xi r - p^n s),
\]

which in turn yields \(\xi r = p^n s \) since \(A_{\inf} \) is an integral domain by construction. Then Lemma 2.2.6 implies \(s \in \ker(\theta) \) as \(p^n s = \xi r \) lies in \(\ker(\theta) \) by Proposition 2.2.8. Hence by Proposition 2.2.8 we obtain an element \(s' \in A_{\inf} \) with \(s = \xi s' \), thereby deducing that \(x = \xi^{j-1} s = \xi^j s' \) lies in \(\ker(\theta)^j \).

Proposition 2.2.10. We have \(\bigcap_{j=1}^{\infty} \ker(\theta)^j = \bigcap_{j=1}^{\infty} \ker(\theta_Q)^j = 0 \).

Proof. By Lemma 2.2.9 we find

\[
\bigcap_{j=1}^{\infty} \ker(\theta_Q)^j = \left(\bigcap_{j=1}^{\infty} \ker(\theta)^j \right)[1/p].
\]

(2.4)

Hence it suffices to prove \(\bigcap_{j=1}^{\infty} \ker(\theta)^j = 0 \). Take an arbitrary element \(c \in \bigcap_{j=1}^{\infty} \ker(\theta)^j \). As usual, let us write \(c = \sum [c_n] p^n \) for some \(c_n \in \mathcal{O}_F \). By Proposition 2.2.8 we find that \(c \) is divisible by arbitrarily high powers of \(\xi = [p^j] - p \). This implies that \(c_0 \) is divisible by arbitrarily high powers of \(p^j \), which in turn means \(c_0 = 0 \) as we have

\[
\nu^j(p^j) = \nu((p^j)^j) = \nu(p) = 1 > 0.
\]

Therefore we find some \(c' \in A_{\inf} \) with \(c = pc' \). Moreover, Lemma 2.2.9 and (2.4) together yield

\[
c' \in A_{\inf} \cap \left(\bigcap_{j=1}^{\infty} \ker(\theta)^j \right)[1/p] = A_{\inf} \cap \left(\bigcap_{j=1}^{\infty} \ker(\theta_Q)^j \right) = \bigcap_{j=1}^{\infty} \ker(\theta)^j.
\]

Hence an easy induction shows that \(c \) is infinitely divisible by \(p \), which in turn implies \(c = 0 \) as \(A_{\inf} \) is \(p \)-adically complete.

Remark. In fact, we have \(c' = \sum_{n \geq 1} [c_n[p^j]] p^{n-1} \) as easily seen using the Frobenius and Verschiebung maps on \(A_{\inf} \).

Corollary 2.2.11. The natural map

\[
A_{\inf}[1/p] \longrightarrow \lim_{j} A_{\inf}[1/p]/\ker(\theta_Q)^j = B_{dR}^+
\]

is injective. In particular, we may canonically identify \(A_{\inf}[1/p] \) as a subring of \(B_{dR}^+ \).
Proposition 2.2.12. The ring B^+_{dR} is a complete discrete valuation ring with $\ker(\theta^+_{\text{dR}})$ as the maximal ideal and \mathbb{C}_K as the residue field. Moreover, the element ξ is a uniformizer of B^+_{dR}.

Proof. Since both θ^+_{dR} and $\theta_{\mathbb{Q}}$ are surjective by construction, we have an isomorphism

$$B^+_{\text{dR}}/\ker(\theta^+_{\text{dR}}) \simeq A_{\text{inf}}[1/p]/\ker(\theta_{\mathbb{Q}}) \simeq \mathbb{C}_K.$$

In addition, a general fact as stated in [Sta Tag 05G1] implies that every element $b \in B^+_{\text{dR}}$ is a unit if and only if $\theta^+_{\text{dR}}(b)$ is a unit in $B^+_{\text{dR}}/\ker(\theta^+_{\text{dR}}) \simeq \mathbb{C}_K$, or equivalently $b \notin \ker(\theta^+_{\text{dR}})$. Therefore B^+_{dR} is a local ring with $\ker(\theta^+_{\text{dR}})$ as the maximal ideal and \mathbb{C}_K as the residue field.

Consider an arbitrary nonzero element $b \in B^+_{\text{dR}}$. For each $j \geq 0$, let b_j and ξ_j respectively denote the image of b and ξ under the projection $B^+_{\text{dR}} \rightarrow A_{\text{inf}}[1/p]/\ker(\theta_{\mathbb{Q}})^j$. Take the maximum $i \geq 0$ with $b_i = 0$. Then for each $j > i$ we have

$$b_j \in \ker(\theta_{\mathbb{Q}})^j/\ker(\theta)^j \quad \text{and} \quad b_j \notin \ker(\theta_{\mathbb{Q}})^{i+1}/\ker(\theta)^j.$$

Hence by Proposition 2.2.8 we may write $b_j = \xi_j u_j$ for some $u_j \in B^+_{\text{dR}}/\ker(\theta_{\mathbb{Q}})^j$ with $u_j \notin \ker(\theta_{\mathbb{Q}})/\ker(\theta)^j$. For each $j > i$ we let u'_j denote the image of u_j in $B^+_{\text{dR}}/\ker(\theta_{\mathbb{Q}})^j$. By construction the sequence $(u'_j)_{j>i}$ gives rise to a unit $u \in B^+_{\text{dR}}$ such that $b = \xi^i u$. Moreover, it is not hard to see that u is uniquely determined by b even though the u_j’s are not uniquely determined. We thus deduce that B^+_{dR} is a discrete valuation ring with ξ as a uniformizer. The completeness of B^+_{dR} then follows by Proposition 2.2.8 and Proposition 2.2.10.

Corollary 2.2.13. For every uniformizer π of B^+_{dR}, the filtration $\{ \pi^n B^+_{\text{dR}} \}_{n \in \mathbb{Z}}$ of B^+_{dR} satisfies the following properties:

(i) $\pi^{n+1} B^+_{\text{dR}} \subseteq \pi^n B^+_{\text{dR}}$ for all $n \in \mathbb{Z}$.

(ii) $\bigcap_{n \in \mathbb{Z}} \pi^n B^+_{\text{dR}} = 0$ and $\bigcup_{n \in \mathbb{Z}} \pi^n B^+_{\text{dR}} = B^+_{\text{dR}}$.

(iii) $(\pi^m B^+_{\text{dR}}) \cdot (\pi^n B^+_{\text{dR}}) \subseteq \pi^{m+n} B^+_{\text{dR}}$ for all $m, n \in \mathbb{Z}$.

Remark. The filtration $\{ \pi^n B^+_{\text{dR}} \}_{n \in \mathbb{Z}}$ does not depend on the choice of π; indeed, we have an identification $\pi^n B^+_{\text{dR}} = \ker(\theta_{\text{dR}})^n$ for each $n \in \mathbb{Z}$.

Proposition 2.2.14. Let $W(k)$ denote the ring of Witt vectors over k, and let K_0 denote the fraction field of $W(k)$.

(1) K is a finite totally ramified extension of K_0.

(2) The natural injective map $\overline{K} \hookrightarrow \mathbb{C}_K$ uniquely factors through θ^+_{dR}.

