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ABSTRACT

A one dimensional, unsteady model of the wet end of a
paper forming process is derived from fundamental con-
servation laws. The stock is approximated as an inviscid

uid and the wire as an axially moving medium subjected
to a 
uid loading. Forming lengths are reasonable pre-
dicted when compared to test data. Despite heavy damp-
ing, the model shows signi�cant ampli�cation of distur-
bances near resonant frequencies resulting in signi�cant
machine-direction (MD) basis weight variations.

INTRODUCTION

This study focuses on the mechanics of the wet forming
region of a paper process. The motivation for the study
is to gain an understanding of the formation of tissue in
a crescent forming machine. The crescent forming pro-
cess involves a water/�ber 
uid stock sprayed as a jet at
a porous wire screen. The wire allows the water to pass
through but traps the �bers. The wire, forming a wide
continuous and translating belt, wraps around a large roll,
called the form roll. Only one-sided drainage is considered
here. The forming region, illustrated in Figure 1, extends
from the point where the 
uid jet impinges on the wire to
the point where the �brous mat touches the roll.

Previous theoretical models of paper forming focus on over-
all measures of the forming process and do not provide
either detailed or comprehensive descriptions of mat for-
mation. An early theoretical study of the forming region

Figure 1: Schematic of the forming region

by Miller [1] sought to estimate the overall drainage rate
through the mat and wire. A later study [2] made im-
provements in the drainage estimate speci�cally for a Four-
drinier machine that passes a wire horizontally over a se-
ries of small rollers during the drainage process. Using
an assumption of symmetry, Baines [3] examined the me-
chanics of a two-wire machine that permits water to pass
through an inner wire and porous roll as well as an outer
wire. However, the assumed symmetry in the forming re-
gion is inconsistent with the inclusion of centrifugal terms
in the pressure equation. (Modi�cations of the model pre-
sented here for the two-wire machine are brie
y described
in Turnbull [4].) To date, all models of the forming region
assume that the forming process is steady-state. Direct
observations of wire vibration and variations in mat thick-
ness (variations in basis weight), however, indicate that the
forming process is often unsteady including recent experi-
ments such as Perrault [5].

The wire falls within a broader class of dynamical systems
commonly referred to as axially moving materials [6]. Ex-
amples of other axiallymovingmaterials include: band saw
blades, translating cables, belts and tapes. Recent devel-
opments in the vibration and stability of axially moving
material systems are reviewed by Wickert and Mote [7].
Wire vibration leads to dynamic contact between the wire
and roll that changes the length of the vibrating span and
may a�ect the wire response [8, 9]. The present investi-
gation also relates to studies of the response of web-like
elements in a surrounding 
uid [10, 11]. In such studies,
the 
uid response on the web is modeled using \added
mass" coe�cients, originally derived in the context of the
swimming of a slender �sh approximated as an imperme-
able, 
exible structure in an in�nite 
uid medium [12].
The present application demands an alternative approach
for modeling the 
uid/structure interaction because it vio-
lates the assumptions of structure impermeability and in-
�nite 
uid medium.

The next section describes the mathematical model used
to predict the mechanics of a paper forming process. The
numerical implementation is then detailed followed by the
resulting predictions. The conclusions drawn from the re-
sults highlight how the coupled 
uid/wire dynamics in
u-
ence product quality.

THE MODEL

Direct observations of wire vibration in the forming region
and non-uniform mat thickness indicate that the forming
process is often unsteady. This time dependent response
may be driven by several excitation mechanisms. Fore-
most among these are time dependent jet velocity pertur-
bations from the jet delivery system that may derive from
the pump, headbox, etc. Secondary excitation sources in-
clude 
uid turbulence, roll eccentricity, periodic passage of



wire splices and mechanical perturbations originating from
operations outside the forming region. In view of the slen-
der geometry of the forming region, these seemingly small
excitation sources have the potential to generate process-
impairing wire vibrations.

