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Abstract. Machine learning has grown in popularity to help assign re-
sources and make decisions about users, which can result in discrimi-
nation. This includes hiring markets, where employers have increasingly
been interested in using automated tools to help hire candidates. In re-
sponse, there has been significant effort in attempting to understand and
mitigate the sources of discrimination in these tools. However, previous
work has largely assumed that discrimination is the result of some initial
unequal distribution of resources across groups: one group is on average
less qualified, there is less training data for one group, or the classi-
fier is less accurate on one group, etc. Recent work on relational equal-
ity have suggested that there are other sources of discrimination that
are non-distributional, namely inequality in social relationships. Here,
we demonstrate how discrimination can arise from a non-distributional
source: We provide subgame perfect equilibria in a simple sequential
model of a hiring market with Rubinstein-style bargaining between firms
and candidates that exhibits discriminatory outcomes, yet there was no
initial unequal distribution of resources across groups of candidates or
firms. We provide the range of possible expected payoffs to the firms
and candidates at equilibrium, including asymmetric payoffs where some
candidates receive less. This is the result of asymmetric strategies where
firms successfully take advantage of those candidates, resulting in dis-
crimination. Thus, we show that we must look beyond the distribution
of resources to understand sources of discrimination in machine learning.

Keywords: Algorithmic Fairness · Machine Learning · Hiring Markets
· Relational Equality · Computers and Society

1 Introduction

Machine learning (ML) algorithms are marketed to make more efficient and
data-driven decisions that improve human decision-making. These automated
tools have become increasingly popular in recommendation systems, classifica-
tion problems, and resource assignment amongst other areas [7, 10, 30]. With
their growing popularity, it has become clear that these models can engender
discrimination against members of certain demographic groups [4, 18, 38, 41].
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Such discrimination can exist in various forms and types, but what they all
have in common is the harm that affects individuals and the inequities they per-
petuate. Generally, this discrimination is evidenced by the unfair distribution of
resources, such as skill sets, data, and predicted labels [5, 6, 23, 29]. For example,
unequal amounts of training data across demographic groups can then result in
unequal accuracy. When different groups have different knowledge about strate-
gic actions to take to ensure a positive label, this can also result in unequal
accuracy. Moreover, models with initial resource inequalities will generate feed-
back loops that recreate and amplify the disparities in resources and outcomes
[7, 35, 41]. The causality, nature, and degree of this discrimination varies, leading
to a rich research area on formalizing, measuring, and mitigating bias present in
socio-technical systems [7, 12, 22, 37].

To prove the existence of such discrimination, one must measure and define
differences across groups, individuals, experiences, or outcomes [6, 29, 37]. The
measurements of fairness that researchers have developed span across ML and
economics including group, individual, and causal fairness alongside taste-based
and statistical discrimination [5, 8, 33, 44]. These works have focused on equaliz-
ing accuracy, error, or outcomes between groups defined by sensitive attributes
such as race or gender [25, 27, 43, 48]. For example, equalized odds [23] requires
equal true and false positive rates across groups. Enforcing this constraint can
be used to correct situations where, for example, the distribution over training
examples is different across groups (e.g. there are more examples for the major-
ity group than a minority group), and the classifier learns to favor the majority
group. Such results have been seen in many domains like resume screening, crimi-
nal justice, healthcare, hiring markets, and more [13, 17, 21, 32, 40, 46]. However,
this implies that if the distributions of the groups are the same, the optimal
unconstrained classifier will not lead to discrimination, at least as defined by
equalized odds, and adding in the equalized odds constraint won’t help. In this
work, we show the possibility of discriminatory outcomes even when there are
no distributional differences across individuals, let alone groups. Here, we show
there is work to do beyond correcting training distribution inequities in ensuring
fairness in machine learning.

In economics, notions of fairness also present similar limitations in addressing
discrimination. Statistical discrimination, for example, is a model of discrimina-
tion in markets that shows how it can be economically “rational” to use sensitive
attributes as a noisy signal of underlying worker productivity. It would then fol-
low that reducing such friction by equalizing worker skill sets would eliminate
discrimination by eliminating those cases where sensitive attributes are a useful
signal for productivity. However here, building on previous work [21], we show
discrimination can still occur when both signals for productivity and underlying
productivity are equal across all workers, eliminating statistical discrimination
as a source. We show equalizing skill sets among workers is not enough to prevent
discrimination from occurring.

The above examples reveal that these fairness metrics rely on one key nor-
mative assumption – that the source of discrimination is due to an unequal
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distribution of resources. This view of equality is commonly known as distribu-
tional equality [15]. However, there are other views, such as relational equality [3],
that highlight other aspects of equality. Relational equality concerns itself with
flattening social hierarchies and ensuring equal social relationships throughout
society. Notably, the quality of social relationships cannot be reduced to the dis-
tribution of resources, though they may be related [49]. Given these alternative
viewpoints on how to ensure equality [3, 9], we should expect to see examples
of discrimination which have not been caused by the unequal distribution of
resources. Existing fairness metrics in ML only help when there is an unequal
distribution of resources of some kind, and so to prevent discrimination in ML
and other algorithmic decision making, we first need to identify alternative causes
of discrimination.

In this work, our main contribution is to provide such an example where
discrimination is possible even though all agents are identical to each other. Our
example is a bargaining game, representing a simple hiring market. The agents
in our market include firms looking to fill a job position and candidates apply-
ing for these positions. Once a firm and candidate are matched (the candidate
applies for the firm’s position), they participate in wage negotiation: rounds of
bargaining to determine how to split the surplus that will be generated as a re-
sult of the candidate’s employment. Since there are many firms and candidates
in our market, every agent may choose to end the bargaining at any point with-
out agreement, and take an endogenously determined outside option, i.e. they
return to the pool and get re-matched with another agent. We ensure that our
market is initially symmetric in terms of resources among all agents, which will
be explained when we formally introduce our market in Section 3.