Proof. Let \mathfrak{m} denote the maximal ideal of \mathcal{O}_K. The natural projection $\mathcal{O}_K/p\mathcal{O}_K \rightarrow \mathcal{O}_K/\mathfrak{m} = k$ admits a canonical section $s : k \rightarrow \mathcal{O}_K/p\mathcal{O}_K$, which induces a homomorphism of discretely valued fields $K_0 \rightarrow K$ by Lemma 2.2.2. We thus obtain the statement (1) by observing that both K_0 and K are complete with the residue field k.

Let us now prove the statement (2). Since k is perfect, the section $s : k \rightarrow \mathcal{O}_K/p\mathcal{O}_K$ induces a natural map

$$k \rightarrow \varprojlim_{\mathfrak{z} \rightarrow \overline{\mathfrak{z}}} \mathcal{O}_{\mathcal{C}_K}/p\mathcal{O}_{\mathcal{C}_K} \cong \mathcal{O}_F$$

where the isomorphism is given by Proposition 2.1.7. We then obtain a natural homomorphism $K_0 = W(k)[1/p] \rightarrow A_{\text{inf}}[1/p]$ by Lemma 2.2.2. Hence B^+_{dR} is a complete discrete valuation ring over K_0 by Corollary 2.2.11 and Proposition 2.2.12. Moreover, the statement (1) implies that \overline{K} is a separable algebraic extension of K_0. Therefore by Hensel’s lemma the subfield \overline{K} of the residue field \mathbb{C}_K uniquely lifts to a subfield of B^+_{dR} over K_0. □
Our final goal of this subsection is to describe and study the natural action of Γ_k on B_{dR}, especially in relation to the natural filtration on B_{dR} as described in Corollary 2.2.13. We invoke the following technical result without proof.

Proposition 2.2.15. There exists a refinement of the discrete valuation topology on B_{dR}^+ that satisfies the following properties:

(i) The natural map $A_{\inf} \longrightarrow B_{\text{dR}}^+$ identifies A_{\inf} as a closed subring of B_{dR}^+.

(ii) The map $\theta_{\mathbb{Q}}$ is continuous and open with respect to the valuation topology on \mathbb{C}_K.

(iii) There exists a continuous map $\log : \mathbb{Z}_p(1) \longrightarrow B_{\text{dR}}^+$ such that

$$\log(c) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{[c] - 1}{n}$$

for every $c \in \mathbb{Z}_p(1)$ under the natural identification $\mathbb{Z}_p(1) = \lim_{\longrightarrow} \mu_v(K) = \{ c \in \mathcal{O}_F : c^p = 1 \}$.

(iv) The multiplication by any uniformizer yields a closed embedding on B_{dR}^+.

(v) The ring B_{dR}^+ is complete.

Remark. The readers can find a sketch of the proof in [BC, Exercise 4.5.3] and the discussion after Definition 4.4.7 in loc. cit. The main idea for the proof is to impose a topology on $A_{\inf}[1/p]$ using controlled decay of coefficients of Laurent series in p.

The discrete valuation topology on B_{dR}^+ does not satisfy the properties (i), (ii), or (iii). The main issue with the discrete valuation topology on B_{dR}^+ is that it doesn’t contain any information about the valuation topology on \mathbb{C}_K or F; indeed, our discussion so far does not require any topological arguments involving the valuations ν and ν^\flat. As a result, the natural Γ_k-action on B_{dR} that we will soon describe is not continuous with respect to the discrete valuation topology. It is therefore crucial to consider the refinement of the discrete valuation topology on B_{dR}^+ as described in Proposition 2.2.15.

For the rest of this chapter, we consider the continuous map $\log : \mathbb{Z}_p(1) \longrightarrow B_{\text{dR}}^+$ as given by Proposition 2.2.15. In addition, we fix an element $\varepsilon \in \mathbb{Z}_p(1)$ with $\varepsilon \neq 1$ and write $t := \log(\varepsilon)$. We often identify ε as an element in \mathcal{O}_F under the natural identification $\mathbb{Z}_p(1) = \lim_{\longrightarrow} \mu_v(K)$.

Lemma 2.2.16. We have $\nu^\flat(\varepsilon - 1) = \frac{p}{p - 1}$.

Proof. By construction we may write $\varepsilon = (\zeta_{p^n})$ where each ζ_{p^n} is a primitive p^n-th root of unity in K. Then we find

$$\nu^\flat(\varepsilon - 1) = \nu((\varepsilon - 1)^p) = \nu\left(\lim_{n \to \infty} (\zeta_{p^n} - 1)^{p^n}\right)$$

$$= \lim_{n \to \infty} p^n \nu(\zeta_{p^n} - 1) = \lim_{n \to \infty} \frac{p^n}{p^{n-1} (p - 1)} = \frac{p}{p - 1}$$

by the proof of Proposition 2.1.8 and the continuity of the valuation ν. □

Proposition 2.2.17. The element $t \in B_{\text{dR}}^+$ is a uniformizer.

Proof. By definition we have

$$\theta([\varepsilon] - 1) = \varepsilon^p - 1 = 1 - 1 = 0.$$
Then by Proposition 2.2.8 we find
\[
[x] - 1 \in \xi A_{\text{inf}} \quad \text{and} \quad t = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{([x] - 1)^n}{n} \in \xi B^+_{\text{dR}},
\]
(2.5)
Hence it remains to prove \(t \notin \xi^2 B^+_{\text{dR}} \). Since we have \(\frac{([x] - 1)^n}{n} \in \xi^2 B^+_{\text{dR}} \) for each \(n \geq 2 \), we only need to show \([x] - 1 \notin \xi^2 B^+_{\text{dR}} \).

Suppose for contradiction that \([x] - 1 \) lies in \(\xi^2 B^+_{\text{dR}} \). Then the proof of Proposition 2.2.12 shows that the image of \([x] - 1 \) under the projection \(B^+_{\text{dR}} \to A_{\text{inf}}[1/p]/\ker(\theta_Q)^2 \) is zero. Since \([x] - 1 \) is an element of \(A_{\text{inf}} \), we find \([x] - 1 \in \ker(\theta_Q)^2 \cap A_{\text{inf}} \). Hence Proposition 2.2.8 and Lemma 2.2.9 together imply that \([x] - 1 \) is divisible by \(\xi^2 \) in \(A_{\text{inf}} \).

Since the first coefficients in the Teichmüller expansions for \([x] - 1 \) and \(\xi^2 \) are respectively equal to \([x] - 1 \) and \([(p^\flat)^2] \), we obtain
\[
\nu^\flat([x] - 1) \geq \nu^\flat((p^\flat)^2) = 2\nu^\flat(p^\flat) = 2\nu(p) = 2.
\]
On the other hand, if \(p \) is odd we have \(\nu^\flat([x] - 1) < 2 \) by Lemma 2.2.16. Therefore we find \(p = 2 \). Let us now take an element \(c \in A_{\text{inf}} \) with \([x] - 1 = \xi^2 c \). We then compare the coefficients of \(p \) in the Teichmüller expansions of both sides and find
\[
[x] - 1 = c_1(p^\flat)^4
\]
where \(c_1 \) denote the coefficient of \(p \) in the Teichmüller expansion of \(c \). Hence we have
\[
\nu^\flat([x] - 1) \geq \nu^\flat((p^\flat)^4) = 2\nu^\flat(p^\flat) = 4\nu(p) = 4,
\]
thereby obtaining a desired contradiction since Lemma 2.2.16 yields \(\nu^\flat([x] - 1) = 2 \). □

Remark. Since we have \([x] - 1 \in \xi A_{\text{inf}}\) as noted in (2.5), the power series \((-1)^{n+1} \sum_{n=1}^{\infty} \frac{([x] - 1)^n}{n}\) converges with respect to the discrete valuation topology on \(B^+_{\text{dR}} \). In particular, we can define the uniformizer \(t \in B^+_{\text{dR}} \) without using Proposition 2.2.15.

