EXTENSIONS OF VECTOR BUNDLES ON THE FARGUES-FONTAINE CURVE II

SERIN HONG

Abstract. Given two arbitrary vector bundles on the Fargues-Fontaine curve, we completely classify all vector bundles which arise as their extensions.

Contents

1. Introduction 1
 Acknowledgments 2
2. Vector bundles on the Fargues-Fontaine curve 3
3. Extensions and permutations of HN polygons 5
4. Classification theorems for extensions 10
References 14

1. Introduction

The Fargues-Fontaine curve is a geometric object that plays a fundamental role in many parts of arithmetic geometry. It was originally constructed by Fargues-Fontaine [FF18] as a main tool for a geometric formulation of classical p-adic Hodge theory. The work of Scholze-Weinstein [SW20] then used it to develop new technical frameworks for p-adic geometry, including local Shimura varieties and the B^+_{dR}-Grassmannians. Recently, the seminal work of Fargues-Scholze [FS21] established the local Langlands correspondence for general p-adic groups in terms of the stack of vector bundles on the Fargues-Fontaine curve.

In this article, we investigate the question of classifying all vector bundles on the Fargues-Fontaine curve that arise as extensions of two given vector bundles. This question naturally arises in the study of p-adic flag varieties and the B^+_{dR}-Grassmannians. We hope that our main results will lead to a complete classification of modifications of a given vector bundle on the Fargues-Fontaine curve, and will consequently yield a concise description of how the Harder-Narasimhan strata and the Newton strata on the B^+_{dR}-Grassmannians intersect, building upon the work of Shen [She19], Viehmann [Vie21], and Nguyen-Viehmann [NV21].

For a precise statement of our main result, we set up some basic notations and collect some fundamental facts about the Fargues-Fontaine curve. Let E be a nonarchimedean local field with finite residue field \mathbb{F}_q, where q is a power of a fixed prime number p, and let F an algebraically closed nonarchimedean complete field of characteristic p. We denote by $X_{E,F}$ the Fargues-Fontaine curve associated to the pair (E, F), which is a regular noetherian scheme over E of Krull dimension 1. The Picard group of $X_{E,F}$ is naturally isomorphic to \mathbb{Z}, and thus yields a good Harder-Narasimhan formalism for vector bundles on $X_{E,F}$. The main result of Fargues-Fontaine [FF18] states that the Harder-Narasimhan filtration of an arbitrary vector bundle \mathcal{V} on $X_{E,F}$ splits. In other words, the isomorphism class of every vector bundle \mathcal{V}
on $X_{E,F}$ is determined by its Harder-Narasimhan polygon $\text{HN}(\mathcal{V})$. We regard $\text{HN}(\mathcal{V})$ as (the graph of) a concave piecewise linear function with the left endpoint at the origin, and denote by $\mu_i(\text{HN}(\mathcal{V}))$ the slope of $\text{HN}(\mathcal{V})$ on the interval $[i-1, i]$ for each integer $i > 0$.

Theorem 1.1. Let \mathcal{D}, \mathcal{E} and \mathcal{F} be vector bundles on $X_{E,F}$ such that either \mathcal{D} or \mathcal{F} is semistable. There exists a short exact sequence

$$0 \rightarrow \mathcal{D} \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0$$

if and only if the line segments of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$ can be rearranged so that the resulting (possibly non-concave) polygon \mathcal{P} satisfies the following properties:

(i) \mathcal{P} lies above $\text{HN}(\mathcal{E})$ with the same endpoints.

(ii) On the interval $[i-1, i]$ for each $i = 0, \ldots, \text{rank}(\mathcal{E}) - 1$, the polygon \mathcal{P} has a constant slope $\mu_i(\mathcal{P})$ which satisfies

- $\mu_i(\mathcal{P}) < \mu_i(\text{HN}(\mathcal{E}))$ only if $\mu_i(\mathcal{P})$ occurs as a slope in $\text{HN}(\mathcal{D})$,
- $\mu_i(\mathcal{P}) > \mu_i(\text{HN}(\mathcal{E}))$ only if $\mu_i(\mathcal{P})$ occurs as a slope in $\text{HN}(\mathcal{F})$.

![Figure 1. Illustration of the conditions in Theorem 1.1](image)

Theorem 1.2. Let \mathcal{D}, \mathcal{E} and \mathcal{F} be vector bundles on $X_{E,F}$. There exists a short exact sequence

$$0 \rightarrow \mathcal{D} \rightarrow \mathcal{E} \rightarrow \mathcal{F} \rightarrow 0$$

if and only if the Harder Narasimhan filtration of \mathcal{F} lifts to a filtration

$$\mathcal{D} = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_r = \mathcal{E}.$$

By Theorem 1.1, we can formulate the lifting condition of the Harder-Narasimhan filtration in Theorem 1.2 as a combinatorial condition which only involves the slopes of Harder-Narasimhan polygons. We thus obtain a combinatorial classification of all vector bundles that arise as extensions of \mathcal{D} and \mathcal{F}. We refer the readers to Theorem 4.4 for a precise statement.

Let us now make some remarks on related works. After we finished this work, we became aware that Chen-Tong [CT22] independently obtained our main results in a similar way. Their work also uses these results to classify all Newton strata that are entirely contained in the weakly admissible locus of the p-adic flag variety. For vector bundles on \mathbb{P}^1, there is an analogue of our main results due to Schlesinger [Sch00].

Acknowledgments. The author would like to thank the anonymous referee of the article [Hon20] for a valuable feedback which eventually led to the discovery of Theorem 1.1.
2. Vector bundles on the Fargues-Fontaine curve

Throughout this paper, we fix a field F of characteristic $p > 0$ which is complete, nonarchimedean, and algebraically closed. We also let E denote an arbitrary nonarchimedean local field whose residue field is finite of characteristic p.

Definition 2.1. Let \mathcal{O}_E and \mathcal{O}_F respectively denote the valuation rings of E and F. Fix a uniformizer π of E and a pseudouniformizer ϖ of F. Let q be the number of elements in the residue field of E.

(1) If E is of equal characteristic, we set $Y_{E,F} := \text{Spa}(\mathcal{O}_F[[\pi]]) \setminus \{|\pi \varpi| = 0\}$, and define the **adic Fargues-Fontaine curve** associated to the pair (E, F) by

$$X_{E,F} := Y_{E,F}/\phi \mathbb{Z},$$

where ϕ denotes the automorphism of $Y_{E,F}$ induced by the q-Frobenius automorphism on $\mathcal{O}_F[[\pi]]$.

