
A STUDY OF THE SINGULARITY IN
THE DIE-SWELL PROBLEM

By W. W. SCHULTZ

(Department of Mechanical Engineering and Applied Mechanics, University
of Michigan, Ann Arbor, Michigan 48109, USA)

and C. GERVASIO

(Department of Mechanical and Aerospace Engineering, Rutgers University,
Piscataway, New Jersey 08854, USA)

[Received 17 August 1989]

SUMMARY
The matched-eigenfunction method of Trogdon and Joseph is improved and used

to solve the die-swell problem in an axisymmetric Newtonian liquid jet. The
unproved solution is the first computation that is consistent with the local analysis of
Michael at the separation point. The stream function is expanded using two sets of
eigenfunctions to describe the flow inside and outside the die, and these are matched
at the exit to determine the expansion coefficients. The discontinuity in the
shear-stress boundary condition at the jet exit causes spurious solution oscillations
that are reduced significantly using the adjoint method used here. The orthogonal
properties of the method reduce the algebraic system by one-half, and the
complex-conjugate property of the coefficients reduces the system by one-half again.
The reductions in oscillations and size of the system are important because the local
behaviour at the contact line can only be obtained by extrapolation of the
computations to high truncation.

1. Introduction

THE die-swell problem (see Fig. 1) is an important computational test for
Newtonian (1,2) and viscoelastic (3,4) flows with free surfaces. During the
transition from the fully-developed flow upstream to the plug-flow down-
stream, the jet swells due to stress relaxation at the outer surface. Die swell
is usually associated with the low-Reynolds-number flow of viscoelastic
fluids, but it occurs to a lesser extent in Newtonian fluids as well. Here we
consider only Stokes flow of a Newtonian fluid.

The results of these computations (1 to 4) agree well with experiments
(5,6) in describing the global structure of the flow. For example, all predict
approximately a 13 per cent die swell (that is, the final jet radius is
approximately 1-13 times the die radius) in a Newtonian jet with zero
surface tension and small Reynolds number. However, they all fail to model
the singularity at the die exit (or contact line where the solid, liquid, and gas
meet, as represented by f = 0 in Fig. 2). Consequently, they all show
separation at other than 180 degrees, which violates a local condition
described by Michael (7).
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408 W. W. SCHULTZ AND C. GERVASIO
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Fio. 1. Schematic of die swell in an axisymmetric jet

Our goal is to develop an improved computational technique so that we
can improve the missing local mechanics of previous computations at the
contact line. A careful examination of the flow in the neighbourhood of the
singularity is required for several reasons. First, the flow in this region will
determine whether the contact line will move on to the die outer face. This
'wetting' (or = 270° in Fig. 2) is undesirable in manufacturing processes. A
second reason is that it is believed (4,8) that the computational difficulties
of highly viscoelastic flows are caused by the flow singularity. Understanding
the singular behaviour in Newtonian flow may guide these viscoelastic
computations.

There have been some attempts to model separation in die swell. Silliman
and Scriven (9) add slip to their model as a way of relaxing the effect of the
singularity at the contact line but otherwise do not capture the true singular
behaviour as the slip parameter goes to zero. Most computations use mesh
refinement near the singularity, but a careful examination of these finite-
element computations shows that refinement is often insufficient because
oscillations occur at the singularity (10). Sturges (11) states, but does not
explain (presumably due to the singular nature of separation), that the free
surface can separate at angles other than 180° if free-surface curvature is
considered. (The effect of surface tension and infinite curvature has been
examined previously for potential flow (12).) A boundary-integral method is
used to study separation by Tanner et id. (13). They find that the local
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Fio. 2. Schematic of local separation of free surface
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THE DIE-SWELL PROBLEM 409

condition defined by Michael does not appear to be violated in the limit as
the rounding of the die exit becomes very large. However, their computa-
tions lead to the same inconsistency when the die exit is sharp.

We modify the matched-eigenfunction method developed by Trogdon and
Joseph (14,15) to study the separation phenomena as affected by the
singularity. Like the other methods mentioned above, this one makes no
special provisions for the singularity; hence, we must interpret the results
carefully. The development of this technique started with the 'stick-slip'
problem by Richardson (16), in which boundary conditions are imposed that
prohibit the jet from swelling or contracting. Richardson solves this problem
by a Fourier transform in the axial direction and then applies the
Wiener-Hopf technique to ensure continuation between the regions inside
and outside the die. He states that a perturbation of the stick-slip solution
can model die swell with large surface tension by using the capillary number
as a small parameter, but recognizes that the results so obtained contradict
the local solution of Michael (7).