Lemma 2.2.18. For every \(m \in \mathbb{Z}_p \) we have \(\log(x^m) = m \log(x) \).

Proof. Let us first consider the case where \(m \) is an integer. We know that the identity
\[
\log((1 + x)^m) = m \log(1 + x)
\]
holds as formal power series. Since \(\log([x]) \) converges in \(B^+_{\text{dR}} \) as noted in the proof of Proposition 2.2.17, we set \(x = [x] - 1 \) to obtain the desired assertion.

We now consider the general case. Let us choose a sequence \((m_i) \) of integers such that \(m_i - m \) is divisible by \(p^i \). As \(\log(x) = t \) is a uniformizer of \(B^+_{\text{dR}} \) by Proposition 2.2.17, we find
\[
\lim_{i \to \infty} m_i \log(x) = m \log(x)
\]
by Proposition 2.2.15. In addition, it is straightforward to verify
\[
\lim_{i \to \infty} x^{m_i} = x^m
\]
with respect to the valuation topology on \(F \). We thus find
\[
\log(x^m) = \log \left(\lim_{i \to \infty} x^{m_i} \right) = \lim_{i \to \infty} \log(x^{m_i}) = \lim_{i \to \infty} m_i \log(x) = m \log(x)
\]
where the second identity follows from the continuity of the logarithm map as noted in Proposition 2.2.15. □
Theorem 2.2.19 (Fontaine). The natural action of Γ_K on B_{dR} has the following properties:

(i) For every $\gamma \in \Gamma_K$ we have $\gamma(t) = \chi(\gamma)t$.
(ii) Each $t^iB_{\text{dR}}^+$ is stable under the action of Γ_K.
(iii) There exists a canonical Γ_K-equivariant isomorphism

$$\bigoplus_{n \in \mathbb{Z}} t^n B_{\text{dR}}^+/t^{n+1}B_{\text{dR}}^+ \cong \bigoplus_{n \in \mathbb{Z}} \mathbb{C}_K(n) = B_{\text{HT}}.$$

(iv) B_{dR} is (\mathbb{Q}_p, Γ_K)-regular with a natural identification $B_{\text{dR}}^\Gamma_K \cong K$.

Proof. Let us first describe the natural action of Γ_K on B_{dR}. The action of Γ_K on \mathbb{C}_K naturally induces an action on $F = \varprojlim_{x \rightarrow x^p} \mathbb{C}_K$ as the p-th power map on \mathbb{C}_K is Γ_K-equivariant.

More precisely, given an arbitrary element $x = (x_n) \in F$ we have

$$\gamma(x) = (\gamma(x_n)) \quad \text{for every } \gamma \in \Gamma_K.$$

It is then evident that \mathcal{O}_F is stable under the action of Γ_K. Hence by functoriality of Witt vectors we obtain a natural action of Γ_K on $A_{\text{inf}}[1/p]$ such that

$$\gamma \left(\sum [c_n]p^n \right) = \sum [\gamma(c_n)]p^n \quad \text{for all } \gamma \in \Gamma_K, c_n \in \mathcal{O}_F.$$

We then find that θ and θ_Q are both Γ_K-equivariant by construction, and consequently deduce that both $\ker(\theta)$ and $\ker(\theta_Q)$ are stable under the action of Γ_K. Therefore Γ_K naturally acts on $B_{\text{dR}}^+ = \varprojlim_j A_{\text{inf}}[1/p] / \ker(\theta_Q)j$ and its fraction field B_{dR}.

With our discussion in the preceding paragraph, it is not hard to see that the logarithm map is Γ_K-equivariant. Hence for every $\gamma \in \Gamma_K$ we use Lemma 2.2.18 to find

$$\gamma(t) = \gamma(\log(\varepsilon)) = \log(\varepsilon \chi(\gamma)) = \chi(\gamma) \log(\varepsilon) = \chi(\gamma)t,$$

thereby deducing the property (i). The property (ii) then immediately follows from the property (i) as B_{dR}^+ is stable under the action of Γ_K.

Let us now prove the property (iii) We note that the natural isomorphism

$$B_{\text{dR}}^+/\ker(\theta_{\text{dR}}^+) = B_{\text{dR}}^+/tB_{\text{dR}}^+ \simeq A_{\text{inf}}[1/p] / \ker(\theta_Q) \simeq \mathbb{C}_K.$$

is Γ_K-equivariant, and consequently obtain Γ_K-equivariant isomorphisms

$$\ker(\theta_{\text{dR}}^+)/\ker(\theta_{\text{dR}}^+)n+1 = t^n B_{\text{dR}}^+/t^{n+1}B_{\text{dR}}^+ \simeq \mathbb{C}_K(n) \quad \text{for all } n \in \mathbb{Z}$$

by the property (i) and Lemma 3.1.11 in Chapter II. These isomorphisms are canonical since t is uniquely determined up to \mathbb{Z}_p^*-multiple by Lemma 2.2.18. We thus obtain the desired Γ_K-equivariant isomorphism by taking the direct sum of the above isomorphisms.

It remains to verify the property (iv). The field B_{dR} is (\mathbb{Q}_p, Γ_K)-regular as noted in Example 1.1.2. In addition, since the map θ_{dR} is Γ_K-equivariant by construction, the natural injective homomorphism $\overline{K} \hookrightarrow B_{\text{dR}}^+$ given by Proposition 2.2.14 is also Γ_K-equivariant, thereby inducing an injective homomorphism

$$K = K^\Gamma_K \hookrightarrow (B_{\text{dR}}^+)^{\Gamma_K} \hookrightarrow B_{\text{dR}}^\Gamma_K.$$

Then by the properties (ii) and (iii) we get an injective K-algebra homomorphism

$$\bigoplus_{n \in \mathbb{Z}} (B_{\text{dR}}^\Gamma_K \cap t^n B_{\text{dR}}^+)/ \bigoplus_{n \in \mathbb{Z}} (B_{\text{dR}}^\Gamma_K \cap t^{n+1}B_{\text{dR}}^+) \hookrightarrow B_{\text{HT}}^\Gamma_K.$$

Since we have $B_{\text{HT}}^\Gamma_K \cong K$ by Theorem 3.1.12 in Chapter II, the K-algebra on the source has dimension at most 1. Hence we find $\dim_K B_{\text{dR}}^\Gamma_K \leq 1$, thereby completing the proof by (2.6). \qed
2.3. Filtered vector spaces

In this subsection we set up a categorical framework for our discussion of B_{dR}-admissible representations in the next subsection.

Definition 2.3.1. Let L be an arbitrary field.

1. A **filtered vector space** over L is a vector space V over L along with a collection of subspaces $\{ \text{Fil}^n(V) \}_{n \in \mathbb{Z}}$ that satisfy the following properties:
 - (i) $\text{Fil}^n(V) \supseteq \text{Fil}^{n+1}(V)$ for every $n \in \mathbb{Z}$.
 - (ii) $\bigcap_{n \in \mathbb{Z}} \text{Fil}^n(V) = 0$ and $\bigcup_{n \in \mathbb{Z}} \text{Fil}^n(V) = V$.