Figure 1 de�nes the problem of interest and the model
coordinate system. The (x; y) coordinate system is curvi-
linear and locally Cartesian with the arc length along the
roll de�ning x and position along the direction normal to
the roll de�ning y. The origin of the coordinate system
is at the 
uid impingement point with the roll that is as-
sumed to be stationary. We further assume no variation in
the third direction (the cross machine direction). D(x; t)
denotes the gap between the wire and the form roll, the
mat thickness is �(x; t) and the 
uid velocity component in
the x direction is u(x; t). The form roll and the wire move
with machine speed U and the wire has tension T (force
per unit width).

The 
uid entering the domain has density �, viscosity �,
and a volumetric concentration of �bers Cf . The Reynolds
number �UD(x = 0)=� is large, implying that the bound-
ary layer along the roll will be thin and viscous e�ects in
the 
uid will be con�ned to a small region near the end
of the forming region. Thus, the 
uid velocity can be as-
sumed to be rectilinear and an inviscid model is attempted.
These assumptions lead to a one-dimensional model where
x is the single independent spatial coordinate along with
the time variable t.

The problem domain begins at a point shortly after the

uid impinges on the wire and roll where the fully three di-
mensional 
ow of the entrance region has collapsed to a one
dimensional 
ow. This transition occurs almost immedi-
ately after both the wire and roll are wetted as is shown in
the section entitled \Steady-state Response". The problem
domain extends to a �xed position beyond the point where
the mat is always in contact with the roll. The domain
e�ectively splits into two subdomains: a 
uid-dominated
subdomain upstream of the contact point where the mat
�rst touches the roll x < x̂, and a structure-dominated
subdomain downstream of the contact point x > x̂. The
location of the contact point, x̂, is not known a priori and
is found via the solution procedure. The primary di�er-
ence between these two subdomains is the origin of the
force supporting the wire. In the 
uid-dominated subdo-
main the force originates from the 
uid pressure and in
the structure-dominated subdomain the force is supplied
by the contact of the �bers in the mat. In the present
formulation, the two subdomains are joined by means of
a function which smoothly blends the governing equations
for each subdomain together over a small region near the
contact point x̂. In this small region, viscous forces be-
come non-negligible and thus neither subdomain model is
strictly appropriate. However, since mat formation is vir-

tually complete before the transition between subdomains,
the behavior of the model is found to be insensitive to
changes in the modeling of the downstream end.

In addition to assuming inviscid 
ow, the principal mod-
eling assumptions include: 1) the 
uid impingement point
is stationary, 2) there is no variation in the cross machine
direction, 3) the wire vibrations are small so that the wire
tension T is assumed constant and the wire curvature-
displacement relation is linear, 4) the 
uid velocity is rec-
tilinear, 5) the void fraction of the mat � is constant and 6)
the mass of the wire per unit area (including the mat and
entrained water) is constant. Of these, assumption 6) is
easiest to relax, but for simplicity, we choose the average
mass of the mat and wire to represent the mass for the
entire length of the forming region. Relaxation of assump-
tion 5) requires only a more elaborate model for the 
ow
through the porous media. Relaxation of 2) results in a
two-dimensional extension of the present model and is the
subject a subsequent study. Given these assumptions, the
governing equations derived below from the fundamental
conservation laws are exact.

Conservation of water in one-dimension is given by

(1� Cf ) (D � �)t + ��t =

� [(1� Cf )u(D � �) + �U�]
x
� v: (1)

Here, Cf is the volumetric �ber concentration in the 
uid
and v is the apparent 
uid velocity normal to the wire, the
so-called drainage velocity. The subscripts t and x denote
partial di�erentiation with respect to these variables. The
terms on the left-hand side account for the accumulation of
water between the mat and the roll and in the mat. These
terms are balanced by the di�erence between the change
in the volume 
ow rate and the drainage velocity.