Hiring markets give us a useful arena to showcase unfairness among similar
groups of people and is an area where major ML investments are being made [13,
21, 26], though our results hold for bargaining games in other domains. Specif-
ically, we show that there exists subgame perfect equilibria (SPE) in the bar-
gaining game with discriminatory outcomes. A set of strategies is in SPE when
there are no beneficial deviations from the strategies on or off the equilibrium
path [51]1. This means that utility-maximizing agents can have incentives to col-
lectively discriminate, regardless of whether those agents use automated decision
making systems or not. Our results in Section 4 give two kinds of discriminatory
outcomes at equilibrium: One where a group of candidates gets more of the sur-
plus than another group of candidates and another where the firms get more of
the surplus than the candidates. We show that the source of discrimination is not
distributional and instead comes from (correct) beliefs about an agent’s ability
to make threats during bargaining. This builds upon previous work [21] which
showed how beliefs of agents in a market could be the source of discrimination,
although in that work beliefs only needed to be correct on the equilibrium path.

In Section 2 we review related works on fairness metrics, bargaining and
markets, and non-distributional notions of equality. In Section 3, we introduce
our bargaining game. Section 4 describes equilibria in this game and the range

1 See [51] for more on the game theoretic concepts used in this work.
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of payoffs possible to each agent. We conclude in this section by highlighting the
need for non-distributional notions of equality to improve our understanding of
discrimination.

2 Related Work

2.1 Fairness Metrics in Machine Learning

Much previous work has been done to conceptualize and create measurements
of fairness in algorithmic decision making, and machine learning in particular.
Many metrics, both statistical and causal, have been proposed to define and
measure unfairness across individuals and groups in classifiers and beyond [14,
23, 33, 37, 53]. This includes equalized odds, which as mentioned above, implicitly
makes the assumption that the source of discrimination is from resource distribu-
tion, like enough training data for each group. The assumption that the source of
discrimination is in the distribution of training examples underpins current fair
machine learning metrics [21], not just in statistical metrics like equalized odds,
but also causal ones like counterfactual fairness [33]. If the distribution over fea-
tures does not change across counterfactual values of a sensitive attribute, then
ensuring counterfactual fairness would not necessarily address any discrimination
that results. While these metrics associate fairness with equalizing accuracy or
the like, many works recognize that there may be differences between groups due
to historical bias that lead to discriminatory outcomes even when an algorithm
is accurate with respect to its training data [24, 37, 47]. Specifically, feedback
loops are well understood in this context where machine learning algorithms
amplify initial resource allocation differences that exist historically [1, 36]. How-
ever, mitigating historical biases are generally context-dependent and not well
understood [6, 37, 46]. Historical bias could overlap with the non-distributional
discrimination that we aim to study: We are interested in discriminatory out-
comes that are not the result of initial asymmetric resource distribution and some
historic biases may be the result of this phenomena. However, importantly, the
discrimination we are interested in cannot be reduced to historical bias since we
will show that this discrimination can arise at any time from symmetric resource
distribution settings.

2.2 Discrimination Analysis in Bargaining Games

As discussed in the introduction, we build off of Fish and Stark’s [21] work on
non-distributional sources of discrimination in a bargaining game, but provide
a different mechanism: Rather than beliefs about outside options alone, we also
look at an agent’s ability to make threats during bargaining. Because we are
using SPEs, agents can only make credible threats such that their beliefs about
other agents’ outside options must be correct at equilibrium. That work used
a weaker notion of equilibrium and did not have fully symmetric and identical
agents.
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There are several similar works to ours which highlight undesirable outcomes
of bargaining models. Their motivations and outcomes vary, but this includes
work that showcases how rational agents with complete (symmetric) information
could be Pareto-inefficient where both parties would be better off in a different
equilibrium [20, 34, 52]. There is also work that analyzes and aims to correct
the disparity in wages across workers [11, 19, 26], focused largely on statistical
discrimination, which features distributional inequality in the form of disparity
in skills across workers at equilibrium. Rather than seeking to correct statistical
discrimination, we show that discriminatory outcomes still arise, even when skill
level is assumed to be the same between workers. Thus, addressing statistical
discrimination is insufficient to preventing discriminatory outcomes in hiring
markets.

There are several works that consider bargaining games with multiple equi-
libria [28, 45, 50], as we do here. Models that result in multiple equilibria are
useful for demonstrating the existence of discrimination, because it enables
the possibility of both an unfair outcome and a better alternative that’s still
incentive-compatible. However, these works all have some asymmetry between
agents including exogenous costs, who gets to propose first, and outside option
values [28, 45, 50]. Our work directly extends the scenario modeled by Ponsati
and Sákovics [45], which features a two-player bargaining game with exogenous
outside options. We extend their model by endogenously modeling an agent’s
outside option, allowing for more than two agents in our market, and most im-
portantly, imposing symmetry between the bargaining agents. We show in our
extended model that a range of payoffs at SPE still exists. Similarly to us, Agra-
nov et al. [2] demonstrate the existence of asymmetric outcomes at SPE with
initially symmetric agents. They do so in a multi-lateral budget allocation set-
ting, but it is a setting where no exit or outside options are permitted. Thus the
equilibria leave all agents powerless to negotiate by conditioning their strategies
on any past deviations from equilibrium. In our setting, agents are allowed to re-
tain power, at least a priori, through the existence of outside options. Moreover,
the equilibrium strategies we find are “match-stationary". That is, each agent’s
strategy for the current bargaining match does not condition on agent behavior,
including deviations, from previous bargaining matches.