2. A **graded vector space** over L is a vector space V over L along with a direct sum decomposition $V = \bigoplus_{n \in \mathbb{Z}} V_n$.

3. A L-linear map between two filtered vector spaces V and W over L is called a morphism of filtered vector spaces if it maps each $\text{Fil}^n(V)$ into $\text{Fil}^n(W)$.

4. A L-linear map between two graded vector spaces $V = \bigoplus_{n \in \mathbb{Z}} V_n$ and $W = \bigoplus_{n \in \mathbb{Z}} W_n$ over L is called a morphism of graded vector spaces if it maps each V_n into W_n.

5. For a filtered vector space V over L, we define its **associated graded vector space** by $\text{gr}(V) := \bigoplus_{n \in \mathbb{Z}} \text{Fil}^n(V)/\text{Fil}^{n+1}(V)$ and write $\text{gr}^n(V) := \text{Fil}^n(V)/\text{Fil}^{n+1}(V)$ for every $n \in \mathbb{Z}$.

6. We denote by Fil_L the category of finite dimensional filtered vector spaces over L.

Example 2.3.2. We present some motivating examples for our discussion.

1. The ring B_{dR} is a filtered K-algebra with $\text{Fil}^n(B_{dR}) := t^n B^+_{dR}$ and $\text{gr}(B_{dR}) \cong B_{HT}$ by Corollary 2.2.13 and Theorem 2.2.19.

2. For a proper smooth variety X over K, the de Rham cohomology $H^n_{dR}(X/K)$ with the Hodge filtration is a filtered vector space over K whose associated graded vector space recovers the Hodge cohomology.

3. For every $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$, we may regard $D_{B_{dR}}(V) = (V \otimes_{\mathbb{Q}_p} B_{dR})^{\Gamma_K}$ as a filtered vector space over K with $\text{Fil}^n(D_{B_{dR}}(V)) := (V \otimes_{\mathbb{Q}_p} t^n B^+_{dR})^{\Gamma_K}$.

Remark. For an arbitrary proper smooth variety X over K, we have a canonical Γ_K-equivariant isomorphism of filtered vector spaces $D_{B_{dR}}(H^n_{\text{ét}}(X_K, \mathbb{Q}_p)) \cong H^n_{dR}(X/K)$ by Theorem 1.2.2 in Chapter I. In particular, we can recover the Hodge filtration on $H^n_{dR}(X/K)$ from the Γ_K-action on $H^n_{\text{ét}}(X_K, \mathbb{Q}_p)$.

Lemma 2.3.3. Let V be a finite dimensional filtered vector space over a field L. There exists a basis $(v_{i,j})$ for V such that for every $n \in \mathbb{Z}$ the vectors $v_{i,j}$ with $i \geq n$ form a basis for $\text{Fil}^n(V)$.

Proof. Since V is finite dimensional, we have $\text{Fil}^n(V) = 0$ for all sufficiently large n and $\text{Fil}^n(V) = 0$ for all sufficiently small n. Hence we can construct such a basis by inductively extending a basis for $\text{Fil}^n(V)$ to a basis for $\text{Fil}^{n-1}(V)$. \qed
Definition 2.3.4. Let L be an arbitrary field.

1. Given two filtered vector spaces V and W over L, we define the convolution filtration on $V \otimes_L W$ by

$$\text{Fil}^n(V \otimes_L W) := \sum_{i+j=n} \text{Fil}^i(V) \otimes_L \text{Fil}^j(W).$$

2. For every filtered vector space V over L, we define the dual filtration on the dual space $V^\vee = \text{Hom}_L(V, L)$ by

$$\text{Fil}^n(V^\vee) := \{ f \in V^\vee : \text{Fil}^{1-n}(V) \subseteq \ker(f) \}. $$

3. We define the unit object $L[0]$ in Fil to be the vector space L with the filtration

$$\text{Fil}^n(L[0]) := \begin{cases} L & \text{if } n \leq 0, \\ 0 & \text{if } n > 0. \end{cases}$$

Remark. The use of $\text{Fil}^{1-n}(V)$ rather than $\text{Fil}^{-n}(V)$ in (2) is to ensure that $L[0]$ is self-dual.

Proposition 2.3.5. Let V be a filtered vector space over a field L. Then we have canonical isomorphisms of filtered vector spaces

$$V \otimes_L L[0] \cong L[0] \otimes_L V \cong V \quad \text{and} \quad (V^\vee)^\vee \cong V.$$

Proof. For every $n \in \mathbb{Z}$ we find

$$\text{Fil}^n(V \otimes_L L[0]) = \sum_{i+j=n} \text{Fil}^i(V) \otimes_L \text{Fil}^j(L[0]) \cong \sum_{i \geq n} \text{Fil}^i(V) = \text{Fil}^n(V),$$

and consequently obtain an identification of filtered vector spaces

$$V \otimes_L L[0] \cong L[0] \otimes_L V \cong V.$$

Moreover, the natural evaluation isomorphism $\epsilon : V \cong (V^\vee)^\vee$ yields an isomorphism of filtered vector spaces since for every $n \in \mathbb{Z}$ we have

$$\text{Fil}^n ((V^\vee)^\vee) \cong \{ v \in V : \text{Fil}^{1-n}(V^\vee) \subseteq \ker(\epsilon(v)) \}$$

$$= \{ v \in V : f(v) = 0 \text{ for all } f \in \text{Fil}^{1-n}(V^\vee) \}$$

$$= \{ v \in V : f(v) = 0 \text{ for all } f \in V^\vee \text{ with } \text{Fil}^n(V) \subseteq \ker(f) \}$$

$$= \text{Fil}^n(V).$$

Therefore we complete the proof.

Proposition 2.3.6. Let V and W be finite dimensional filtered vector spaces over a field L. Then we have a natural identification of filtered vector spaces

$$(V \otimes_L W)^\vee \cong V^\vee \otimes_L W^\vee.$$
Lemma 2.3.7. Let $V = \bigoplus_{n \in \mathbb{Z}} V_n$ and $W = \bigoplus_{n \in \mathbb{Z}} W_n$ be graded vector spaces over a field L. A morphism $f : V \to W$ of graded vector spaces is an isomorphism if and only if it is bijective.

\textbf{Proof.} The assertion immediately follows by observing that f is the direct sum of the induced morphisms $f_n : V_n \to W_n$. \hfill \square

Proposition 2.3.8. Let L be an arbitrary field. A bijective morphism $f : V \to W$ in Fil_L is an isomorphism in Fil_L if and only if the induced map $\text{gr}(f) : \text{gr}(V) \to \text{gr}(W)$ is bijective.