(2) If E is of mixed characteristic, we set $Y_{E,F} := \text{Spa}(W_{\mathcal{O}_E}(\mathcal{O}_F)) \setminus \{|\pi [\varpi]| = 0\}$, where $W_{\mathcal{O}_E}(\mathcal{O}_F)$ denotes the ring of ramified Witt vectors over \mathcal{O}_F with coefficients in \mathcal{O}_E and the Teichmuller lift $[\varpi]$ of ϖ, and define the **adic Fargues-Fontaine curve** associated to the pair (E, F) by

$$X_{E,F} := Y_{E,F}/\phi \mathbb{Z},$$

where ϕ denotes the automorphism of $Y_{E,F}$ induced by the q-Frobenius automorphism on $W_{\mathcal{O}_E}(\mathcal{O}_F)$.

(3) We define the **schematic Fargues-Fontaine curve** associated to the pair (E, F) by

$$X_{E,F} := \text{Proj} \left(\bigoplus_{n \geq 0} H^0(Y_{E,F}, \mathcal{O}_{Y_{E,F}})^{\phi = \pi^n} \right).$$

Remark. The definition of the adic Fargues-Fontaine curve makes sense since the action of ϕ on $Y_{E,F}$ is properly discontinuous.

Theorem 2.2 (KL15 Theorems 6.3.12 and 8.7.7). There is a natural map of locally ringed spaces $X_{E,F} \rightarrow X_{E,F}$ which induces by pullback an equivalence of the categories of vector bundles.

In light of Theorem 2.2 which may be regarded as GAGA for the Fargues-Fontaine curve, we will henceforth identify vector bundles on $X_{E,F}$ with vector bundles on $X_{E,F}$.

Definition 2.3. Let $\lambda = d/r$ be a rational number written in lowest terms with $r > 0$. We define the vector bundle $\mathcal{O}_{E,F}(\lambda)$ on $X_{E,F}$ (or on $X_{E,F}$) by descending along the map $Y_{E,F} \rightarrow Y_{E,F}/\phi \mathbb{Z} = X_{E,F}$ the trivial bundle $\mathcal{O}_{Y_{E,F}}^{\oplus \lambda}$ equipped with the isomorphism $\phi^* \mathcal{O}_{Y_{E,F}}^{\oplus \lambda} \sim \mathcal{O}_{Y_{E,F}}^{\oplus \lambda}$ represented by the matrix

$$\begin{pmatrix} 1 \\ \vdots \\ \pi^{-\lambda} \\ 1 \end{pmatrix}.$$
Proposition 2.4 ([FF18 Théorème 6.5.2]). The schematic Fargues-Fontaine curve $X_{E,F}$ is a Dedekind scheme over E, with a natural isomorphism from its Picard group $\text{Pic}(X_{E,F})$ to \mathbb{Z} which associates each $d \in \mathbb{Z}$ with $\mathcal{O}_{E,F}(d)$.

Remark. While Proposition 2.4 suggests that $X_{E,F}$ behaves much as algebraic curves do, $X_{E,F}$ itself is not an algebraic curve for not being of finite type over the base field E.

Definition 2.5. Let \mathcal{V} be an arbitrary nonzero vector bundle on $X_{E,F}$.

1. We write $\text{rk}(\mathcal{V})$ for the rank of \mathcal{V}, and define the degree of \mathcal{V} to be the integer $\text{deg}(\mathcal{V})$ which corresponds to the isomorphism class of the determinant line bundle $\Lambda^{\text{rk}(\mathcal{V})}(\mathcal{V})$ under the natural isomorphism $\text{Pic}(X_{E,F}) \cong \mathbb{Z}$ in Proposition 2.4.

2. We define the slope of \mathcal{V} to be

\[\mu(\mathcal{V}) := \frac{\text{deg}(\mathcal{V})}{\text{rk}(\mathcal{V})}. \]

Proposition 2.6 ([FF18 Proposition 5.6.23], [Ked05 Proposition 4.1.3]). Let $\lambda = d/r$ be a rational number written in lowest terms with $r > 0$.

1. The vector bundle $\mathcal{O}_{E,F}(\lambda)$ has rank r, degree d, and slope $\lambda = d/r$.

2. The dual of $\mathcal{O}_{E,F}(\lambda)$ is isomorphic to $\mathcal{O}_{E,F}(-\lambda)$.

3. $\text{Hom}(\mathcal{O}_{E,F}(\lambda), \mathcal{O}_{E,F}(\mu))$ is trivial for all rational numbers $\mu < \lambda$.

4. $\text{Ext}^1(\mathcal{O}_{E,F}(\lambda), \mathcal{O}_{E,F}(\mu))$ is trivial for all rational numbers $\mu \geq \lambda$.

Proposition 2.7 ([FF18 Proposition 5.6.23]). Let E' be an unramified finite extension of E. Denote by d the degree of E' over E.

1. There exists a canonical isomorphism $X_{E',F} \cong X_{E,F} \times_{\text{Spec}(E)} \text{Spec}(E')$.

2. The projection map $\pi : X_{E',F} \cong X_{E,F} \times_{\text{Spec}(E)} \text{Spec}(E') \rightarrow X_{E,F}$ induces a natural identification

\[\pi^* \mathcal{O}_{E,F}(\lambda) \cong \mathcal{O}_{E',F}(d\lambda)^{\oplus m} \quad \text{for each } \lambda \in \mathbb{Q} \]

with $m = \text{rk}(\mathcal{O}_{E,F}(\lambda))/\text{rk}(\mathcal{O}_{E',F}(d\lambda))$.

Definition 2.8. Let \mathcal{V} be a vector bundle on $X_{E,F}$.

1. We say that \mathcal{V} is stable if we have $\mu(\mathcal{W}) < \mu(\mathcal{V})$ for all nonzero subbundles $\mathcal{W} \subseteq \mathcal{V}$.

2. We say that \mathcal{V} is semistable if we have $\mu(\mathcal{W}) \leq \mu(\mathcal{V})$ for all nonzero subbundles $\mathcal{W} \subseteq \mathcal{V}$.

Theorem 2.9 ([FF18 Théorème 8.2.10]). Let \mathcal{V} be a vector bundle on $X_{E,F}$.

1. \mathcal{V} is stable of slope λ if and only if it is isomorphic to $\mathcal{O}_{E,F}(\lambda)$.

2. \mathcal{V} is semistable of slope λ if and only if it is isomorphic to $\mathcal{O}_{E,F}(\lambda)^{\oplus m}$ for some m.