2.3 Critiques of Distributional Equality

There are a few works that consider alternative sources and presentations of dis-
crimination beyond resource distribution. Several works in political philosophy
discuss the shortcomings of a purely distributional view of equality and identify
relational equality as a way to address the gaps [3, 16, 49]. Similarly, we show
that a purely distributional view of fairness, like current fairness metrics support,
misses instances of discrimination that theories of relational equality may better
explain. In the literature on machine learning, Birhane [9] draws attention to the
complexities of fairness questions and discusses how relational ethics might be a
useful framework. Kasy and Abebe [31] similarly recognize the failures of current
fairness metrics to capture certain forms of discrimination and they model the
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ways in which power affects the outcome of an algorithm. Neuhäuser et al. [39]
investigate the effects of behavioral interventions (such as the homophily prefer-
ences for nodes in the network) during the growth of networks on the visibility
of minority populations. However, these works are not focused on identifying
non-distributional sources of inequality, particularly in markets.

3 The Market

3.1 The Model

Our market is an extensive-form game [51] where candidates and firms are
matched and take turns proposing and responding to surplus splits in a bar-
gaining game. We make the normative assumption that all firms and candidates
are equally skilled and entitled to the surplus. This assumption highlights that
there exist equilibria where candidates and firms may play different strategies
for reasons that are not merit based and that result in unequal payoffs. We say
two agents are the same “type” if they play the same strategy. In the case of
two types of candidates and one type of firm, we use p to denote the probability
of a firm matching with one type of candidate. For convenience, we assume our
market remains a constant size with an equal number of firms and candidates at
all time steps and that the composition of our market remains unchanged such
that p does not change over time.

Each agent chooses a profile of behavioral strategies before they enter the
market, consisting of the actions an agent would take when they are the proposer
and responder – including their opt out strategies. The strategy profiles are also
known as a finite state machines in our infinitely repeated game [42]. Their
specific strategies will be explained in more detail in Section 4 and we will show
that the strategy profile is in SPE.

In this market, there are discrete time steps and during each time step there
is a matching and a bargaining phase. During the matching phase, unmatched
firms and candidates are matched using a particular process. We do not assume
any particular mechanism for matching, but one example of the matching process
could be that firms and agents are matched with some α i.i.d. probability such
that all agents are expected to be matched in 1

α time steps.
Once two agents are matched, they enter the bargaining phase. During the

bargaining phase, firms and candidates participate in an extensive form Rubinstein-
style bargaining game [42] to determine the split of the surplus, which we nor-
malize to 1. Both the firm and the candidate will have an equal probability of
proposing first during each bargaining game that occurs within our market. Both
agents also have the ability to opt out during bargaining and match with a new
bargaining partner. These features are important because otherwise the agent
that gets to propose first has an advantage over the other agent [51] and having
an outside option gives power to both agents. Note that our game is complete
information and is different from classic Rubinstein bargaining because we in-
clude outside options for both agents as in [45]. So, we have now enforced that
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our market is initially symmetric because no agent is more entitled to the sur-
plus than another, no agent has a proposal advantage, each agent has an outside
option, and our game is complete information.

In the bargaining phase of a single game where agent i is the first proposer
and agent j the responder, agent i will propose a split of the surplus (1−y, y) for
some y ∈ [0, 1]. As the responder, agent j can either reject or accept the proposal.
If they accept, they both leave the market and agent i and j receive a utility
of 1 − y and y, respectively. Two new agents (a firm and a candidate with the
same strategies as those leaving) would then enter the market in the next time
step to keep our market size and composition constant. If the responder rejects,
then either agent can decide to opt out of the negotiation. As in Ponsati and
Sákovics [45], the order in which the agents opt out will not affect the equilibria,
so we assume they decide simultaneously. When either agent chooses to opt out,
both agents must pay a cost of 0 ≤ τ ≤ 1 and are sent back into the market pool
to be re-matched in some future time. Here, τ corresponds to the waiting and
matching cost incurred when an agent decides to re-enter the market. Dissimilar
to Arganov et al. [2], their next bargaining partner will not condition on the
actions in their previous match (such as deviations from their strategy). Finally,
if both agents decide not to opt out, negotiations continue in the next time step
where the current responder becomes the new proposer and the current proposer
becomes the new responder. After each time step during bargaining, a discount
factor of 0 ≤ δ ≤ 1 is applied to the payoff of all agents. That is, if two agents
i and j have been bargaining for t + 1 time steps and agree on a surplus split
of (1 − y, y), agent i gets δt(1 − y) and agent j gets δty. Note that δ is only
applied within a bargaining match, so agents that enter (or re-enter) the market
at a later time step only incur δ when they begin bargaining. This is because
τ accounts for both the stochastic and costly process of applying for (or trying
to fill) a job and the variable amount of time it can take to get to the wage
negotiation stage. The market timeline as well as the specifics of the bargaining
phase can be visualized in Figure 1.

During any given bargaining game each agent has an expected payoff of
that game which we will call Wij for agent i when playing agent j. Note that,
Wji = 1−Wij since they are bargaining over a surplus normalized to 1. We will
use Ui as the expected outside option for agent i, interpreted as the expected
payoff for i at the point in time they opt out of their current negotiation. We
only consider strategies where Wij , Wji, and Ui do not depend on time.