\textbf{Proof.} If f is an isomorphism of filtered vector spaces, then $\text{gr}(f)$ is clearly an isomorphism. Let us now assume that $\text{gr}(f)$ is an isomorphism. We wish to show that for every $n \in \mathbb{Z}$ the induced map $\text{Fil}^n(f) : \text{Fil}^n(V) \to \text{Fil}^n(W)$ is an isomorphism. Since each $\text{Fil}^n(f)$ is injective by the bijectivity of f, it suffices to show

$$\dim_L \text{Fil}^n(V) = \dim_L \text{Fil}^n(W) \quad \text{for every } n \in \mathbb{Z}.$$

The map $\text{gr}(f)$ is an isomorphism of graded vector spaces by Lemma 2.3.7 and consequently induces an isomorphism

$$\text{gr}^n(V) \simeq \text{gr}^n(W) \quad \text{for every } n \in \mathbb{Z}.$$

Hence for every $n \in \mathbb{Z}$ we find

$$\dim_L \text{Fil}^n(V) = \sum_{i \geq n} \dim_L \text{gr}^i(V) = \sum_{i \geq n} \dim_L \text{gr}^i(W) = \dim_L \text{Fil}^n(W)$$

as desired. \hfill \square

Example 2.3.9. Let us define $L[1]$ to be the vector space L with the filtration

$$\text{Fil}^n(L[1]) := \begin{cases} L & \text{if } n \leq 1, \\ 0 & \text{if } n > 1. \end{cases}$$

The bijective morphism $L[0] \to L[1]$ given by the identity map on L is not an isomorphism in Fil_L since $\text{Fil}^1(L[0]) = 0$ and $\text{Fil}^1(L[1]) = L$ are not isomorphic. Moreover, the induced map $\text{gr}(L[0]) \to \text{gr}(L[1])$ is a zero map.

Proposition 2.3.10. Let L be an arbitrary field. For any $V, W \in \text{Fil}_L$ there exists a natural isomorphism of graded vector spaces

$$\text{gr}(V \otimes_L W) \cong \text{gr}(V) \otimes_L \text{gr}(W).$$

\textbf{Proof.} Since we have a direct sum decomposition

$$\text{gr}(V) \otimes_L \text{gr}(W) = \bigoplus_{n \in \mathbb{Z}} \left(\bigoplus_{i+j=n} \text{gr}^i(V) \otimes_L \text{gr}^j(W) \right),$$

it suffices to find a natural isomorphism

$$\text{gr}^n(V \otimes_L W) \cong \bigoplus_{i+j=n} \text{gr}^i(V) \otimes_L \text{gr}^j(W) \quad \text{for every } n \in \mathbb{Z}. \quad (2.7)$$

By Lemma 2.3.3 we can choose bases $(v_{i,k})$ and $(w_{j,l})$ for V and W such that for every $n \in \mathbb{Z}$ the vectors $(v_{i,k})_{i \geq n}$ and $(w_{j,l})_{j \geq n}$ respectively span $\text{Fil}^n(V)$ and $\text{Fil}^n(W)$. Let $\tau_{i,k}$ denote the image of $v_{i,k}$ under the map $\text{Fil}^i(V) \to \text{gr}^i(V)$, and let $\overline{w}_{j,l}$ denote the image of $w_{j,l}$ under the map $\text{Fil}^j(W) \to \text{gr}^j(W)$. Since each $\text{Fil}^n(V \otimes_L W)$ is spanned by the vectors $(v_{i,k} \otimes w_{j,l})_{i+j \geq n}$, we obtain the identification (2.7) by observing that both sides are spanned by the vectors $(\tau_{i,k} \otimes \overline{w}_{j,l})_{i+j=n}$. \hfill \square
2.4. Properties of de Rham representations

Definition 2.4.1. We say that $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is de Rham if it is B_{dR}-admissible. We write $\text{Rep}^{\text{dR}}_{\mathbb{Q}_p}(\Gamma_K) := \text{Rep}^\text{dR}_{\mathbb{Q}_p}(\Gamma_K)$ for the category of de Rham p-adic Γ_K-representations. In addition, we write D_{HT} and D_{dR} respectively for the functors $D_{B_{\text{HT}}}$ and $D_{B_{\text{dR}}}$.

Example 2.4.2. Below are some important examples of de Rham representations.

1. For every $n \in \mathbb{Z}$ the Tate twist $\mathbb{Q}_p(n)$ of \mathbb{Q}_p is de Rham; indeed, the inequality
 \[
 \dim_K D_{\text{dR}}(\mathbb{Q}_p(n)) \leq \dim_{\mathbb{Q}_p} \mathbb{Q}_p(n) = 1
 \]
 given by Theorem [1.1.5] is an equality, as $D_{\text{dR}}(\mathbb{Q}_p(n)) = (\mathbb{Q}_p(n) \otimes_{\mathbb{Q}_p} B_{\text{dR}})^{\Gamma_K}$ contains a nonzero element $1 \otimes t^{-n}$ by Theorem [2.2.19].

2. Every \mathbb{C}_K-admissible representation is de Rham by a result of Sen.

3. For every proper smooth variety X over K, the étale cohomology $H^n_{\text{et}}(X_{\overline{K}}, \mathbb{Q}_p)$ is de Rham by a theorem of Faltings as briefly discussed in Chapter I, Theorem 1.2.2.

The general formalism discussed in § I readily yields a number of nice properties for de Rham representations and the functor D_{dR}. Our main goal in this subsection is to extend these properties in order to incorporate the additional structures induced by the filtration $\{ t^n B_{\text{dR}}^+ \}_{n \in \mathbb{Z}}$ on B_{dR}.

Lemma 2.4.3. Given any $n \in \mathbb{Z}$, every $V \in \text{Rep}_{\mathbb{Q}_p}(\Gamma_K)$ is de Rham if and only if $V(n)$ is de Rham.

Proof. Since we have identifications
 \[
 V(n) \cong V \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(n) \quad \text{and} \quad V \cong V(n) \otimes_{\mathbb{Q}_p} \mathbb{Q}_p(-n),
 \]
 the assertion follows from Proposition [1.2.3] and the fact that every Tate twist of \mathbb{Q}_p is de Rham as noted in Example 2.4.2. □

Proposition 2.4.4. Let V be a de Rham representation of Γ_K. Then V is Hodge-Tate with a natural K-linear isomorphism of graded vector spaces
 \[
 \text{gr}(D_{\text{dR}}(V)) \cong D_{\text{HT}}(V).
 \]

Proof. For every $n \in \mathbb{Z}$ we have a short exact sequence
 \[
 0 \longrightarrow t^{n+1} B_{\text{dR}}^+ \longrightarrow t^n B_{\text{dR}}^+ \longrightarrow t^n B_{\text{dR}}^+ / t^{n+1} B_{\text{dR}}^+ \longrightarrow 0,
 \]
 which induces an exact sequence
 \[
 0 \longrightarrow (V \otimes_{\mathbb{Q}_p} t^{n+1} B_{\text{dR}}^+)^{\Gamma_K} \longrightarrow (V \otimes_{\mathbb{Q}_p} t^n B_{\text{dR}}^+)^{\Gamma_K} \longrightarrow (V \otimes_{\mathbb{Q}_p} (t^n B_{\text{dR}}^+ / t^{n+1} B_{\text{dR}}^+))^{\Gamma_K}
 \]
 and consequently yields an injective K-linear map
 \[
 \text{gr}^n(D_{\text{dR}}(V)) = \text{Fil}^n(D_{\text{dR}}(V)) / \text{Fil}^{n+1}(D_{\text{dR}}(V)) \longrightarrow (V \otimes_{\mathbb{Q}_p} (t^n B_{\text{dR}}^+ / t^{n+1} B_{\text{dR}}^+))^{\Gamma_K}.
 \]
 Therefore we obtain an injective K-linear map of graded vector spaces
 \[
 \text{gr}(D_{\text{dR}}(V)) \longrightarrow \bigoplus_{n \in \mathbb{Z}} (V \otimes_{\mathbb{Q}_p} (t^n B_{\text{dR}}^+ / t^{n+1} B_{\text{dR}}^+))^{\Gamma_K} \cong (V \otimes_{\mathbb{Q}_p} B_{\text{HT}})^{\Gamma_K} = D_{\text{HT}}(V)
 \]
 where the middle isomorphism follows from Theorem [2.2.19]. We then find
 \[
 \dim_K D_{\text{dR}}(V) = \dim_K \text{gr}(D_{\text{dR}}(V)) \leq \dim_K D_{\text{HT}}(V) \leq \dim_{\mathbb{Q}_p} V
 \]
 where the last inequality follows from Theorem [1.1.5] Since V is de Rham, both inequalities should be in fact equalities, thereby yielding the desired assertion. □
Example 2.4.5. Let V be an extension of $\mathbb{Q}_p(m)$ by $\mathbb{Q}_p(n)$ with $m < n$. We assert that V is de Rham. By Lemma 2.4.3 we may assume $m = 0$. Then we have a short exact sequence