Conservation of �ber mass provides

Cm�t +Cf (D � �)t = �CmU�x �Cf [u (D � �)]x ;(2)

where Cm is the volumetric �ber concentration in the mat
(note that Cm = 1 � �). Here, the left-hand side rep-
resents the accumulation of �bers in the mat and in the

uid between the mat and roll. The accumulation is due
to the change in the x direction of �bers being convected
downstream in the mat and the 
uid, respectively. This
expression for conservation of �bers can be simpli�ed to

�t + U�x = � Cf

Cm

f(D � �)t + [u(D � �)]xg: (3)

Neglecting 
uid viscosity except in the mat, conservation



of momentum yields the unsteady Euler equation

ut + uux = �1
�
px; (4)

stating that the change of the 
uid momentum along the
machine direction is determined by the pressure gradient.
The transverse response of the wire is governed by

Dtt+2UDxt+U
2Dxx�U2

R
=

T

m

�
Dxx � 1

R
+

p

T

�
;(5)

where m (approximated as a constant) is the mass of the
wire, the mat, and the entrained water per unit area. R is
the form roll radius as shown in Figure 1. The terms on the
left-hand side represent the absolute acceleration of a wire
element including the convective acceleration components
due to wire translation around the form roll [6]. Addition-
ally, the term T=m(1=R) on the right-hand side results
from the curvature of the coordinate system. The quan-
tity p on the right-hand side of (5) represents the force per
unit area exerted by the 
uid or mat on the wire. Thus,
in the 
uid-dominated subdomain, x < x̂, p is the 
uid
pressure determined by the resistance of the 
ow through
the mat using the empirical relation

p = a(� + �w)v + b(� + �w)v
2; (6)

where a = �=� and b = Ce�=
p
�. Here � is the permeabil-

ity of the mat and wire (as determined by the �ber diam-
eter and void fraction [13]), � is the viscosity of water, �
is the density of water and Ce is the Ergun coe�cient that
is adjusted to �t experimental data as described in the
section entitled \Steady-state Response." In (6) �w rep-
resents the resistance to 
ow through the wire expressed
as an equivalent mat thickness. In this study, �w is chosen
10�5 m and for 20 micron �bers with a void fraction of 90%
2153 kg

m3s . The term proportional to v2 accounts for the in-
ertial e�ects present in a thin porous media. In the limit
of vanishing b, this expression becomes a one-dimensional
integrated form of Darcy's law for 
ow through porous
media. Note that the pressure p provides the coupling
between the 
uid and the wire. Since the pressure is pro-
portional to v and v2, which in turn are related to Dt (1),
the pressure may be interpreted as a nonlinear damping
mechanism for wire vibration. The a�ect of this damping
is discussed in the section entitled \Unsteady Response."

The structure-dominated subdomain is described by the
translating wire supported by a compressible mat modeled
as an elastic foundation. Previous analysis of translating
elements on elastic foundations are described in Bhat [14],
Perkins [15] and Tan [16]. In this subdomain, the wire

response is again governed by (6) where now p is the force
per unit area created by an elastic foundation

p = k(F �D): (7)

Here, k is an e�ective mat sti�ness per unit area and F
is a constant representing the free height of a theoretical
distributed spring that balances the tension in the wire.
These two constants are chosen such that the spring force
p balances the tension T at the downstream boundary and
the spring remains in compression for the full length of the
structural domain. At steady-state, p approaches T=R as
D approaches �. Computed results have been shown to be
insensitive to changes in k and F and in the modeling of
the boundary between the 
uid-dominated and structure-
dominated subdomains. This insensitivity is due to the
dominance of the 
uid-dominated subdomain and the bias
in the 
ow of energy downstream (in the machine direc-
tion). Thus, changes at this downstream boundary exert
little in
uence on the forming process occurring upstream.

The above dependent variables now are made dimension-
less by employing the length scale de�ned by the form roll
radius R, the time scale R=U , and a pressure scale T=R.
Equations (3), (4) and (5) de�ne a system of three partial
di�erential equations that are fourth order in time and �fth
order in space. The equations are

�t + �x = � Cf

Cm

[(D � �)t + (u (D � �))x] ; (8)

ut = � T

�RU2
px � uux; (9)

Dtt + 2Dxt +Dxx � 1 =
T

mU2
(Dxx � 1 + p) : (10)

The system of equations is completed by solving for v in
(1) resulting in

v = �(1�Cf ) [(D � �)t + (u(D � �))x]+�(�t+�x)(11)

and then substituting the result into (6) and forming an
algebraic expression for p

p =
R2U

T
(� + �w)(av + bUv2): (12)