3. \mathcal{V} admits a direct sum decomposition

\[\mathcal{V} \cong \bigoplus_{i=1}^l \mathcal{O}_{E,F}(\lambda_i)^{\oplus m_i} \quad \text{with } \lambda_i \in \mathbb{Q}, \]

(2.1)

where the direct summands are uniquely determined.

Remark. Prior to the work of Fargues-Fontaine [FF18], Theorem 2.9 had been obtained in a different language by Hartl-Pink [HP04 Theorem 11.1] and Kedlaya [Ked05 Theorem 4.5.7].
Definition 2.10. Let \(V \) be a vector bundle on \(X_{E,F} \).

1. We refer to the decomposition (2.1) in Theorem 2.9 as the Harder-Narasimhan (HN) decomposition of \(V \).
2. We refer to the numbers \(\lambda_i \) in the HN decomposition as the Harder-Narasimhan (HN) slopes of \(V \), or often simply as the slopes of \(V \), and write \(\mu_{\max}(V) \) (resp. \(\mu_{\min}(V) \)) for the maximum (resp. minimum) HN slope of \(V \).
3. For every \(\mu \in \mathbb{Q} \), we define the direct summands
 \[
 V^{\geq \mu} := \bigoplus_{\lambda_i \geq \mu} O_{E,F}(\lambda_i)^{\oplus m_i}
 \]
 and similarly define \(V^{< \mu} \) and \(V^{\leq \mu} \).
4. We define the Harder-Narasimhan (HN) polygon of \(V \), denoted by \(\text{HN}(V) \), as the upper convex hull of the points \((0,0)\) and \((\text{rk}(V^{\geq \lambda_i}),\deg(V^{\geq \lambda_i}))\).

3. Extensions and permutations of HN polygons

Our goal in this section is to state and derive the necessary conditions for the existence of a short exact sequence involving three given vector bundles on the Fargues-Fontaine curve.

Definition 3.1. A rationally tuplar polygon is a graph \(\mathcal{P} \) of a continuous function on a closed interval which satisfies the following properties:

1. The endpoints of \(\mathcal{P} \) are integer points, with the left endpoint being \((0,0)\).
2. For each integer \(i \) in the domain, \(\mathcal{P} \) is linear on the interval \([i-1,i]\) with a rational slope denoted by \(\mu_i(\mathcal{P}) \).

Example 3.2. For every vector bundle \(V \) on \(X_{E,F} \), its Harder-Narasimhan polygon \(\text{HN}(V) \) is a rationally tuplar polygon by construction.

Lemma 3.3. Let \(V \) and \(W \) be arbitrary vector bundles on \(X_{E,F} \).

1. If \(W \) is a subsheaf of \(V \), we have
 \[
 \mu_i(\text{HN}(W)) \leq \mu_i(\text{HN}(V)) \quad \text{for } i = 1, \ldots, \text{rk}(W).
 \]

2. If \(W \) is a quotient of \(V \), we have
 \[
 \mu_i(\text{HN}(W)) \geq \mu_{i+\text{rk}(V)-\text{rk}(W)}(\text{HN}(V)) \quad \text{for } i = 1, \ldots, \text{rk}(W).
 \]

Proof. Let us establish the first statement. Suppose for contradiction that \(W \) is a subsheaf of \(V \) with \(\mu_i(\text{HN}(W)) > \mu_i(\text{HN}(V)) \) for some positive integer \(i \leq \text{rk}(W) \). Let us fix an injective bundle map \(W \hookrightarrow V \) and write \(\mu := \mu_i(\text{HN}(W)) \). We have direct sum decompositions
 \[
 V \simeq V^{\geq \mu} \oplus V^{< \mu} \quad \text{and} \quad W \simeq W^{\geq \mu} \oplus W^{< \mu}.
 \]
 Since every bundle map from \(W^{\geq \mu} \) to \(V^{< \mu} \) is zero by Proposition 2.6, the injective map \(W \hookrightarrow V \) restricts to an injective map \(W^{\geq \mu} \rightarrow V^{\geq \mu} \). Hence we find \(\text{rk}(W^{\geq \mu}) \leq \text{rk}(V^{\geq \mu}) \). On the other hand, we have \(\text{rk}(W^{\geq \mu}) \geq i > \text{rk}(V^{\geq \mu}) \) by the concavity of HN polygons and the inequality \(\mu_i(\text{HN}(W)) > \mu_i(\text{HN}(V)) \). We thus obtain a contradiction as desired.

For the second statement, we now assume that \(W \) is a quotient of \(V \). Let us write \(V^\vee \) and \(W^\vee \) respectively for the duals of \(V \) and \(W \). Since \(W^\vee \) is a subbundle of \(V^\vee \), we use Proposition 2.6 and the first statement to find
 \[
 \mu_i(\text{HN}(W)) = -\mu_{\text{rk}(W)+1-i}(\text{HN}(W^\vee)) \geq -\mu_{\text{rk}(W)+1-i}(\text{HN}(V^\vee)) = \mu_{i+\text{rk}(V)-\text{rk}(W)}(\text{HN}(V^\vee))
 \]
 for each \(i = 1, \ldots, \text{rk}(W) \), thereby deducing the second statement. \(\square \)
Remark. The converse of the first statement is also true by a previous result of the author \cite{Hon21, Theorem 1.1.2}. On the other hand, the converse of the second statement is not true; indeed, another previous result of the author \cite{Hon19, Theorem 1.1.2} describes an equivalent condition for \(W \) to be a quotient of \(V \), which is slightly stronger than the condition in the second statement is.

Definition 3.4. Let \(P \) and \(Q \) be rational tuplar polygons. We say that \(P \) dominates \(Q \) and write \(P \geq Q \) if \(P \) and \(Q \) satisfy the following properties:

(i) \(P \) and \(Q \) have the same endpoints.

(ii) If \(r \) denotes the \(x \)-coordinate of their common right endpoint, we have

\[
\sum_{i=1}^{j} \mu_i(P) \geq \sum_{i=1}^{j} \mu_i(Q) \quad \text{for each} \ j = 1, \ldots, r.
\]

Remark. Intuitively, we have \(P \geq Q \) if and only if \(P \) lies on or above \(Q \) with the same endpoints, as illustrated by Figure 2.

![Figure 2. Illustration of Definition 3.4](image)

Lemma 3.5. The binary relation \(\geq \) is a partial order on the set of rational tuplar polygons.