$$0 \longrightarrow \mathbb{Q}_p(n) \longrightarrow V \longrightarrow \mathbb{Q}_p \longrightarrow 0. \quad (2.8)$$

Since the functor D_{dR} is left exact by construction, we obtain a left exact sequence

$$0 \longrightarrow D_{dR}(\mathbb{Q}_p(n)) \longrightarrow D_{dR}(V) \longrightarrow D_{dR}(\mathbb{Q}_p).$$

We wish to show $\dim_K D_{dR}(V) = \dim_{\mathbb{Q}_p} V = 2$. Since we have

$$\dim_K D_{dR}(\mathbb{Q}_p(n)) = \dim_K D_{dR}(\mathbb{Q}_p) = 1$$

by Example 2.4.2, it suffices to show the surjectivity of the map $D_{dR}(V) \longrightarrow D_{dR}(\mathbb{Q}_p) \cong K$.

As B_{dR}^+ is faithfully flat over \mathbb{Q}_p, the sequence (2.8) yields a short exact sequence

$$0 \longrightarrow \mathbb{Q}_p(n) \otimes_{\mathbb{Q}_p} B_{dR}^+ \longrightarrow V \otimes_{\mathbb{Q}_p} B_{dR}^+ \longrightarrow \mathbb{Q}_p \otimes_{\mathbb{Q}_p} B_{dR}^+ \longrightarrow 0.$$

In addition, by Theorem 2.2.19 and Proposition 2.2.14 we have identifications

$$(\mathbb{Q}_p(n) \otimes_{\mathbb{Q}_p} B_{dR}^+)^{\Gamma_K} \cong (t^n B_{dR}^+)^{\Gamma_K} = 0,$$

$$(\mathbb{Q}_p \otimes_{\mathbb{Q}_p} B_{dR}^+)^{\Gamma_K} \cong (B_{dR}^+)^{\Gamma_K} \cong K.$$

We thus obtain a long exact sequence

$$0 \longrightarrow 0 \longrightarrow (V \otimes_{\mathbb{Q}_p} B_{dR}^+)^{\Gamma_K} \longrightarrow K \longrightarrow H^1(\Gamma_K, t^n B_{dR}^+).$$

Since we have $(V \otimes_{\mathbb{Q}_p} B_{dR}^+)^{\Gamma_K} \subseteq (V \otimes_{\mathbb{Q}_p} B_{dR})^{\Gamma_K} = D_{dR}(V)$, it suffices to prove

$$H^1(\Gamma_K, t^n B_{dR}^+) = 0. \quad (2.9)$$

By Theorem 2.2.19 we have a short exact sequence

$$0 \longrightarrow t^{n+1} B_{dR}^+ \longrightarrow t^n B_{dR}^+ \longrightarrow \mathbb{C}_K(n) \longrightarrow 0,$$

which in turn yields a long exact sequence

$$\mathbb{C}_K(n)^{\Gamma_K} \longrightarrow H^1(\Gamma_K, t^{n+1} B_{dR}^+) \longrightarrow H^1(\Gamma_K, t^n B_{dR}^+) \longrightarrow H^1(\Gamma_K, \mathbb{C}_K(n)).$$

Then by Theorem 3.1.12 in Chapter II we obtain an identification

$$H^1(\Gamma_K, t^{n+1} B_{dR}^+) \cong H^1(\Gamma_K, t^n B_{dR}^+). \quad (2.10)$$

Hence by induction we only need to prove (2.9) for $n = 1$.

Take an arbitrary element $\alpha_1 \in H^1(\Gamma_K, t B_{dR}^+)$. We wish to show $\alpha_1 = 0$. Regarding α_1 as a cocycle, we use (2.10) to inductively construct sequences (α_m) and (y_m) with the following properties:

(i) $\alpha_m \in H^1(\Gamma_K, t^m B_{dR}^+)$ and $y_m \in t^m B_{dR}^+$ for all $m \geq 1$,

(ii) $\alpha_{m+1}(\gamma) = \alpha_m(\gamma) + \gamma(y_m) - y_m$ for all $\gamma \in \Gamma_K$ and $m \geq 1$.

Now, since t is a uniformizer in B_{dR}^+ as noted in Proposition 2.2.17 we may take an element $y = \sum y_m \in B_{dR}^+$. Then we have

$$\alpha_1(\gamma) + \gamma(y) - y \in H^1(\Gamma_K, t^m B_{dR}^+) \quad \text{for all } \gamma \in \Gamma_K \text{ and } m \geq 0,$$

and consequently find $\alpha_1(\gamma) + \gamma(y) - y = 0$ for all $\gamma \in \Gamma_K$. We thus deduce $\alpha_1 = 0$ as desired.
Remark. It is a (highly nontrivial) fact that every non-splitting extension of \(\mathbb{Q}_p(1)\) by \(\mathbb{Q}_p\) in \(\text{Rep}_{\mathbb{Q}_p}(\Gamma_K)\) is Hodge-Tate but not de Rham. The existence of such an extension follows from the identification

\[
\text{Ext}^1_{\mathbb{Q}_p[\Gamma_K]}(\mathbb{Q}_p(1), \mathbb{Q}_p) \cong H^1(\Gamma_K, \mathbb{Q}_p(-1)) \cong K
\]

where the second isomorphism is a consequence of the Tate local duality for \(p\)-adic representations. Moreover, such an extension is Hodge-Tate as noted in Example 1.1.11. The difficult part is to prove that such an extension is not de Rham. For this part we need a very deep result that every de Rham representation is potentially semistable.

Proposition 2.4.6. Let \(V\) be a de Rham representation of \(\Gamma_K\). For every \(n \in \mathbb{Z}\) we have \(\text{gr}^n(D_{\text{dR}}(V)) \neq 0\) if and only if \(n\) is a Hodge-Tate weight of \(V\).