The associated boundary conditions are

D(0; t) = D0; D(L; t) = DL; (13a; b)



�(0; t) = 0; u(0; t) = U0; (13c; d)

p(0; t) = P0: (13e)

These boundary conditions may be time-dependent to al-
low for possible excitation mechanisms including, jet ve-
locity 
uctuations and roll eccentricity. Motion may also
follow from initial conditions of the form

D(x; 0) = f(x); Dt(x; 0) = g(x); (14a; b)

�(x; 0) = q(x); u(x; 0) = r(x): (14c; d)

The above initial conditions also determine the initial
drainage velocity v(x; 0) and the initial pressure pro�le
p(x; 0) through (11) and (12).

NUMERICAL ANALYSIS

This model couples a parabolic 
uid advection equation
(9), a hyperbolic wave propagation equation (10) and the
equations governing the conservation of mass of an incom-
pressible 
uid/�ber stock (8) and (12). Taken separately,
these di�erent types of equations require qualitatively dif-
ferent solution strategies. Also, there are complexities due
to the two subdomains needed to model the unknown lo-
cation of the contact point. The numerical strategy must
overcome a unique set of di�culties.

The 
uid advection equation (9) is solved using an upwind
technique employing explicit, Adams-Bashforth time inte-
gration [17]. This method preserves the bias in the 
ow
of information in the downstream direction and provides
a method that is conditionally stable for su�ciently small
time steps. The mat evolution equation (8) and 
uid con-
servation equation governing the pressure (12) have less
bias in the 
ow of information. Central-di�erence in space
and Adams-Bashforth explicit time integration was found
to be conditionally stable. The 
uid velocity and mat
thickness are advected downstream in the structural sub-
domain using a �rst order upwind method.

The wave equation (10), governing the vibration of the
wire, is also discretized using central-di�erence approxi-
mations and integrated in time using a Crank-Nicolsen
implicit method. Normally this scheme is uncondition-
ally stable for arbitrary time steps. However, due to the
interaction with the 
uid, the discretized version of (10)
loses its unconditional stability. The scheme is rendered
conditionally stable for su�ciently small time steps. For
example, the maximumstable time steps for three di�erent
non-dimensional grid sizes are shown in Table 1.

Table 1: Maximum stable time step versus grid size

Grid size Time step
0.011 0.0017
0.0054 0.00045
0.0027 0.00014

The location of the contact point and thus the length of the
forming region is unknown and must be found as part of
the solution of the system of equations. To accomplish this,
the computational domain is split into two sub-domains as
described previously. The two subdomains are blended
into a single continuous computational domain by means
a function s de�ned as

s =
1

2

�
tanh

�
c1

�

D
� c2

�
+ 1

�
; (15)

where 0 < s < 1. The equations governing the 
uid-
dominated subdomain are multiplied by (1� s) and those
governing the structure-dominated subdomain are multi-
plied by s and these product equations are added. The
constants c1 and c2 are chosen such that s � 1 over most
of the forming region and then smoothly approaches s! 1
when �=D ! 1. Figure 2 illustrates a typical shape of the
blending function for c1 = 6 and c2 = 3.

Figure 2: An example of the function s(x) used to blend
the 
uid dominated and structure dominated subdomains.

The values chosen for the boundary conditions are adjusted
to simulate speci�c paper making machines. The initial
gap between the wire and roll D0 is chosen to be equal
to the height of the jet. The downstream boundary condi-
tion DL is set to the theoretical steady-state mat thickness
based on global �ber conservation,

DL =
CfU0D0

CmU
: (16)

The jet velocity U0 is usually chosen to be equal to the
machine speed. However, it can be set lower or higher to
examine the e�ects of a velocity di�erential between the

uid and the wire. Such a velocity di�erential is typically



Table 2: Parameters de�ning the baseline system

Parameter Value units
Slice height D0 12.7 mm

Downstream height DL 0.168 mm
Upstream pressure P0 9000 Pa

Form roll radius 0.56 meters
Machine speed 25.4 m/s
Wire tension 7881 N/m
Wire mass 1.0 kg/m2

Headbox consistency Cf 0.132 %
Void fraction � 0.9

Jet/Machine speed ratio 1.0

desirable due to its in
uence on �ber orientation and the
resulting in
uence on mat tensile strength.