Trogdon and Joseph (14) compare the Wiener-Hopf method used by
Richardson with a matched-eigenfunction expansion method for the infinite-
surface-tension stick-slip problem in a round jet. They find that for a given
truncation of the infinite series, the matched-eigenfunction expansion gives
better results than the Wiener-Hopf method, even though the latter gives
the exact coefficients for infinite truncation. Their method also eliminates
the slowly-converging infinite products of the Wiener-Hopf method.
Trogdon and Joseph (15) then consider the die-swell problem with finite
surface tension using the matched-eigenfunction method. This requires
linearizing the free-surface boundary conditions about r = 1. Sturges (17)
examines a planar jet using the same method considering second-order as
well as Newtonian fluids.

We first re-examine the local analysis of Michael (7) in the vicinity of the
singularity at the contact line of the jet exit in section 2. After posing the
global problem, an improved eigenfunction-expansion method for the
linearized die-swell problem is developed, expanding the work of (15) in
section 3. In section 4 we show that our method of taking inner products
with the adjoint eigenvectors reduces the oscillations as compared to
computations where non-orthogonal functions are used in the inner prod-
ucts. We review our findings in section 5 and indicate the weaknesses of the
improved matched-eigenfunction method by demonstrating that the free-
surface linearization is not appropriate for many cases. Methods for further
study are proposed.

2. Local analysis at separation

A local solution to the Stokes equation is a superposition of (18, 7)

xp = f\A sin A0 + B cos A0 + C sin (A - 2)0 + D cos (A - 2)6], (1)
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410 W. W. SCHULTZ AND C. GERVASIO

with other forms for special cases not considered here. Here, \j> is the
standard two-dimensional stream function and f and 6 are shown in Fig. 2.

The eigenequation

sin (A - l)a ± (A - 1) sin a = 0 (2)

determines permissible values of A. As is true of all local solutions, the
solution contains one undetermined constant that must be obtained from a
global solution. The local solutions result in radial and circumferential
velocities proportional to r*"1 and pressure and stresses proportional to
fk~2. To avoid infinite velocities we restrict to A > 1.

When 6 = a = n, the infinite pressures and viscous terms cancel each
other and the values of A are given by

A = ! , 2 , i 3 , . . . . (3)

Hence, in the absence of surface tension, Michael (7) concludes that the
free surface must separate at an angle a = n. This conclusion contradicts
experimental and computational observations that show the free surface
separating at angles other than 180°.

The free surface can be considered flat in the vicinity of the contact line if
(a) we examine a region much smaller than the die radius r, to neglect
azunuthal curvature, and (b) the curvature in the axial direction is at most
weakly singular. Consider a free-surface shape given by

as z—>0. Neglecting the azimuthal component, the curvature is given by
/7(1+/ / 2 )^ , so the surface (4) has infinite curvature a s z — • 0 i f i < n < 2 .
Limiting the curves to finite slope (so the fluid does not wet the outer face
of the die as when a = 270°) further restricts n such that 1< n < 2, so the
corner angle is determined only by b.

Even though the free-surface curvature is infinite under these conditions,
the local analysis of Michael still applies. Then, if the surface-tension
coefficient is non-zero, the surface can separate at an angle other than 180°,
because the surface curvature (4) has the same singular form as the normal
stress predicted by Michael. Specifically, if the angle of separation a is close
to n, then b—*0 in (4), and z of (4) is equivalent to f in (1). The stresses
will have the form fx~2, with the smallest A close to the § given by (3). The
infinite normal stress can be balanced by surface tension if n = A. Hence for
small surface tension, we may expect a free surface of form (4) with small b
and n = A « \.

If the separation angle is known, then the nature of the singularity is
known; that is, n =n(b). Unfortunately, because the problem is elliptic, b
and c must be determined from the global solution. We shall show that this
is consistent with our global computed solutions. When surface tension is
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THE DIE-SWELL PROBLEM 411

non-zero, the separation angle is variable and the curvature becomes
infinite. When the surface tension is zero, the free surface separates at 180
degrees although macroscopically that may not appear to be the case.

If slip is added at the solid wall, the local eigenfunction solution no longer
exists. This indicates that the singularity has been relieved and the Michael
separation condition no longer applies. However, we would again expect
the free surface to separate at 180 degrees because the derivative of a
streamline direction cannot be discontinuous in a region of non-zero
velocity without requiring unbounded viscous and inertial forces.