Proof. This is an immediate consequence of Proposition 2.4.4 and Definition 1.1.13. \(\square\)

Remark. Proposition 2.4.6 provides the main reason for our choice of the sign convention in the definition of Hodge-Tate weights. In fact, under our convention the Hodge-Tate weights of a de Rham representation \(V\) indicate where the filtration of \(D_{\text{dR}}(K)\) has a jump. In particular, for a proper smooth variety \(X\) over \(K\), the Hodge-Tate weights of the \(\text{étale}\) cohomology \(H^n_{\text{ét}}(X_K, \mathbb{Q}_p)\) give the positions of “jumps” for the Hodge filtration on the de Rham cohomology \(H^n_{\text{dR}}(X/K)\) by the isomorphism of filtered vector spaces

\[
D_{\text{dR}}(H^n_{\text{ét}}(X_K, \mathbb{Q}_p)) \cong H^n_{\text{dR}}(X/K)
\]

as remarked after Example 2.3.2.

Proposition 2.4.7. For every \(V \in \text{Rep}_{\mathbb{Q}_p}^{\text{dR}}(\Gamma_K)\), we have a natural \(\Gamma_K\)-equivariant isomorphism of filtered vector spaces

\[
D_{\text{dR}}(V) \otimes_K B_{\text{dR}} \cong V \otimes_{\mathbb{Q}_p} B_{\text{dR}}.
\]

Proof. Since \(V\) is de Rham, the natural map

\[
D_{\text{dR}}(V) \otimes_K B_{\text{dR}} \to (V \otimes_{\mathbb{Q}_p} B_{\text{dR}}) \otimes_K B_{\text{dR}} \cong V \otimes_{\mathbb{Q}_p} (B_{\text{dR}} \otimes_K B_{\text{dR}}) \to V \otimes_{\mathbb{Q}_p} B_{\text{dR}}
\]

is an isomorphism of vector spaces by Theorem 1.1.5. Moreover, this map is a morphism in \(\text{Fil}_K\) as each arrow above is easily seen to be a morphism in \(\text{Fil}_K\). Hence by Proposition 2.3.8 it suffices to show that the induced map

\[
\text{gr}(D_{\text{dR}}(V) \otimes_K B_{\text{dR}}) \to \text{gr}(V \otimes_{\mathbb{Q}_p} B_{\text{dR}})
\]

is an isomorphism. By Proposition 2.3.10, Proposition 2.4.4 and Theorem 2.2.19 we obtain identifications

\[
\text{gr}(D_{\text{dR}}(V) \otimes_K B_{\text{dR}}) \cong \text{gr}(D_{\text{dR}}(V)) \otimes_K \text{gr}(B_{\text{dR}}) \cong D_{\text{HT}}(V) \otimes_K B_{\text{HT}},
\]

\[
\text{gr}(V \otimes_{\mathbb{Q}_p} B_{\text{dR}}) \cong V \otimes_{\mathbb{Q}_p} \text{gr}(B_{\text{dR}}) \cong V \otimes_{\mathbb{Q}_p} B_{\text{HT}}.
\]

We thus identify the map (2.4) with the natural map

\[
D_{\text{HT}}(V) \otimes_K B_{\text{HT}} \to V \otimes_{\mathbb{Q}_p} B_{\text{HT}}
\]

given by Theorem 1.1.5. The desired assertion now follows by Proposition 2.4.4. \(\square\)

Proposition 2.4.8. The functor \(D_{\text{dR}}\) with values in \(\text{Fil}_K\) is faithful and exact on \(\text{Rep}_{\mathbb{Q}_p}^{\text{dR}}(\Gamma_K)\).
Proof. Let Vec_K denote the category of finite dimensional vector spaces over K. The faithfulness of D_{dr} on $\text{Rep}^\text{dR}_{Q_p}(\Gamma_K)$ is an immediate consequence of Proposition 1.2.1 since the forgetful functor $\text{Fil}_K \to \text{Vec}_K$ is faithful. Hence it remains to verify the exactness of D_{dr} on $\text{Rep}^\text{dR}_{Q_p}(\Gamma_K)$. Consider an exact sequence of de Rham representations

$$0 \to U \to V \to W \to 0. \quad (2.11)$$

The functor D_{dr} with values in Fil_K is left exact by construction. In other words, for every $n \in \mathbb{Z}$ we have a left exact sequence

$$0 \to \text{Fil}^n(D_{\text{dr}}(U)) \to \text{Fil}^n(D_{\text{dr}}(V)) \to \text{Fil}^n(D_{\text{dr}}(W)). \quad (2.12)$$

We wish to show that this sequence extends to a short exact sequence. By Proposition 1.2.1 the sequence (2.11) induces a short exact sequence of vector spaces

$$0 \to D_{\text{HT}}(U) \to D_{\text{HT}}(V) \to D_{\text{HT}}(W) \to 0.$$

Moreover, by the definition of the functor D_{HT} we find that this sequence is indeed a short exact sequence of graded vector spaces. Then by Proposition 2.4.4 we may rewrite this sequence as

$$0 \to \text{gr}(D_{\text{dr}}(U)) \to \text{gr}(D_{\text{dr}}(V)) \to \text{gr}(D_{\text{dr}}(W)) \to 0.$$

by Proposition 2.4.4. Hence for every $n \in \mathbb{Z}$ we have

$$\dim_K \text{Fil}^n(D_{\text{dr}}(V)) = \sum_{i \geq n} \dim_K \text{gr}^i(D_{\text{dr}}(V))$$

$$= \sum_{i \geq n} \dim_K \text{gr}^i(D_{\text{dr}}(U)) + \sum_{i \geq n} \dim_K \text{gr}^i(D_{\text{dr}}(W))$$

$$= \dim_K \text{Fil}^n(D_{\text{dr}}(U)) + \dim_K \text{Fil}^n(D_{\text{dr}}(W)),$$

thereby deducing that the sequence (2.12) extends to a short exact sequence as desired. □

Corollary 2.4.9. Let V be a de Rham representation. Every subquotient W of V is a de Rham representation with $D_{\text{dr}}(W)$ naturally identified as a subquotient of $D_{\text{dr}}(V)$.

Proof. Since W is de Rham by Proposition 1.2.2 we deduce the assertion by Proposition 2.4.8. □

Proposition 2.4.10. Given any $V, W \in \text{Rep}^\text{dR}_{Q_p}(\Gamma_K)$, we have $V \otimes_{Q_p} W \in \text{Rep}^\text{dR}_{Q_p}(\Gamma_K)$ with a natural isomorphism of filtered vector spaces

$$D_{\text{dr}}(V) \otimes_K D_{\text{dr}}(W) \cong D_{\text{dr}}(V \otimes_{Q_p} W). \quad (2.13)$$

Proof. By Proposition 1.2.3 we find $V \otimes_{Q_p} W \in \text{Rep}^\text{dR}_{Q_p}(\Gamma_K)$ and obtain the desired isomorphism (2.13) as a map of vector spaces. Moreover, since the construction of the map (2.13) rests on the multiplicative structure of B_{dr} as shown in the proof of Proposition 1.2.3, it is straightforward to verify that the map (2.13) is a morphism in Fil_K. Hence by Proposition 2.3.8 it suffices to show that the induced map

$$\text{gr}(D_{\text{dr}}(V) \otimes_K D_{\text{dr}}(W)) \to \text{gr}(D_{\text{dr}}(V \otimes_{Q_p} W)) \quad (2.14)$$

is an isomorphism. Since both V and W are Hodge-Tate by Proposition 2.4.4 we have a natural isomorphism

$$D_{\text{HT}}(V) \otimes_K D_{\text{HT}}(W) \cong D_{\text{HT}}(V \otimes_{Q_p} W) \quad (2.15)$$

by Proposition 1.2.3. Therefore we complete the proof by identifying the maps (2.14) and (2.15) using Proposition 2.3.10 and Proposition 2.4.4. □
Proposition 2.4.11. For every de Rham representation V, we have $\land^n V \in \text{Rep}^{\text{dR}}_{\mathbb{Q}_p}(\Gamma_K)$ and $\text{Sym}^n V \in \text{Rep}^{\text{dR}}_{\mathbb{Q}_p}(\Gamma_K)$ with natural isomorphisms of filtered vector spaces

$$\land^n (D_{\text{dR}}(V)) \cong D_{\text{dR}}(\land^n(V)) \quad \text{and} \quad \text{Sym}^n(D_{\text{dR}}(V)) \cong D_{\text{dR}}(\text{Sym}^n(V)).$$