The pressure at the beginning of the one-dimensional re-
gion P0, however, is not as easily determined due to higher
dimensional entrance e�ects (ie. transition from free jet to
a con�ned 
uid layer). The pressure after these entrance
e�ects is not known a priori, nor can the pressure measured
at the roll be used to determine the pressure at the wire

at the jet impingement. Instead, the pressure P0 is cho-
sen to avoid substantial oscillations of the pressure pro�le.
This is accomplished by iterating on P0 until the quantity
@2P (0;t)

@x2
= 0. The method starts with the initial guess for

the upstream pressure as P0 = T=2R and a simulation is

run to steady-state. If @2P (0;t)
@x2

< 0 at steady-state, the
value for P0 is considered to be too small. Similarly, P0 is
too large if this second derivative is positive. The upstream
pressure is subsequently adjusted until a smooth pressure
pro�le is obtained. Then P0 is held constant during the
subsequent simulations of unsteady response.

NUMERICAL RESULTS

The above numerical method is used to examine both the
steady-state and unsteady response of a paper forming pro-
cess. We �rst consider the simpler steady-state case.

Steady-state Response

A baseline system is proposed for study as de�ned by the
parameters shown in Table 2. Unless otherwise noted, all
computed results that follow pertain to this baseline sys-
tem. The mesh size chosen for all the steady-state compu-
tations to follow is 0:011. Increasing the number of nodes
does not appreciably alter the steady-state results and we
conclude that the following results are well converged.

In the absence of excitation, a stable system is expected to
settle to a stable steady-state following any perturbation
(e.g., initial conditions). Determining the steady-state so-
lution for a particular set of system parameters makes it
possible to calibrate the adjustable parameter b (by adjust-
ing the Ergun coe�cient Ce) in the 
uid resistance relation
(12). This is accomplished by comparing computed results

for the forming length to that measured on a forming ma-
chine operating with the same set of system parameters
and adjusting b such that the forming lengths match. Al-
ternatively, all three parameters in the 
uid resistance re-
lation (12) �w , a and bmay be adjusted to produce a better
�t of the forming length for broader operating conditions.

Major capabilities of the steady-state model include the
ability to predict the forming region geometry, the drainage
pro�le and the pressure pro�le. An example of the pre-
dicted steady-state pressure pro�le is illustrated together
with experimental measurements in Figure 3. From this

Figure 3: The pressure pro�le as measured on a crescent
former (� � � � � �) and as calculated by the model (|||{)
for the baseline system. Pressure p is scaled by T=R and
position x is scaled by R. This type of comparison is used
to calibrate the resistance parameter b in (12).

comparison, the adjustable parameter b was selected by
setting Ce = 14 to match this test data and all subsequent
results use this value.

Examination of the test data reveals an initial pressure
spike occurring at the impingement of the 
uid on the roll
followed by a region of low pressure. At x = �0:2 both the
wire and roll become wetted and the pressure rises mono-
tonically. After a short entrance region �0:2 < x < 0 the

uid mechanics have collapsed from the fully three dimen-
sional 
ow of the jet to the one dimensional 
ow of the
trapped 
uid layer. From this point, de�ned as x = 0, the
assumptions of the model are valid and the computational
domain begins. Note that the predicted pressure is asymp-
totic to a value near T=R which produces a wire geometry
with very little curvature relative to the roll. Thus, the gap
D between the wire and the roll decreases almost linearly
with the arc length coordinate x. This nearly linear geom-



etry occurs despite the very non-uniform drainage velocity
v as shown in Figure 4. The �nal mat thickness was found
to be 1% less than the theoretical value given by global
conservation of �bers (16).

Figure 4: The steady state drainage velocity v as a function
of x for the baseline system. Drainage velocity v is scaled
by U and position x is scaled by R.