Proof. This is straightforward to check using Definition 3.4. \(\square \)

Definition 3.6. Given vector bundles \(D, E \) and \(F \) on \(X_{E,F} \), we define an \(E \)-permutation of \(\text{HN}(D \oplus F) \) to be a rationally tuplar polygon \(P \geq \text{HN}(E) \) with the following properties:

(i) The tuple \((\mu_i(P)) \) is a permutation of the tuple \((\mu_i(\text{HN}(D \oplus F))) \).

(ii) For each \(i = 1, \ldots, \text{rk}(E) \), we have

- \(\mu_i(P) < \mu_i(\text{HN}(E)) \) only if \(\mu_i(P) \) occurs as a slope of \(D \), and
- \(\mu_i(P) > \mu_i(\text{HN}(E)) \) only if \(\mu_i(P) \) occurs as a slope of \(F \).

![Figure 3. Illustration of the conditions in Definition 3.6](image)
Lemma 3.7. Let \(D, E \) and \(F \) be arbitrary vector bundles on \(X_{E,F} \). A rationally tuplar polygon \(\mathcal{P} \geq \text{HN}(E) \) is an \(E \)-permutation of \(\text{HN}(D \oplus F) \) if and only if there exists an ordered pair \((S_D, S_F) \) of sets satisfying the following properties:

(i) The sets \(S_D \) and \(S_F \) form a partition of the index set \(\{1, \ldots, \text{rk}(E)\} \).

(ii) The tuple \((\mu_i(\mathcal{P}))_{i \in S_D}\) permutes the tuple \((\mu_i(\text{HN}(D)))\) with

\[
\mu_i(\mathcal{P}) \leq \mu_i(\text{HN}(E)) \quad \text{for all } i \in S_D.
\]

(iii) The tuple \((\mu_i(\mathcal{P}))_{i \in S_F}\) permutes the tuple \((\mu_i(\text{HN}(F)))\) with

\[
\mu_j(\mathcal{P}) \geq \mu_j(\text{HN}(E)) \quad \text{for all } j \in S_F.
\]

Proof. This is evident by Definition 3.6.

Definition 3.8. Let \(D, E \) and \(F \) be vector bundles on \(X_{E,F} \) with an \(E \)-permutation \(\mathcal{P} \) of \(\text{HN}(D \oplus F) \).

1. We refer to an ordered pair \((S_D, S_F)\) as in Lemma 3.7 as a \(\mathcal{P} \)-partition pair.

2. Given a \(\mathcal{P} \)-partition pair \((S_D, S_F)\), we say that \(\mathcal{P} \) is \((S_D, S_F)\)-sorted if we have

\[
(\mu_i(\mathcal{P}))_{i \in S_D} = (\mu_i(\text{HN}(D))) \quad \text{and} \quad (\mu_j(\mathcal{P}))_{j \in S_F} = (\mu_j(\text{HN}(F))).
\]

Lemma 3.9. Let \(D, E \) and \(F \) be vector bundles on \(X_{E,F} \). Suppose that there exists an \(E \)-permutation \(\mathcal{P} \) of \(\text{HN}(D \oplus F) \) with a \(\mathcal{P} \)-partition pair \((S_D, S_F)\). There exists an \(E \)-permutation \(\mathcal{Q} \) of \(\text{HN}(D \oplus F) \) with the following properties:

(i) \((S_D, S_F)\) is a \(\mathcal{Q} \)-partition pair.

(ii) \(\mathcal{Q} \) is \((S_D, S_F)\)-sorted.

Proof. Since there are finitely many \(E \)-permutations of \(\text{HN}(D \oplus F) \), we can take a permutation \(\mathcal{Q} \) of \(\text{HN}(D \oplus F) \) which is maximal among those with property [i]. We wish to show that \(\mathcal{Q} \) is \((S_D, S_F)\)-sorted. By concavity of \(\text{HN} \) polygons, it suffices to prove that the tuples \((\mu_i(\mathcal{Q}))_{i \in S_D}\) and \((\mu_j(\mathcal{Q}))_{j \in S_F}\) are sorted in descending order.

Let us first verify that \((\mu_i(\mathcal{Q}))_{i \in S_D}\) is sorted in descending order. Suppose for contradiction that there exist integers \(a, b \in S_D \) with \(a < b \) and \(\mu_a(\mathcal{Q}) < \mu_b(\mathcal{Q}) \). We have

\[
\mu_b(\text{HN}(E)) \leq \mu_a(\text{HN}(E)) \leq \mu_a(\mathcal{Q}) < \mu_b(\mathcal{Q}) \tag{3.1}
\]

where the first inequality follows from the concavity of \(\text{HN}(E) \). Take \(\mathcal{Q}' \) to be the rationally tuplar polygon such that the tuple \((\mu_i(\mathcal{Q}'))\) swaps the positions of \(\mu_a(\mathcal{Q}) \) and \(\mu_b(\mathcal{Q}) \) in the tuple \((\mu_i(\mathcal{Q}))\). It follows from the inequality (3.1) that \(\mathcal{Q}' \) is an \(E \)-permutation of \(\text{HN}(D \oplus F) \) with \(\mathcal{Q}' \geq \mathcal{Q} \) and \(\mathcal{Q}' \neq \mathcal{Q} \) such that \((S_D, S_F)\) is a \(\mathcal{Q}' \)-partition pair. Hence we obtain a contradiction to the maximality of \(\mathcal{Q} \) as desired.

It remains to check that \((\mu_j(\mathcal{Q}))_{j \in S_F}\) is sorted in descending order. Suppose for contradiction that there exist integers \(c, d \in S_F \) with \(c < d \) and \(\mu_c(\mathcal{Q}) < \mu_d(\mathcal{Q}) \). We have

\[
\mu_c(\mathcal{Q}) < \mu_d(\mathcal{Q}) \leq \mu_d(\text{HN}(E)) \leq \mu_c(\text{HN}(E)) \tag{3.2}
\]

where the last inequality follows from the concavity of \(\text{HN}(E) \). Take \(\mathcal{Q}'' \) to be the rationally tuplar polygon such that the tuple \((\mu_j(\mathcal{Q}''))\) swaps the positions of \(\mu_c(\mathcal{Q}) \) and \(\mu_d(\mathcal{Q}) \) in the tuple \((\mu_j(\mathcal{Q})))\). It follows from the inequality (3.2) that \(\mathcal{Q}'' \) is an \(E \)-permutation of \(\text{HN}(D \oplus F) \) with \(\mathcal{Q}'' \geq \mathcal{Q} \) and \(\mathcal{Q}'' \neq \mathcal{Q} \) such that \((S_D, S_F)\) is a \(\mathcal{Q}'' \)-partition pair. Hence we obtain a contradiction to the maximality of \(\mathcal{Q} \) as desired. \(\square \)
Definition 3.10. Let \(D, E \) and \(F \) be vector bundles on \(X_{E,F} \) with a short exact sequence
\[
0 \to D \to E \to F \to 0.
\]
Let \(A \) and \(B \) be sets which form a partition of the set \(\{1, \cdots, \text{rk}(E)\} \). An \((A,B)\)-decomposition of \(E \) is a direct sum decomposition \(E \cong E_A \oplus E_B \) satisfying the following properties:

(i) We have \((\mu_i(HN(E_A))) = (\mu_i(HN(E)))\) for \(i \in A \) and \((\mu_i(HN(E_B))) = (\mu_i(HN(E)))\) for \(i \in B \).