3. Problem formulation

Consider a steady axisymmetric liquid jet with constant properties exiting
from a constant-diameter die (Fig. 1) into an inviscid gas with pressure set
to zero. The effect of gravity is neglected. The axial velocity is assumed to
be parabolic far upstream, and it becomes independent of the radial and
axial directions ('plug' or rectilinear flow) far downstream. The die radius is
r,, and the velocity in the radial and axial directions is u and w, respectively.
We further assume that v (the swirl velocity) is zero. To non-dimensionalize
the equations, velocities are scaled by the average axial velocity at the die
wh Lengths are scaled by the die radius rh time is scaled by rjw,, and the
pressure scale is fiwtlrt. The equation of motion then becomes

ip is the axisymmetric stream function such that

1 1
u = —Vx, w = -Vr, (6)

and r and z subscripts denote radial and axial derivatives, respectively.
No-slip boundary conditions are usually applied inside the die, z < 0,
although we also consider a slip coefficient as in (9). On the free surface,
defined by r = R(z), z>0, the normal stress is balanced by the surface-
tension coefficient times curvature:

^ } (7)
where the capillary number is defined by Ca = nwtlo, and a is the
surface-tension coefficient. The inviscid environment imposes no shear
stress on the free surface:

2R'(ur-wz) + (l-R'2)(uz + w,) = 0. (8)

Finally, the free-surface kinematic boundary condition requires that
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412 W. W. SCHULTZ AND C. GERVASIO

In addition, all physical quantities such as velocities and stresses are finite at
r = 0. In the case of infinite surface tension (zero capillary number), the
pressure difference across the free surface is infinite and we have one less
unknown since the free surface is cylindrically shaped.

Linearized, free-surface boundary conditions
The free surface swells by 13 per cent in typical finite-element calculations

without surface tension; less when surface tension is present. Because the
jet swell is small, we expand the free-surface boundary conditions (7) to (9)
about a cylinder of r = 1. Following Trogdon and Joseph (15), we separate
components of the pressure and the stream function from their asymptotic
values as z—• »:

V-(z,r) (10)

and

1 + Tff

where Uf is the rectilinear flow velocity. Describing the free-surface location
by R(z) = 1 + r)(z), we then assume that r), rp, and p and all their
z-derivatives are small, and discard the nonlinear quantities to obtain

+ C a - 1 r , / - C a - 1 ( r , " + r ? ) = 0) (12)

&& , ( & ) = 0 (13)

and

-ij,E-r,'U, = 0. (14)

Since the boundary conditions have been transferred to a constant
coordinate r = 1, we may take a z-derivative of (12) to eliminate the
constant term and to substitute the pressure gradient from the z-momentum
equation. Equation (14) is then used to eliminate the IJ'- and r/^-terms.
Integrating (14) and using the boundary condition i//(l, 0) = 1 gives

[
uf

(15)

The flow is represented using separate eigenfunctions inside and outside
the die that are matched at the exit, z = 0. The stream functions inside and
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THE DIE-SWELL PROBLEM 413

outside the die are given respectively by

nZ), z<0, (16)

, z>0. (17)

As z-*±°°, the flow reduces to the Poiseuille (with slip) and rectilinear
flows, respectively. For the sake of completeness, we have introduced a
dimensionless Navier slip coefficient fi, such that w + /3HV = 0 on the solid
surface at r = l. The no-slip limit is recovered in the limit /?—*0. In this
case, the far-field solution becomes Poiseuille flow tf> = r2(2 — r2).
Substituting (16) and (17) into (5) leads to two eigenvalue problems: inside
the die,

2<j>n = 0 , (18)

with the solid-wall boundary conditions <pn(l) = P<f>^{\) + <p'n(l) = 0; in the
jet,

(L + ^ ) 2 0 n = O, (19)

with linearized boundary conditions applied at r = 1 that are given by

4>:-4>'n-*tin = o (20)
and

4>: - 24>"n + (2 + 3 ^ ) 0 ; - (2a2. - Ca-1 <£ - Ca"1 an)4>n = 0. (21)

Here, L is a second-order ordinary differential operator given by the first
term of %. The eigenfunctions are (15)

) (22)

and

k = VM + aM<*n)]rUanr) - aManyUanr). (23)
The eigenvalues are found numerically using a complex-valued secant
method from the characteristic equations:

+ (1 + 2fJ)pJ2(pn) = 0 (24)

and

(25»

In the Umit of infinite surface tension, the eigenvalues of (25) reduce to the
roots of Ji(an) = 0, which are used for the Galerkin inner products in (IS).
In the limit as n -»*>, the eigenvalues differ by (n, 0), making it easy to
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414 W. W. SCHULTZ AND C. GERVASIO