The model is capable of predicting the steady-state ge-
ometry of the forming region for a range of parameters
near those used to calibrate the parameter b. For exam-
ple, the variation in forming length with respect to the
�ber concentration in the stock, Cf (known as the headbox
consistency) is shown in Figure 5. Similarly, the variation
in forming length with respect to tension is shown in Fig-
ure 6. Both show smooth monotonic behavior over the
range of parameters modeled and, as expected, the form-
ing length increases with increasing headbox consistency
and decreases with increasing tension.

Unsteady Response

The time dependent model computes the system response
under both free and forced conditions. For free response,
the system is perturbed by selected initial conditions and
the ensuing transient response is computed. For forced
response, the system is perturbed by unsteady upstream
boundary conditions. For all computations to follow, the
response of selected quantities (e.g., wire displacement and

uid velocity) are sampled at the mid point of the 
uid-
dominated subdomain (a single node value) unless other-
wise noted.

Consider �rst, the free response of the wire, as measured by
the mid-point displacement Dmid above the roll as shown
in Figure 7. This response is normalized by the steady-

Figure 5: The steady state forming length x̂ (scaled by R)
as a function of the headbox consistency Cf .

state displacementDss. The system is started from steady-
state and given an initial transverse velocity with a max-
imum amplitude Dt = 0:01 at the mid-point of the 
uid
dominated sub-domain and a half sine wave shape in x.
From Figure 7, it is apparent that there is a short period
growing of transient response followed by a rapid relax-
ation to steady-state. This short transient is evidence of
the substantial damping inherent in the momentum equa-
tion for the wire. This damping is due to the energy lost
as the 
uid is forced through the porous media through
the resistance relation for the 
ow through the mat and
wire in (12). From the oscillations evident in the free re-
sponse, it is also possible to estimate the natural frequency
of the fundamental mode of the system, that has a period
of approximately one time unit (non-dimensional). Such
oscillations lead to disturbances with a wavelength of ap-
proximately one roll radius.

Next consider the forced response of the system to a
small harmonic variation in the inlet jet velocity given by
u(0; t) = u0(1 + A cos !t). Here, u0 is the steady compo-
nent of the jet velocity (set equal to 1 in this example),
A and ! are the amplitude and frequency of the dynamic
component of the jet velocity. In this calculation the forc-
ing is held constant at A = 0:01 while the excitation fre-
quency ! is varied over the range 0 < ! < 6. For each
value of ! the system is integrated until it reaches a stead-
state oscillation. The amplitude of the variation in D, �
and u are then reported in the frequency response results of
Figures 8, 9 and 10 respectively. In contrast to the steady-
state computations, the grid resolution modestly in
uences
the magnitude of the results. Results are shown for two
grid sizes, �x = 0:011, and �x = 0:0054, illustrating the
small di�erence in response amplitude with increasing grid



Figure 6: The steady state forming length x̂ (scaled by R)
as a function of the wire tension T expressed in dimensional
units (N/m).

re�nement. Temporal convergence is assured by selecting a
time step an order of magnitude smaller than the time step
required for stability at the spatial resolutions indicated.

Figure 8 shows the normalized peak mid-point displace-
ment of the wire Dpeak as a function of the excitation
frequency. The frequency response of the wire shows a
single broad peak indicative of a single degree-of-freedom,
heavily damped system. Although the wire has in�nite
degrees of freedom, the response of the higher frequency
modes are suppressed by damping. This is shown by the
absence of higher order peaks in the wire frequency re-
sponse shown in Figure 8. The resonant behavior of the
wire has a pronounced in
uence on the basis weight of the
�nal product (computed from the mat thickness at the end
of the forming region �(L; t)) as shown in Figure 9. As was
the case with the wire response, there is substantial dis-
turbance ampli�cation evident in the response of the basis
weight. Moreover the disturbance wavelength is again, ap-
proximately one roll radius. The frequency response of the
peak 
uid velocity however, has a local minimum (anti-
resonance) near the frequency corresponding to the peak
wire response as shown in Figure 10. This is explained
below by examining the phase relationship between the
response of the wire and the response of the 
uid.