(ii) The map \(E_B \to E \to F \) is injective.

Proposition 3.11. Let \(D, E \) and \(F \) be vector bundles on \(X_{E,F} \) with integer slopes. If there exists a short exact sequence
\[
0 \to D \to E \to F \to 0,
\]
then there exists an \(E \)-permutation \(\mathcal{P} \) of \(HN(D \oplus F) \) with a \(\mathcal{P} \)-partition pair \((S_D, S_F) \) and an \((S_D, S_F)\)-decomposition of \(E \).

Proof. Let us proceed by induction on \(\text{rk}(E) \). The assertion is trivial when \(E \) is zero. We henceforth assume that \(E \) is nonzero. The HN decomposition of \(E \) yields a decomposition
\[
E \cong \mathcal{F} \oplus O_{E,F}(\mu_{\text{min}}(E))
\]
where \(\mathcal{F} \) is a vector bundle on \(X_{E,F} \) with \(\text{rk}(\mathcal{F}) = \text{rk}(E) - 1 \). We write \(\mathcal{D} \) for the preimage of \(\mathcal{F} \) under the map \(D \to E \), and \(\mathcal{F} \) for the image of \(\mathcal{F} \) under the map \(E \to F \). Then we have a commutative diagram of short exact sequences
\[
\begin{array}{ccc}
0 & \to & \mathcal{D} \to \mathcal{F} \to \mathcal{F} \to 0 \\
& \downarrow & \downarrow & \downarrow \\
0 & \to & D \to E \to F \to 0
\end{array}
\]
where all vertical maps are injective. By the induction hypothesis, there exists an \(\mathcal{F} \)-permutation \(\mathcal{P} \) of \(HN(\mathcal{D} \oplus \mathcal{F}) \) with a \(\mathcal{P} \)-partition pair \((S_D, S_F) \) and an \((S_D, S_F)\)-decomposition of \(\mathcal{F} \).

We consider the case where \(\text{rk}(\mathcal{F}) \) is equal to \(\text{rk}(\mathcal{F}) - 1 \). The surjective map \(E \to F \) induces a surjective map \(O_{E,F}(\mu_{\text{min}}(E)) \to \mathcal{F} \to \mathcal{F} \) and must be an isomorphism as both \(O_{E,F}(\mu_{\text{min}}(E)) \) and \(\mathcal{F} \) are of rank 1. This isomorphism yields a map
\[
F/\mathcal{F} \cong O_{E,F}(\mu_{\text{min}}(E)) \to E \to F
\]
and consequently induces a direct sum decomposition
\[
F \cong \mathcal{F} \oplus F/\mathcal{F} \cong \mathcal{F} \oplus O_{E,F}(\mu_{\text{min}}(E)).
\]
In particular, we find \(\mu_{\text{min}}(F) \leq \mu_{\text{min}}(E) \). Meanwhile, Lemma 3.3 implies \(\mu_{\text{min}}(F) \geq \mu_{\text{min}}(E) \) as \(F \) is a quotient of \(E \). Hence we have \(\mu_{\text{min}}(E) = \mu_{\text{min}}(F) \). We also obtain an isomorphism \(\mathcal{D} \cong D \) by applying the snake lemma to the diagram 3.4. Let us now take \(\mathcal{P} \) to be the rationally tuplar polygon with
\[
\mu_i(\mathcal{P}) = \begin{cases}
\mu_i(\mathcal{F}) & \text{for } i < \text{rk}(E), \\
\mu_{\text{min}}(F) & \text{for } i = \text{rk}(E)
\end{cases}
\]
We also set \(S_D := S_T \cup \{ \text{rk}(E) \} \), \(S_F := S_T \), \(E_D := \overline{E_T} \oplus O_{E,F}(\mu_{\min}(E)) \), and \(E_F := \overline{E_T} \). It is then straightforward to verify that \(\mathcal{P} \) is an \(\mathcal{E} \)-permutation of \(\text{HN}(\mathcal{D} \oplus \mathcal{F}) \) with a \(\mathcal{P} \)-partition pair \((S_D, S_F)\) and an \((S_D, S_F)\)-decomposition \(E \cong E_D \oplus E_F \), as illustrated by Figure 4.

It remains to consider the case where \(\text{rk}(\overline{\mathcal{F}}) \) and \(\text{rk}(\mathcal{F}) \) are equal. Let us set \(S_D := S_T \cup \{ \text{rk}(E) \} \), \(S_F := S_T \), \(E_D := \overline{E_T} \oplus O_{E,F}(\mu_{\min}(E)) \), and \(E_F := \overline{E_T} \). We also take \(\mathcal{P} \) to be the rationally tuplar polygon with \((\mu_i(\mathcal{P}))_{i \in S_D} = (\mu_i(\text{HN}(\mathcal{D}))) \) and \((\mu_i(\mathcal{P}))_{i \in S_F} = (\mu_i(\text{HN}(\mathcal{F}))) \).