To compute the outside option of an agent (Ui), we will need τ and the
expected payoff to agent i across all possible agents that i can bargain with
which we will notate by

Wi = Ej [Wij ]

Thus,

Ui = τWi
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Market Timeline

t0

t1

t2
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Bargaining Phase
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...Bargaining Phase
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(a) Market Timeline Overview
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Roles and
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(b) Bargaining Phase Overview

Fig. 1: Figure 1a shows the progression of the market over time. Figure 1b shows the
progression of one round of bargaining within a time step. Note that agents incur a
cost of τ when at least one opts out and they must be re-matched in future matching
phase. They incur a cost of δ when no agents opt out and they continue bargaining in
the bargaining phase in the next time step.

4 Results

In this section, we will focus on the case of one type of firm and two types
of candidates which we will call c1 and c2 candidates. As above, p will be the
probability of a firm matching with a c1 candidates. It is sufficient to consider
only this case to demonstrate the existence of equilibria with unequal payoffs at
equilibrium among agents who are otherwise indistinguishable. Here, c1 and c2
are left as arbitrarily different categories to show that these results hold for any
categorization of candidates – by (intersections of) sensitive attributes or not.
Qualitatively similar results will hold for markets with m kinds of firms and n
kinds of candidates for any finite m and n, but we omit such results as they are
not necessary to demonstrate the existence of these equilibria.

We now state our main theorem which formalizes the conditions necessary
to create strategies that are in SPE for each possible combination of payoffs to
different agents. This theorem implies that there exist strategies where different
types of agents receive different values in the payoff range at equilibrium. Since
we assumed no agent is entitled to more of the surplus than the others, it is
exactly these asymmetric outcomes that we can consider discriminatory. We will
highlight two cases in the discussion and use ideas from relational equality to
analyze where the discrimination comes from. Thus, we will show how relational
equality can be useful in the design of fair ML.
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Theorem 1. If τ ≤ δ2

1+δ , then for any p ∈ [0, 1] and any w1, w2 that satisfy

wk ≤ 1

2

(
1 + δ − 2τ

1− τ

)
for k ∈ {1, 2}, (1)

w1 ≥ 1

2

(
1− δ + 2τ(1− p)w2

1− τp

)
, (2)

and w2 ≥ 1

2

(
1− δ + 2τpw1

1− τ(1− p)

)
, (3)

there exists an SPE where the firms obtain an expected payoff of Wf = pw1 +
(1− p)w2, the c1 candidates get an expected payoff of Wc1 = 1 − w1 and the c2
candidates get an expected payoff of Wc2 = 1− w2 at equilibrium.

The strategies that we will show are at SPE with these payoffs are given as
automata [42] in Table 1 (these are based on strategies defined in [45]), which
are parameterized by offers zij that agent i proposes to agent j. If the proposer i
deviates, then both players move to a threat state where the new proposing agent
j proposes a new split using additional parameters uj . The goal is to choose these
parameters for all possible pairs of firms and candidates so that, at equilibrium,
we have uj = Uj for all agents j, i.e. they represent their outside options, and
each offer zij is immediately accepted by the responding agent, resulting in the
payoffs given in Theorem 1.

Fix agent i as an arbitrary agent in the market of some type (a firm or either
candidate type). Then, let πi(Z,U) be the strategy of agent i where agent i plays
according to Table 1, parameterized by Z = {zij} and U = {ui}. We will refer
to this strategy as πi for brevity.

Agent Actions Base State Threat State

Agent i Propose (zij , 1− zij) (1− uj

δ
,
uj

δ
)

Agent i Accepts - Iff y ≥ ui
δ

Agent j Propose - (ui
δ
, 1− ui

δ
)

Agent j Accepts Iff y ≥ 1− zij Iff y ≥ uj

δ

Agent i Opts Out Iff 1− y ≤ zij Iff proposer and y ≥ uj

δ

Agent j Opts Out No Iff proposer and y ≥ ui
δ

Transitions Go to Threat if agent i deviates in this match Absorbing
Table 1: Strategies for matched agents i and j when agent i proposes first and agent
j responds, parameterized by values zij , ui ∈ [0, 1], e.g. (zij , 1− zij) is the split of the
surplus agent i proposes to agent j. Note we use y as a generic variable representing
an offer to the responder, so that the proposed split is (1− y, y) regardless of whether
an agent deviates from this strategy.
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The range of payoffs in Theorem 1 is a direct result of the existence of a range
of possible proposal values z ∈ Z. This range is a function of ui and uj , so long
as each ui = Ui, and satisfy the conditions given in Proposition 2 (again adapted
from [45] for our setting). This range of z values arises from several properties
of the bargaining game we imported from [45]. The proposer has an advantage
and can ask for all of the surplus except for the responder’s outside option which
defines the upper end of their z range. Both agents have the opportunity to opt
out and get their outside option at each stage of negotiation, so neither agent
can take advantage of the other by forcing them to incur an extra discount factor
δ. Thus, the responder can make a credible threat to reject any offer less than
their equilibrium share since they can opt out if the proposer does not accept
their counteroffer. To keep the proposer from opting out after the first round, the
responder must offer them at least what their outside option would be with no
time discount in the next time step. Thus, the least the proposer is ever willing
to accept is related to the most that the responder could get in the next round
and this defines the lower bound of their z range. See [45] for a more complete
discussion of the intuition for how multiple equilibria arise out of these types of
strategies.

Proposition 2 Given that each agent i plays πi as described above, the strategy
profile π = {πi} is at SPE whenever, for all agents i, ui = Ui and, for all agents
j that i can bargain with, zij ∈ [1 − δ(1 − ui

δ ), 1 − uj ], ui ≤ δ2(1 − uj

δ ), and
uj ≤ δ2(1− ui

δ ).