Proof. Proposition 1.2.4 implies that both $\land^n V$ and $\text{Sym}^n V$ are de Rham for every $n \geq 1$. In addition, Proposition 1.2.4 yields the desired isomorphisms as maps of vector spaces. Then Corollary 2.4.9 and Proposition 2.4.10 together imply that these maps are isomorphisms in Fil_K. □

Proposition 2.4.12. For every de Rham representation V, the dual representation V^\vee is de Rham with a natural perfect paring of filtered vector spaces

$$D_{\text{dR}}(V) \otimes E D_{\text{dR}}(V^\vee) \cong D_{\text{dR}}(V \otimes_{\mathbb{Q}_p} V^\vee) \longrightarrow D_{\text{dR}}(\mathbb{Q}_p) \cong K[0].$$ (2.16)

Proof. By Proposition 1.2.5 we find $V^\vee \in \text{Rep}^{\text{dR}}_{\mathbb{Q}_p}(\Gamma_K)$ and obtain the desired perfect pairing as a map of vector spaces. Moreover, Proposition 2.4.10 implies that this pairing is a morphism in Fil_K. We thus obtain a bijective morphism of filtered vector spaces

$$D_{\text{dR}}(V)^\vee \longrightarrow D_{\text{dR}}(V^\vee).$$

Therefore by Proposition 2.3.8 it suffices to show that the induced map

$$\text{gr}(D_{\text{dR}}(V) \longrightarrow \text{gr}(D_{\text{dR}}(V^\vee)))$$ (2.17)

is an isomorphism. Since V is Hodge-Tate by Proposition 2.4.4, we have a natural isomorphism

$$D_{\text{HT}}(V) \cong D_{\text{HT}}(V^\vee)$$ (2.18)

by Proposition 1.2.5. We thus deduce the desired assertion by identifying the maps (2.17) and (2.18) using Proposition 2.4.4. □

Let us now discuss some additional properties of de Rham representations and the functor D_{dR}.

Proposition 2.4.13. Let V be a p-adic representation of Γ_K. Let K' be a finite extension of K, and write $\Gamma_{K'}$ for its absolute Galois group.

1. There exists a natural isomorphism of filtered vector spaces

$$D_{\text{dR},K}(V) \otimes_K K' \cong D_{\text{dR},K'}(V)$$

where we set $D_{\text{dR},K}(V) := (V \otimes_{\mathbb{Q}_p} B_{\text{dR}})^{\Gamma_K}$ and $D_{\text{dR},K'}(V) := (V \otimes_{\mathbb{Q}_p} B_{\text{dR}})^{\Gamma_{K'}}$.

2. V is de Rham if and only if it is de Rham as a representation of $\Gamma_{K'}$.

Proof. We only need to prove the first statement, as the second statement immediately follows from the first statement. Since the construction of B_{dR} depends only on \mathbb{C}_K, we get a natural map

$$D_{\text{dR},K}(V) \otimes_K K' \longrightarrow D_{\text{dR},K'}(V).$$

It is evident that this map induces a morphism of filtered vector spaces over K' where the filtrations on the source and the target are given as in Example 2.4.2. We then have an identification

$$\text{Fil}^n(D_{\text{dR},K}(V)) = \text{Fil}^n(D_{\text{dR},K'}(V))^{\text{Gal}(K'/K)} \quad \text{for all } n \in \mathbb{Z},$$

thereby deducing the desired assertion by the Galois descent for vector spaces. □
Remark. Proposition 2.4.13 also extends to any complete discrete-valued extension K' of K inside \mathcal{C}_K, based on the “completed unramified descent argument” as explained in [BC, Proposition 6.3.8]. Using this generalization together with Theorem 1.1.7, it is not hard to prove that one-dimensional p-adic representation of Γ_K is de Rham if and only if it is Hodge-Tate.

Proposition 2.4.14. The functor D_{dR} valued in Fil_K is not full.

Proof. Let $\eta : \Gamma_K \rightarrow \mathbb{Z}_p^\times$ be a nontrivial continuous character with finite image. We denote by V the p-adic representation of Γ_K induced by η. Then we can find a finite extension K' of K such that V is trivial as a representation of $\Gamma_K' := \text{Gal}(\bar{K}/K')$, and consequently obtain a natural isomorphism of filtered vector spaces

$$D_{\text{dR}}(V) \otimes_K K' \cong (V \otimes_{\mathbb{Q}_p} B_{\text{dR}})^{\Gamma_{K'}} = K'[0]$$

by Proposition 2.4.13. We thus have an identification

$$D_{\text{dR}}(V) \cong K[0] = D_{\text{dR}}(\mathbb{Q}_p),$$

thereby deducing the desired assertion. □

We close this section by introducing a very important conjecture, known as the **Fontaine-Mazur conjecture**, which predicts a criterion for the “geometricity” of global p-adic representations.

Conjecture 2.4.15 (Fontaine-Mazur). Fix a number field E, and denote by \mathcal{O}_E the ring of integers in E. Let V be a finite dimensional representation of $\text{Gal}(\overline{\mathbb{Q}}/E)$ over \mathbb{Q}_p with the following properties:

(i) For all but finitely many prime ideals p of \mathcal{O}_E, the representation V is unramified at p in the sense that the action of the inertia group at p is trivial.

(ii) For all prime ideals of \mathcal{O}_E lying over p, the restriction of V to $\text{Gal}(\overline{\mathbb{Q}}_p/E_p)$ is de Rham.

Then there exist a proper smooth variety X over E such that V appears as a subquotient of $H^n_{\text{ét}}(X_{\overline{E}}, \mathbb{Q}_p)(m)$ for some $m, n \in \mathbb{Z}$.

Remark. If V is one-dimensional, then Conjecture 2.4.15 follows essentially by the class field theory. For two-dimensional representations, Conjecture 2.4.15 has been verified in many cases by the work of Kisin and Emerton. However, Conjecture 2.4.15 remains wide open for higher dimensional representations.

The local version of Conjecture 2.4.15 is known to be false. More precisely, there exists a de Rham representation of Γ_K which does not arises as a subquotient of $H^n_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p)(m)$ for some proper smooth variety X over K and integers n, m.

3. Crystalline representations

3.1. The crystalline period ring B_{cris}

3.2. Properties of crystalline representations
CHAPTER IV

The Fargues-Fontaine curve

1. Construction
 1.1. The schematic curve
 1.2. The adic curve

2. Vector bundles
 2.1. Slope formalism
 2.2. Classification theorem
 2.3. Modifications of vector bundles
 2.4. A theorem of Colmez and Fontaine
Bibliography