The \((S_D, S_T)\)-decomposition \(\mathcal{E} \cong \overline{E_T} \oplus \overline{E_T} \) and the commutative diagram (3.4) together yield an \((S_D, S_T)\)-decomposition \(\mathcal{E} \cong E_D \oplus E_F \). Moreover, the injective map \(E_F \to \mathcal{D} \to \mathcal{F} \) is an isomorphism at the generic point as we have \(\text{rk}(\mathcal{E}_F) = \text{rk}(\overline{\mathcal{F}}) = \text{rk}(\mathcal{F}) \). We then find from the short exact sequence (3.3) that the map \(D \to \mathcal{D} \to \mathcal{E} \to \mathcal{E}/\mathcal{E}_F \cong E_D \) is also an isomorphism at the generic point. Now Lemma 3.3 yields inequalities

\[
\begin{align*}
\mu_i(\text{HN}(\mathcal{D})) &\leq \mu_i(\text{HN}(\mathcal{E}_D)) \quad \text{for } i = 1, \ldots, \text{rk}(\mathcal{D}), \\
\mu_j(\text{HN}(\mathcal{F})) &\geq \mu_j(\text{HN}(\mathcal{E}_F)) \quad \text{for } j = 1, \ldots, \text{rk}(\mathcal{F}).
\end{align*}
\]

We can rewrite these inequalities as

\[
\begin{align*}
\mu_i(\mathcal{P}) &\leq \mu_i(\text{HN}(\mathcal{E})) \quad \text{for all } i \in S_D, \\
\mu_j(\mathcal{P}) &\geq \mu_j(\text{HN}(\mathcal{E})) \quad \text{for all } j \in S_F.
\end{align*}
\]

In addition, since \(\mathcal{D} \) and \(\mathcal{F} \) are respectively subsheaves of \(\mathcal{D} \) and \(\mathcal{F} \), Lemma 3.3 yields

\[
\begin{align*}
\mu_i(\text{HN}(\mathcal{D})) &\leq \mu_i(\text{HN}(\mathcal{D})) \quad \text{for } i = 1, \ldots, \text{rk}(\mathcal{D}) - 1, \\
\mu_j(\text{HN}(\mathcal{F})) &\leq \mu_j(\text{HN}(\mathcal{F})) \quad \text{for } j = 1, \ldots, \text{rk}(\mathcal{F}).
\end{align*}
\]

As \(\overline{\mathcal{F}} \) is \((S_T, S_T)\)-sorted, we find \(\mathcal{P} \geq \text{HN}(\mathcal{E}) \). Hence we deduce by Lemma 3.7 that \(\mathcal{P} \) is an \(\mathcal{E} \)-permutation of \(\text{HN}(D \oplus F) \) with a \(\mathcal{P} \)-partition pair \((S_D, S_F)\) and an \((S_D, S_F)\)-decomposition \(\mathcal{E} \cong E_D \oplus E_F \), as illustrated by Figure 5. \(\square \)
Theorem 3.12. Let \mathcal{D}, \mathcal{E} and \mathcal{F} be vector bundles on $X_{E,F}$ with a short exact sequence
\[0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{F} \to 0. \tag{3.5} \]

There exists an \mathcal{E}-permutation of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$.

Proof. Take an integer d such that $d\lambda$ is an integer for all slopes of \mathcal{D}, \mathcal{E}, and \mathcal{F}. Let E' be the unramified extension of E of degree d. Proposition 2.7 yields a projection map $\pi : X_{E',F} \cong X_{E,F} \times_{\text{Spec}(E)} \text{Spec}(E') \to X_{E,F}$ such that every vector bundle \mathcal{V} on $X_{E,F}$ satisfies
\[\mu_i(\text{HN}(\pi^*\mathcal{V})) = d \cdot \mu_i(\text{HN}(\mathcal{V})) \quad \text{for } i = 1, \cdots, \text{rk}(\mathcal{V}). \]

In particular, all slopes of $\pi^*\mathcal{D}$, $\pi^*\mathcal{E}$, and $\pi^*\mathcal{F}$ are integers. Moreover, since π is evidently flat, the exact sequence (3.5) gives rise to a short exact sequence
\[0 \to \pi^*\mathcal{D} \to \pi^*\mathcal{E} \to \pi^*\mathcal{F} \to 0. \]

By Proposition 3.11, there exists a $\pi^*\mathcal{E}$-permutation \mathcal{P}' of $\text{HN}(\pi^*\mathcal{D} \oplus \pi^*\mathcal{F})$. Hence we get an \mathcal{E}-permutation \mathcal{P} of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$ with
\[\mu_i(\mathcal{P}) = \mu_i(\mathcal{P}')/d \quad \text{for } i = 1, \cdots, \text{rk}(\mathcal{E}), \]

thereby completing the proof. \hfill \Box

4. Classification theorems for extensions

In this section, we establish two classification theorems for extensions of vector bundles on the Fargues-Fontaine curve.

Lemma 4.1. Let \mathcal{D}, \mathcal{E} and \mathcal{F} be vector bundles on $X_{E,F}$. Suppose that there exists an \mathcal{E}-permutation \mathcal{P} of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$.

(1) We have $\text{HN}(\mathcal{D} \oplus \mathcal{F}) \geq \mathcal{P} \geq \text{HN}(\mathcal{E})$

(2) $\mathcal{F}^{<\mu_{\min}(\mathcal{D})}$ is a direct summand of \mathcal{E}.

Proof. The first statement is evident by the concavity of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$. Let us now consider the second statement. Suppose for the sake of contradiction that $\mathcal{F}^{<\mu_{\min}(\mathcal{D})}$ is not a direct summand of \mathcal{E}. By the concavity of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$, we find
\[\langle \mu_i(\text{HN}(\mathcal{D} \oplus \mathcal{F})) \rangle_{i > \text{rk}(\mathcal{E}) - \text{rk}(\mathcal{F}^{<\mu_{\min}(\mathcal{D})})} = \langle \mu_i(\text{HN}(\mathcal{F}^{<\mu_{\min}(\mathcal{D})})) \rangle. \]

Take l to be the largest integer with $\mu_i(\text{HN}(\mathcal{E})) \neq \mu_i(\text{HN}(\mathcal{D} \oplus \mathcal{F}))$. Then we must have $l > \text{rk}(\mathcal{E}) - \text{rk}(\mathcal{F}^{<\mu_{\min}(\mathcal{D})})$ and $\mu_i(\text{HN}(\mathcal{E})) < \mu_i(\text{HN}(\mathcal{D} \oplus \mathcal{F}))$. Let us choose a rational number μ with $\mu_i(\text{HN}(\mathcal{E})) < \mu < \mu_i(\text{HN}(\mathcal{D} \oplus \mathcal{F}))$. By concavity of HN polygons we find
\[\text{rk}(\mathcal{E}^{<\mu}) = \text{rk}(\mathcal{E}) - l \quad \text{and} \quad \text{rk}(\mathcal{F}^{<\mu}) > \text{rk}(\mathcal{E}) - l. \]

However, we must have $\text{rk}(\mathcal{E}^{<\mu}) \leq \text{rk}(\mathcal{F}^{<\mu})$ as there exists an \mathcal{E}-permutation of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$. We thus have a desired contradiction, thereby completing the proof. \hfill \Box

Proposition 4.2 (BFH+22, Theorem 1.1.2). Let \mathcal{D}, \mathcal{E} and \mathcal{F} be vector bundles on $X_{E,F}$ such that \mathcal{D} and \mathcal{F} are semistable with $\mu(\mathcal{D}) \leq \mu(\mathcal{F})$. There exists a short exact sequence
\[0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{F} \to 0 \]

if and only if we have $\text{HN}(\mathcal{D} \oplus \mathcal{F}) \geq \text{HN}(\mathcal{E})$.