We start with a proof outline that reduces this proposition that the market
is at SPE to showing that each possible bargaining match between two agents is
at SPE given fixed expected outside options Ui under π. We complete the proof
of Proposition 2 in Appendix A.

Proof (outline).
In the strategy π, each agent’s strategy is described by an automoton, and

as such, to show that π is an SPE, it suffices to show that are no beneficial
“one-shot” deviations [42], i.e. no single action an agent may take to improve
their expected payoff for every possible state the automota may be in, fixing all
other actions. Moreover, by assumption that the market is stationary (any agent
leaving the market is replaced with an agent of the same type), the expected
outside option for any agent i is stationary as well, implying Ui is well-defined.

In π, each agent starts in the same state at the beginning of bargaining
across all times that they are matched, and actions and payoffs depend only on
the other agent they are bargaining with. Thus the optimal action at any given
time, fixing all other actions, depends only on the restriction of the game to a
single bargaining match with the same, fixed expected outside options Ui.

We can now return to proving Theorem 1 by using Proposition 2.

Proof. Consider an arbitrary w1, w2 that satisfy conditions (1)-(3) in the theorem
statement and suppose τ ≤ δ2

1+δ . Let p ∈ [0, 1] be the probability of a firm
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matching with a c1 candidate. Then, we will construct strategies for firms f , c1
candidates, and c2 candidates that are in SPE with the desired expected payoffs.

Each agent will use a strategy given in Table 1, parameterized by offers.
It suffices to consider strategies that are only dependent on the three types of
agents – firms, c1 candidates, and c2 candidates – so that zij , ui, and uj only
depends on the types of i and j. As such, we will refer to the parameters as zfck ,
zckf , uf , and uck , for k ∈ {1, 2}.

First, we set uf and uck so that they will be equal to the expected out-
side option (discussed in Section 3) of the firms and candidates respectively at
equilibrium. Let

wf = pw1 + (1− p)w2

Note that w1, w2 ∈ [0, 1] and so wf ∈ [0, 1]. Then let

uf = τwf ,

uc1 = τ(1− w1),

and uc2 = τ(1− w2).

It follows immediately from these choices, the constraints on w1 and w2, and
the assumption that τ ≤ δ2

1+δ that we have uf ≤ δ2(1− uc1

δ ), uc1 ≤ δ2(1− uf

δ ),
uf ≤ δ2(1− uc2

δ ), and uc2 ≤ δ2(1− uf

δ ) as needed for Proposition 2.
We now need to set zfck and zckf , i.e. Z. In particular, we need zfck ∈[

1− δ
(
1− uf

δ

)
, 1− uck

]
and zckf ∈

[
1− δ

(
1− uck

δ

)
, 1− uf

]
to be able to ap-

ply Proposition 2. But we also need

1− wk =
1

2
zckf +

1

2
(1− zfck),

because we need 1−wk to be the expected payoff for ck candidates: From Table 1,
observe that whatever split (zij , 1-zij) is proposed first, it is always accepted.
And recall that an agent proposes first with probability 1

2 and responds first
with probability 1

2 , so the expected payoff for candidate ck is exactly 1
2zckf +

1
2 (1− zfck).

Moreover, recall that a firm matches with a c1 candidate with probability p
and with a c2 candidate with probability 1−p, so the expression for the expected
payoff to a firm is

p

(
1

2
zfc1 +

1

2
(1− zc1f )

)
+(1−p)

(
1

2
zfc2 +

1

2
(1− zc2f )

)
= pw1+(1−p)w2 = wf .

To satisfy the expected payoff expressions, it suffices to choose an arbitrary
zfck ∈

[
1− δ

(
1− uf

δ

)
, 1− uck

]
and set

zckf = 1 + zfck − 2wk

To satisfy zckf ∈
[
1− δ

(
1− uck

δ

)
, 1− uf

]
, the following bounds on zfck

results from the setting above

2wk − δ
(
1− uck

δ

)
≤ zfck ≤ 2wk − uf .
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Since we have zfck ∈
[
1− δ

(
1− uf

δ

)
, 1− uck

]
, we require all of the following

constraints to hold

2wk − δ
(
1− uck

δ

)
≤ 2wk − uf , (i)

2wk − δ
(
1− uck

δ

)
≤ 1− uck , (ii)

1− δ
(
1− uf

δ

)
≤ 2wk − uf , (iii)

1− δ
(
1− uf

δ

)
≤ 1− uck . (iv)

Solving (i)-(iv) for bounds on w1 and w2 leads to the following constraints

w1 ≥ w2 −
δ − τ

τ(1− p)
, (1)

w2 ≥ w1 −
δ − τ

τp
, (2)

wk ≤ 1

2

(
1 + δ − 2τ

1− τ

)
, (3)

w1 ≥ 1

2

(
1− δ + 2τ(1− p)w2

1− τp

)
, (4)

and w2 ≥ 1

2

(
1− δ + 2τpw1

1− τ(1− p)

)
. (5)

Notice that (1) and (2) are always satisfied since wk ≤ 1 and δ−τ
τ(1−p) ≥ 1 and

δ−τ
τp ≥ 1 when τ ≤ δ

2 which is true when τ ≤ δ2

1+δ . So, (1) and (2) are trivially
satisfied with wk ≥ 0.

Therefore, we need w1 and w2 to satisfy (3) − (5) so that (i) − (iv) are
satisfied. Since w1 and w2 are given to satisfy these constraints by the theo-
rem statement, we can conclude zfck ∈

[
1− δ

(
1− uf

δ

)
, 1− uck

]
and zckf ∈[

1− δ
(
1− uck

δ

)
, 1− uf

]
.