Figure 11 shows the phase relationship between the wire
and 
uid responses in the vicinity of the local minimum
in the peak 
uid velocity. The phase was computed by
comparing the time when the peak in the 
uid velocity
occurs versus the time when the peak displacement of the
wire occurs. Note that the drop in the peak 
uid velocity
occurs when the 
uid response is in phase with the wire

Figure 7: Transient wire response represented by the mo-
tion of the midpoint (x = L=2) of the wire normalized
by the steady state displacement of the wire at the mid-
point. Time is made dimensionless using the time scale,
ts = R=U .

response. This is expected from conservation of mass. If
the displacement of the wire is increasing as the 
uid ve-
locity is increasing then there will be a greater volume for
the 
uid to occupy thereby reducing the tendency of the

uid to accelerate.

As further support to the discussion on model convergence
above, we provide an estimate of the rate of spatial con-
vergence by employing Richardson extrapolation to esti-
mate the exact values of the peak to peak variation in the
three primary variables D, � and u at a forcing frequency
of ! = 1. These estimated values of the primary vari-
ables are used to determine the error at three grid sizes
�x = 0:011 corresponding to n = 146 nodes, �x = 0:0054
corresponding to n = 291 nodes and �x = 0027 corre-
sponding to n = 581 nodes and the results are shown in
Figure 12. The linear relationship between error and the
number of nodes on the log-log plot illustrates quadratic
convergence with n as expected with the �nite di�erence
algorithms used in the model.

CONCLUSIONS

A one dimensional model of a paper forming process on
a single wire crescent former was derived from fundamen-
tal conservation laws. The model is capable of describ-
ing both dynamic and steady-state behavior of the form-
ing process. Examination of predicted steady-state geome-
try reveals that the pressure pro�le, drainage velocity and
forming length are represented with reasonable accuracy
when compared to test data. Once the parameter b (12) is
calibrated using test data, predictions can be made of the
steady-state that results from modest changes in the key



Figure 8: Frequency response of the wire at the midpoint
(x = L=2). The peak-to-peak amplitude of the stable limit
cycle (Dpeak = (Dmax �Dss)=Dss) is shown as a function
of frequency for a jet velocity disturbance amplitude of 2%
of the steady-state jet velocity for n = 291 nodes ||{
and n = 146 nodes - - - -.

process parameters such as tension, machine speed, head-
box consistency and the permeability characteristics of the
mat and wire. Thus, the steady-state results help under-
stand how these process parameters control the forming
process in the absence of disturbances.

The free response of the model to an initial disturbance
illustrates a large damping mechanism caused by the 
ow
through the mat and wire. Computed frequency responses
demonstrate that only the �rst system mode is excited
and that higher modes of vibration are suppressed. Thus,
the system e�ectively behaves as if it were a single degree
of freedom system. Yet, despite the heavy damping, the
model shows signi�cant ampli�cation of disturbances near
resonant frequencies. The model predicts that 2% distur-
bances in jet velocity may result in nearly 7% variation
in the basis weight as a result of the aforementioned res-
onance of the fundamental mode. Moreover, the resulting
wavelength of these basis weight 
uctuations are on the or-
der of the roll radius. An experimental study by Perrault
[5] shows large ampli�cations MD basis-weight variations
at particular frequencies, but no direct comparisons can be
made to the analysis because the process parameters are
inadequately described.

Our latest work relaxes two assumptions made herein by
including the e�ects of viscosity and variations in the cross-
machine direction. The preliminary results indicate that
the system solution remains remarkably similar to the one-
dimensional inviscid model described here except in a very
small region near the nip. The addition of viscosity ap-
pears to allow integration within a purely 
uid computa-

Figure 9: Frequency response of the basis weight of the mat
leaving the forming region at x = L. The peak-to-peak am-
plitude of the stable limit cycle (�peak = (�max � �ss)=�ss)
is shown as a function of frequency for a jet velocity dis-
turbance amplitude of 2% of the steady-state jet velocity
for n = 291 nodes ||{ and n = 146 nodes - - - -.

tional domain nearly all the way to the nip without the
requirement of a structure-dominated model nor a blend-
ing function.
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Figure 11: The phase di�erence between peaks in the wire
displacement D and the 
uid velocity u.

Figure 12: Quadratic spatial convergence of the three pri-
mary variables: D = ||{, � = - - - -, and u = � � � � � �.