Remark. While the cited result [BFH+22, Theorem 1.1.2] does not explicitly consider the case where $\mu(\mathcal{D})$ and $\mu(\mathcal{F})$ are equal, this case follows immediately from Proposition 2.6.
Theorem 4.3. Let \mathcal{D}, \mathcal{E} and \mathcal{F} be vector bundles on $X_{E,F}$ such that either \mathcal{D} or \mathcal{F} is semistable. There exists a short exact sequence

$$0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{F} \to 0$$ \hspace{1cm} (4.1)

if and only if there exists an \mathcal{E}-permutation of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$.

Proof. Let \mathcal{D}^\vee, \mathcal{E}^\vee, and \mathcal{F}^\vee respectively denote the duals of \mathcal{D}, \mathcal{E} and \mathcal{F}. By Proposition 2.6 and Theorem 2.9, we observe that a vector bundle on $X_{E,F}$ is semistable if and only if its dual is semistable, and also find that $\text{HN}(\mathcal{D} \oplus \mathcal{F})$ has an \mathcal{E}-permutation if and only if $\text{HN}(\mathcal{D}^\vee \oplus \mathcal{F}^\vee)$ has an \mathcal{E}^\vee-permutation. Moreover, the existence of a short exact sequence (4.1) is equivalent to the existence of a short exact sequence

$$0 \to \mathcal{F}^\vee \to \mathcal{E}^\vee \to \mathcal{D}^\vee \to 0.$$

Hence we may assume without loss of generality that \mathcal{D} is semistable.

The necessity part is an immediate consequence of Theorem 3.12. For the sufficiency part, we henceforth assume that there exists an \mathcal{E}-permutation \mathcal{P} of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$. We also fix a \mathcal{P}-partition pair $(S_{\mathcal{D}}, S_{\mathcal{F}})$ and assume in light of Lemma 3.9 that \mathcal{P} is $(S_{\mathcal{D}}, S_{\mathcal{F}})$-sorted. Let us write r for the number of distinct slopes in $\text{HN}(\mathcal{F})$ and proceed by induction on r.

We first consider the base case where $\text{HN}(\mathcal{F})$ is a line segment. Note that \mathcal{F} is semistable by Theorem 2.9. If we have $\mu(\mathcal{D}) \leq \mu(\mathcal{F})$, then Lemma 4.1 and Proposition 4.2 together yield a desired short exact sequence (4.1). If we have $\mu(\mathcal{D}) > \mu(\mathcal{F})$, then Lemma 4.1 implies that \mathcal{E} is isomorphic to $\mathcal{D} \oplus \mathcal{F}$ and thus gives rise to a desired (splitting) exact sequence (4.1).

For the induction step, we assume from now on that $\text{HN}(\mathcal{F})$ has at least two distinct slopes. We may write the HN decomposition of \mathcal{F} as

$$\mathcal{F} \simeq \bigoplus_{i=1}^{r} \mathcal{F}_i$$

where $\mathcal{F}_1, \ldots, \mathcal{F}_r$ are semistable with $\mu(\mathcal{F}_1) > \cdots > \mu(\mathcal{F}_r)$. In particular, we get a decomposition $\mathcal{F} \simeq \mathcal{F} \oplus \mathcal{F}_r$ where \mathcal{F} is a vector bundle on $X_{E,F}$ with $r - 1$ distinct slopes in $\text{HN}(\mathcal{F})$ and $\mu_{\text{min}}(\mathcal{F}) > \mu(\mathcal{F}_r)$.

We consider the case where $\mu(\mathcal{D})$ is greater than $\mu(\mathcal{F}_r)$. Lemma 4.1 yields a decomposition $\mathcal{E} \simeq \mathcal{E} \oplus \mathcal{F}_r$ for some vector bundle \mathcal{E} over $X_{E,F}$, and also implies that $\text{HN}(\mathcal{E})$, \mathcal{P}, and $\text{HN}(\mathcal{D} \oplus \mathcal{F})$ must coincide on the interval $[\text{rk}(\mathcal{E}), \text{rk}(\mathcal{E})]$. Let us take \mathcal{P} to be the restriction of \mathcal{P} on the interval $[0, \text{rk}(\mathcal{E})]$. Then \mathcal{P} is an \mathcal{E}-permutation of $\text{HN}(\mathcal{D} \oplus \mathcal{F})$, and thus gives rise to a short exact sequence

$$0 \to \mathcal{D} \to \mathcal{E} \to \mathcal{F} \to 0$$

by the induction hypothesis. Now we get a desired exact sequence (4.1) using the decompositions $\mathcal{E} \simeq \mathcal{E} \oplus \mathcal{F}_r$ and $\mathcal{F} \simeq \mathcal{F} \oplus \mathcal{F}_r$.

Figure 6. Construction of \mathcal{E} and \mathcal{P} in the case $\mu(\mathcal{D}) > \mu(\mathcal{F}_r)$.
It remains to consider the case where we have $\mu(D) \leq \mu(F_r)$. By Lemma 4.1 we find $\mu(D) = \mu_{\min}(D \oplus F) \leq \mu_{\min}(E)$. In addition, we have $\text{rk}(E \supseteq \mu(F_r)) + \text{rk}(F_r) \leq \text{rk}(E)$ as the surjective map $E \to F \to F_r$ factors through $E \supseteq \mu(F_r)$ by Proposition 2.6. Take E to be the vector bundle on $X_{E,F}$ such that $\text{HN}(E \oplus F) = \text{HN}(E)$ and $\mu(F_r) \geq \mu(E)$. Hence Proposition 4.2 and the decompositions (4.2) together yield a short exact sequence

$$0 \to D \to E \to F_r \to 0.$$
(4.3)