As a consequence of the way we set the Z values, the expected payoffs to
each agent at equilibrium will be such that all firms get an expected payoff of
Wf = pw1 + (1 − p)w2 and all ck candidates get an expected payoff of Wck =
1− wk. As a result, the expected outside options for each agent will be exactly
what we set the parameters as, that is, uf = Uf and uck = Uck .

Now we have a set of strategies π for every agent with zfck ∈ [1−δ
(
1− uf

δ

)
, 1−

uck ], zckf ∈ [1 − δ
(
1− uck

δ

)
, 1 − uf ], uf ≤ δ2(1 − uck

δ ) and uck ≤ δ2(1 − uf

δ ).
We also have ui = Ui for all agents i and, therefore, we can apply Proposition 2
and say that π is in SPE where all firms get pw1 + (1− p)w2 in expectation and
all ck candidates get 1− wk in expectation and this concludes the proof.
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4.1 Discussion

From constraints (2) and (3) in the Theorem 1 statement, notice that the lower
bound on w1 depends on a fixed value of w2 and vice versa. Suppose w2 > w1,
these constraints imply that there is an additive gap between the lower bound
on w1 and the value of w2. The largest such gap is δ−τ

1−τp which is ≈ δ as τ → 0

such that the gap can be greater than 1
2 when δ is sufficiently larger than τ .

This means that there are cases where one type of candidate gets more then 1
2

of the surplus and the other gets less than 1
2 . Thus, by Theorem 1, there exist

strategies that are in SPE where c1 candidates are getting significantly more
in expectation than c2 candidates at equilibrium. Note that the gap size grows
as the probability p of matching with c1 candidates grows and that, conversely,
the gap persists even when p is small such that increasing the representation of
c2 candidates alone does not prevent the gap in payoffs. Similarly, the largest
additive gap between a fixed value of w1 and the lower bound of w2 is δ−τ

1−τ(1−p) .
In this market, no agent has any advantage over the others in terms of in-

formation, power in the bargaining game, and claim to the surplus, at the start
and yet, as we have shown, it is possible for agents to choose strategies that are
in SPE where one type of candidate receives a greater split of the surplus than
the other. As such, this market is susceptible to discrimination without any ini-
tial asymmetric advantage among any of the agents. Although fairness metrics
based on distributional inequality would detect this instance of discrimination,
their normative assumptions would say that equalizing resources, like the split of
the surplus, again would solve future discrimination. However, our model shows
that the same type of discrimination could occur again even after temporarily
equalizing resources. As such, traditional fairness metrics would be insufficient
to address the discrimination in this model.

In our market, c1 candidates were able to credibly threaten to reject a larger
value than c2 candidates. The ability for the candidates (and firms) to set their
strategies in this way is not resource based. We can turn to relational equality
for a possible explanation: Perhaps the social relationships between the firms
and both kinds of candidates are not the same. By the firms choosing a strategy
where they take more of the surplus from c2 candidates than c1 candidates, the
firms are showing their belief that c2 candidates are not entitled to as much of the
surplus as c1 candidates for an arbitrary reason. Further, the candidates confirm
this view through their choice of a strategy that accepts the firms’ proposals.
Crucially, the firms and candidates had the correct belief at equilibrium about
the outside options of their opponents. So, beliefs about your opponent’s behavior
and outside option engendered the inequality we see at equilibrium.

Further, if it is possible for there to be a difference in the initial social rela-
tionships between the agents, then it is possible for these relationships to change
after equilibrium like the resource allocation changed from initiation to the equi-
librium state in our market. Therefore, there could be additional discrimination
happening undetected in our model in terms of an altering of the quality of social
relationships between, say, c2 candidates and c1 candidates. The asymmetry in
the payoffs to the agents opens up the possibility for feedback loops to exac-
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erbate the differential treatment they experience. We leave formally measuring
social relationship quality and how it changes as future work.

Now consider another case, where w1 = w2 = 1
2 (

1+δ−2τ
1−τ ) and note that this

value is > 1
2 . Here, the firms’ strategy does not depend on the candidate type

and the candidates receive the same split of the surplus at the end. However, the
firms then get more of the surplus than the candidates even though we assumed
that the firms and candidates are equally entitled to the surplus. In this way,
firms were able to acquire more power over the candidates at equilibrium which
gives us insight into the social relationship between the two types of agents in this
model. However, we do not say how the firms were able to acquire this power, and
we leave to future work studying how agents choose their strategies in a way that
gives them an advantage at equilibrium state. Different from above, traditional
fairness metrics based on sensitive attributes would not detect discrimination in
this case since there is no difference in resource allocation between candidate
types. This indicates that it is necessary to look beyond sensitive attributes to
uncover possible instances of discrimination in a model.

4.2 Conclusion and Future Work

In light of these results, it may be possible for an ML model to exacerbate the
social relationship differences seen in the highlighted cases. This underscores the
importance of expanding ML notions of fairness to include non-distributional
notions of equality, like the quality of social relationships between all agents in
a model. This work does not present a solution to this type of discrimination
nor do we define all instances of relational equality violations. Rather we hope
to bring attention to a blind spot in current discussions of measuring fairness in
algorithms. We do this through the example of a discriminatory outcome that
requires something more than a distributional view of equality, namely relational
equality, to fully understand the source of discrimination.