Let us now set $S_F := \{ i \in S_F : \mu_i(\mathcal{P}) \neq \mu(\mathcal{P}) \}$ and take \mathcal{P} to be the rationally tuplar polygon with $(\mu_i(\mathcal{P})) = (\mu_i(\mathcal{P}))_{i \in S_F \cup S_D}$. Since $S_F \setminus S_F$ does not contain any integer less than or equal to $\text{rk}(E \supseteq \mu(F_r))$, the polygons \mathcal{P} and \mathcal{P} coincide on the interval $[0, \text{rk}(E \supseteq \mu(F_r))]$. Hence we obtain an $(E \oplus F_r)$-permutation \mathcal{P} of $\text{HN}(D \oplus F)$ by concatenating \mathcal{P} and \mathcal{P}, thereby yielding a short exact sequence

$$0 \to D \to E \to F_r \to 0.$$
(4.4)

by the induction hypothesis. Now the exact sequences (4.3) and (4.4) together yield a commutative diagram of short exact sequences

$$
\begin{array}{ccccccccc}
0 & \to & D & \to & E & \to & F_r & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \mathcal{E} & \to & \mathcal{E} & \to & F_r & \to & 0 \\
\end{array}
$$

which, by the snake lemma, induces a short exact sequence

$$0 \to F_r \to \text{coker}(\alpha) \to F_r \to 0.$$

Since this sequence is split by Proposition 2.6, we obtain a desired exact sequence (4.1). \square

Figure 7. Construction of \mathcal{E} and \mathcal{P} in the case $\mu(D) \leq \mu(F_r)$.
Theorem 4.4. Let D, E and F be vector bundles on $X_{E,F}$. Let us write the HN decomposition of F as

$$F \simeq \bigoplus_{i=1}^{r} F_i$$

(4.5)

where F_1, \ldots, F_r are semistable with $\mu(F_1) > \cdots > \mu(F_r)$. There exists a short exact sequence

$$0 \to D \to E \to F \to 0$$

(4.6)

if and only if the following equivalent conditions are satisfied:

(i) There exists a filtration

$$D = E_0 \subset E_1 \subset \cdots \subset E_r = E$$

with $E_i/E_{i-1} \simeq F_i$ for each $i = 1, \ldots, r$.

(ii) There exists a sequence of vector bundles $D = E_0, E_1, \ldots, E_r = E$ such that the polygon $HN(E_{i-1} \oplus F_i)$ has an E_i-permutation for each $i = 1, \ldots, r$.

Proof. The equivalence of the conditions [i] and [ii] is evident by Theorem 4.3. In addition, the sufficiency part is an immediate consequence of Proposition 2.6. For the necessity part, we henceforth assume that there exists an exact sequence (4.6).

Let us proceed by induction on r. The assertion is trivial for $r = 0$. For the induction step, we now assume that r is not zero. Let us set

$$\mathcal{F} := \bigoplus_{i=1}^{r-1} F_i$$

and write the decomposition (4.5) as $F \simeq \mathcal{F} \oplus F_r$. Take E_{r-1} to be the kernel of the map $E \to F \to F_r$. By construction, E_{r-1} contains D as a subsheaf. Hence we get a commutative diagram of short exact sequences

$$
\begin{array}{c}
0 \to D \to E \to F \to 0 \\
\downarrow & & \downarrow & & \downarrow \\
0 \to E_{r-1} \to E \to F_r \to 0
\end{array}
$$

and consequently find by the snake lemma that the cokernel of the left vertical map is isomorphic to \mathcal{F}. The desired assertion now follows by the induction hypothesis.

Remark. We may check the condition [ii] in a finite amount of time. In fact, if we start with $i = r$ and inductively proceed with descending indices, we get finitely many candidates for each E_{i-1} just by the following simple observations:

(a) $HN(E_{i-1})$ and $HN(E_i)$ coincide on the interval $[0, \text{rk}(E_i \cap \mu(F_i))]$.

(b) We have $HN(F_i \oplus E_{i-1} \cap \mu(F_i)) \geq HN(E_i \cap \mu(F_i))$.

(c) All breakpoints in $HN(E_{i-1})$ are integer points.

It is also worthwhile to note that the filtration in the condition [i] lifts the Harder-Narasimhan filtration of F. Our proof indeed shows that, for any Harder-Narasimhan category with splitting Harder-Narasimhan filtrations, every extension between two arbitrary objects D and F gives rise to a filtration that lifts the Harder-Narasimhan filtration of F.

□
Example 4.5. We present an example showing that Theorem 4.3 does not hold without the semistability assumption on either D or F. For ease of notation, we will write $O(\lambda) = O_{E,F}(\lambda)$ for each $\lambda \in \mathbb{Q}$. Let us take

$$D := O(1/2) \oplus O(-1), \quad E := O(3/2) \oplus O(2/5), \quad F := O(3) \oplus O(2/3).$$

Then it is not hard to verify the following facts:

(a) $E_1 = O(3/2) \oplus O^{\oplus 2}$ is the only vector bundle on $X_{E,F}$ such that $HN(E_1 \oplus O(2/3))$ has an E-permutation.

(b) $HN(D \oplus O(3))$ does not have an E_1-permutation.

Hence Theorem 4.4 implies that there does not exist a short exact sequence

$$0 \rightarrow D \rightarrow E \rightarrow F \rightarrow 0,$$

while $HN(D \oplus F)$ has an E-permutation P with

$$(\mu_i(P)) = (3, 1/2, 2/3, 2/3, 2/3, 1/2, -1)$$

as illustrated in Figure 8.

![Figure 8. An E-permutation of $HN(D \oplus F)$ in Example 4.5](image)

Remark. Example 4.5 suggests that the condition (ii) in Theorem 4.4 is unlikely to have an equivalent statement which is easy to check in the general case. On the other hand, such a statement exists under some additional assumptions.

1. If all slopes in $HN(D)$, $HN(E)$, and $HN(F)$ are integers, then the condition (ii) in Theorem 4.4 is satisfied if and only if $HN(D \oplus F)$ has a E-permutation P.

2. If E is semistable, then the condition (ii) in Theorem 4.4 is satisfied if and only if we have $\mu_{\max}(D) \leq \mu(E) \leq \mu_{\min}(F)$.

The first statement can be proved by an induction argument similar to the proof of Theorem 4.3. The second statement immediately follows from the previous result of the author [Hon20, Theorem 1.1.1]. We also note that the first statement is comparable to the main result of Schlesinger [Sch00] which classifies all extension of two given vector bundles on \mathbb{P}^1.

References

Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor MI 48109

Email address: serinh@umich.edu