Future work will focus on understanding how to detect instances of relational
inequality of the kind that we have described and correct for it. To this end, we
plan to demonstrate how agents might learn the strategies we have described
over time using their beliefs about the other agents’ (and their own) outside
options. Further, we would like to be able to design measures that can detect
relational inequality. Finally, we would like to provide a framework for designing
ML algorithms that do not exhibit this type of discriminatory outcome.
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A Proposition 2 Proof

Recall Proposition 2.

Proposition 2 Given that each agent i plays πi as described above, the strategy
profile π = {πi} is in an SPE whenever for all agents i ui = Ui and, for all
agents j that i can bargain with, zij ∈ [1 − δ(1 − ui

δ ), 1 − uj ], ui ≤ δ2(1 − uj

δ ),
and uj ≤ δ2(1− ui

δ ).

Using the one-shot deviation principal we will prove that the strategies in
Table 1 are in a SPE for any values of zij within the ranges stated in Propo-
sition 2. Ponsati et al.[45] showed similar strategies to our Table 1 strategies
constitute an SPE in a singular bargaining game.

The one-shot deviation principle holds if no agent can deviate from their
strategy at a single node and receive a higher expected payoff. This is also re-
ferred to as being one-stage unimprovable and strategy profiles that are one-stage
unimprovable at all decision points on and off the equilibrium path constitute
an SPE [51].

Intuitively, by showing that no single deviation is beneficial to agent i at any
node, their original strategy in Table 1 must be an SPE. Our game tree is infinite,
but the types of nodes possible in our game are finite, and can be classified into
two states – a base and threat state. We will enumerate against the type of
deviations possible in each case and by each agent below, allowing us to cover
all potential deviations. We also include the optimal strategy to demonstrate
the optimal outcome and to prove that deviating does not yield better outcomes
than those afforded by Table 1.

We take agent i to be the proposer first and agent j to be the responder first.
Recall that y denotes a generic offer to the responder. Agent i can be either a
candidate or firm, and agent j would be of the opposite type. Recall that the
bargaining phase ends when one agent decides to opt out, sending both agents
back to the matching pool to begin the matching and bargaining process anew
or if they agree on a surplus split. Since the agent expects to obtain their outside
options by opting out, for the purposes of this proof, both agents achieve their
expected outside options in full immediately upon opting out.

A.1 Base State Deviations

In this paragraph, we will consider deviations when agent i is proposing in the
base state. First, suppose agent i proposes according to Table 1 and offers (zij , 1−
zij) Here, agent j will accept the proposal and agent i will get a payoff of zij .
Now suppose that agent i deviates and offers (1− y, y) where y < 1− zij . Agent
j will decline since y < 1 − zij . Since agent i deviated and 1 − y > zij , agent
i will not opt out and neither will agent j. Instead, they will transition to the
threat state and agent j becomes the proposer in the next time step. Agent j will
propose a split of (ui

δ , 1−
ui

δ ). Since y ≥ ui

δ , agent i will accept the offer, giving
agent i a final payoff of δ · ui

δ = ui. Since zij ≥ ui by assumption, their deviation
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did not improve their payoff. Now, let us suppose instead agent i deviates and
proposes (1−y, y) where y > 1−zij . According to agent j’s strategy, they accept
since y ≥ 1− zij . Thus, agent i’s final payoff is 1− y, where 1− y < zij . Thus,
their deviation did not improve their payoff. From both of these cases, agent i
has no useful deviation when proposing in the base state.

Now, let us consider deviations made by agent j when they are responding
to a proposal in the base state. First, suppose agent i proposes (1− y, y) where
y ≥ 1 − zij . If agent j does not deviate, then they would accept y and recieve
it as their payoff. Suppose instead that agent j deviates and declines y. Then,
agent i would opt out since 1−y ≤ zij . Thus, agent j receives an expected payoff
of uj . By assumption, 1 − zij ≥ uj , thus y ≥ 1 − zij ≥ uj and agent j did not
benefit from deviating in this partition. Next, suppose agent i proposes (1−y, y)
where y < 1−zij . If agent j does not deviate, then they will reject this offer and
neither agent will opt out since 1 − y > zij and both agents transition to the
threat state in the next time step. Agent j becomes the proposer and proposes
(ui

δ , 1−
ui

δ ) which agent i accepts and agent j gets a payoff of δ(1− ui

δ ). Suppose
instead that agent j deviates and accepts y < 1 − zij as a payoff. Since we’ve
assumed that 1 − δ(1 − ui

δ ) ≤ zij from the range of possible zij values, we see
that y ≤ δ(1− ui

δ ). As a result, agent j would not have improved their utility by
deviating from their equilibrium strategy at this node. So, agent j has no useful
deviations when they are responding to an offer in the base state.

Now we consider agent i opt out deviations in the base state. First, suppose
that agent i opts out when 1−y ≤ zij . Thus, the game ends and agent i receives
their outside option of ui. Suppose instead agent i deviates and doesn’t opt out
when 1 − y ≤ zij . Agent j would also not opt out and become the proposer in
the next time step and they will now offer (ui

δ , 1−
ui

δ ). Agent i will accept this
offer, and their final payoff will be δ ui

δ = ui. As a result, this was not a useful
deviation. Next, suppose agent i does not opt out when 1− y > zij . Then, agent
j would also not opt out and would propose (ui

δ , 1 −
ui

δ ) in the next time step
which agent i would accept such that agent i gets a payoff of δ ui

δ = ui. Suppose
instead that agent i deviates by opting out when 1 − y > zij . Agent i’s final
payoff is then ui and this was not a useful deviation. As a result, agent i does
not benefit from deviating from their opt out strategies in the base state.

We also must consider agent j deviating from their opt out strategy in the
base state. Under our base state strategies, agent j never opts out. If agent j
deviates and opts out, their payoff would be uj . Suppose agent j had not devi-
ated, then they would get to propose an offer of ui

δ , which agent i would accept.
Then, agent j gets a payoff of δ(1 − ui

δ ). From the conditions of Proposition 2,
we have uj ≤ δ2(1− ui

δ ) ≤ δ(1− ui

δ ), so agent j did not improve their payoff by
opting out.

A.2 Threat State Deviations

Notice in Table 1 that the strategies for agent i and agent j are completely
symmetric. So, in this section, it suffices to consider deviations for just agent i
from their threat state strategies. The proofs for agent j turn out to be exactly
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the same with the indices i and j swapped. Throughout these proofs, we will
assume without loss of generality that we begin in time step t > 1 of bargaining.

In this paragraph, we will consider deviations from agent i’s proposer strat-
egy. First, suppose agent i proposes (1 − uj

δ ,
uj

δ ) in accordance with the Table
1 strategies. Agent j will accept this offer and the final payoff for agent i will
be δt(1 − uj

δ ). Suppose instead that agent i deviates by proposing (1 − y, y)
where y <

uj

δ . Agent j will reject this offer since y <
uj

δ . Then agent i will not
opt out since y <

uj

δ and agent j will also not opt out since they are not the
proposer. Bargaining then moves on to time step t + 1. Agent j will propose
(ui

δ , 1 − ui

δ ). Agent i will accept this offer since y ≥ ui

δ . Thus, agent i’s final
payoff is δt+1 ui

δ = δtui. Since we assumed that ui ≤ δ2(1 − uj

δ ), then it follows
that δtui ≤ δt(1 − uj

δ ) and agent i did not get a better payoff by deviating.
Next, suppose agent i deviates by proposing (1 − y, y) where y >

uj

δ . Accord-
ing to the Table 1 strategies, agent j accepts since y ≥ uj

δ . Then, agent i gets
δt(1− y) < δt(1− uj

δ ). Therefore, deviating does not give agent i a better payoff
when they are the proposer in the base state.

Let us now consider deviations from agent i’s responder strategy in the threat
state. First, suppose agent j has offered y < ui

δ . If agent i does not deviate, then
they will reject this offer and not opt out since they are not the proposer. Agent
j will also not opt out since y < ui

δ . Bargaining then moves on to time step t+1
where agent i is the proposer. Agent i would then propose (1− uj

δ ,
uj

δ ) and agent
j would accept this offer since y ≥ uj

δ . As a result, agent i would receive a payoff
of δt+1(1− uj

δ ). Suppose instead that agent i deviates and accepts y < ui

δ . Then,
agent i gets a payoff of δty < δt ui

δ . Recall the assumption that ui

δ ≤ δ(1− uj

δ ).
From this, δty < δt+1(1− uj

δ ) and deviating does not give agent i a better payoff
at this game node. Next, suppose agent j offers y ≥ ui

δ . If agent i does not
deviate, then they would accept and receive a payoff of δty ≥ δt ui

δ . Suppose
instead that agent i deviates and rejects this offer. Then, agent j would opt out
since they are the proposer and y ≥ ui

δ . As a result, agent i gets a payoff of δtui

which is not better than a payoff of δty ≥ δt−1ui. Therefore, deviating does not
give agent i a better payoff when deviating in the threat state as a responder.

We will now consider the cases where agent i deviates from their opt out
strategy in the threat state. First, suppose agent i has just rejected an offer
y < ui

δ . If agent i does not deviate then they will not opt out and agent j would
also not opt out as the proposer since y < ui

δ . The bargaining moves on to time
step t+1 with agent i as the proposer. Then, agent i proposes y =

uj

δ and agent
j accepts and agent i gets δt+1(1− uj

δ ) as a payoff. Suppose instead that agent
i deviates and opts out. Then, agent i gets δtui. Recall our assumption that
ui ≤ δ2(1− uj

δ ). From this, δtui < δt+1(1− uj

δ ) and agent i is not better off by
deviating at this node. Next, suppose agent i has just rejected an offer y ≥ ui

δ .
If agent i does not deviate, then they will not opt out, but agent j will opt out
since they are the proposer and y ≥ ui

δ . Then, agent i gets δtui. Suppose instead
that agent i deviates and opts out, then they will also get δtui and agent i is not
better off by deviating at this node. Next, suppose agent j has just rejected an
offer y <

uj

δ . If agent i does not deviate and does not opt out, then agent j would
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also not opt out since they are the responder. Bargaining then moves on to time
step t + 1 and agent j is the proposer. Agent j would propose ui

δ and agent i
would accept and get δt+1 ui

δ = δtui. Suppose instead that agent i deviates and
opts out as the proposer with y <

uj

δ . Then, agent i payoff is δtui and agent
i is not better off by deviating at this node. Finally, suppose agent j has just
rejected some offer y ≥ uj

δ . If agent i does not deviate and opts out after agent j
rejects the offer y ≥ uj

δ , then agent i again gets δtui. Suppose instead that agent
i deviates and does not opt out as proposer when y ≥ uj

δ . Then, agent j is the
responder, so they would not opt out as well and bargaining moves on to time
step t+ 1. Agent j is now the proposer and offers y = ui

δ which agent i accepts
and agent i gets a payoff of δt+1(ui

δ ) = δtui. Therefore, agent i does not get a
better payoff by deviating at this node and thus agent i does not benefit from
deviating from their opt out strategy in Table 1.

Thus, we have shown that no single deviation from the Table 1 strategies
is beneficial to either agent in any state at any time step. Therefore, through
the one-shot deviation principle, this set of strategies is in an SPE under the
conditions of Proposition 2.