TABLE 1. Outside eigenvalues an

n (CaUf)->=0 (Cal/,)-' = l (Ca t/,)"1 = 10 (Ca £/,)"' = 100
1 (2-8105,1-3399) (3-1091, 1-3046) (3-6671,0-7515) (3-8122,0-2641)
2 (6-0947,1-6342) (6-3478,1-6052) (6-8631,0-9848) (6-9964,0-3624)
3 (9-2888,1-8265) (9-5318,1-7914) (100291,11369) (10-1546,0-4347)
4 (12-4587,1-9661) (12-6977,1-9268) (13-1850,1-2518) (13-3051,0-4940)
5 (15-6183,2-0755) (15-8552,2-0333) (16-3362,1-3446) (16-4523,0-5451)

10 (31-3655,2-4185) (31-5992,2-3700) (32-0671,1-6498) (32-1725,0-7340)
20 (62-8039,2-7639) (63-0364,2-7118) (63-4977,1-9734) (63-5956,0-9687)
30 (94-2280,2-9663) (94-4603,2-9131) (94-9194,2-1681) (950144,11253)

verify that the expansion functions are complete. The forms (16) and (17)
require eigenvalues with positive real parts. Selected eigenvalues from (24)
and (25) are listed in Tables 1 and 2, respectively. The eigenvalues come in
conjugate pairs, so only those with positive imaginary parts are listed.

We find it advantageous to express equations (18) and (19) in the
standard form for an eigenvalue problem in order to find the adjoint
eigenvalue system. In a manner similar to but not the same as Smith (19)
and extended to axisymmetric Stokes flow by Yoo and Joseph (20), we
obtain the standard form as

and

<:)=<)•

where

•K I1]
and L is the previously defined second-order ordinary differential operator.
The auxiliary functions yB and ?„ are formed for convenience but are related
to the vorticity in the same way that <pn and $„ are related to the stream

TABLE 2. Inside eigenvalues pn

n 0 = 0 0 = 0-01 0 = 01
1 (4-46629,1-46747) (4-42362,1-45145) (4-18224,1-27376)
2 (7-69410,1-72697) (7-62127,1-70499) (7-28320,1-41216)
3 (10-87457,1-89494) (10-77266,1-86626) (10-38285,1-46876)
4 (1403889,202006) (13-90878,1-98357) (13-49336,1-49633)
5 (1719556,211994) (1703820,2-07449) (16-61235,1-51146)

10 (32-93833,2-44213) (32-66063,2-33772) (32-26587,1-53519)
20 (64-37527,2-77608) (63-93553,2-52568) (63-65046,1-54205)
30 (95-79914,2-97457) (95-26786,2-58786) (95-05548,1-54339)
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THE DIE-SWELL PROBLEM 415

function; that is,

r< + 40A fQ,(4>n(r)\
-Sr2 I ±Lpl\ yn(r) I 'rJ 1 + 40 V

0 i U )

Adjoint eigenvalue problem
For matching, we need only develop the adjoint system for either the

inside or outside of the die. We develop the adjoint system for the inside,
since the boundary conditions are simpler. The natural definition for the
inner product of the solution vector is

<x,y>=f-x.y'dr. (31)
Jo T

Here, * denotes the complex conjugate and x and y are vector functions of
r. From (31), the adjoint operator is the transpose, M = M r , resulting in the
adjoint eigenfunction iH = [y*, <p*]T. It is the complex conjugate of the
original eigenvector but 'upside down'. In addition to showing that the
eigenvalues and adjoint eigenvalues are identical, it is easily shown that the
adjoint eigenfunctions are orthogonal to the eigenfunctions of the inside
expansion (21); that is,

oo>- «"*-
Matching

By matching, we can find the sets of complex coefficients CH and Dn for
continuous solutions at the die exit. The coefficients will vary depending
on which of many methods is chosen. Trogdon and Joseph (14,15) match
the stream function and the first three z -derivatives at z = 0. This is
sufficient to ensure a continuous solution at the matching location for the
fourth-order operator. However, we match the stream function and r times
vorticity, and their first z-derivatives:

°*> - O - °-> <33>
and

where to is the only non-zero component of vorticity, and is given by
<o = wr-ut = (l/r)£xj>. Taking inner products of (34) with the conjugate
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416 W. W. SCHULTZ AND C. GERVASIO

of the inside adjoint eigenfunctions i n , and truncating the infinite sum to
N, yields

>=fm+^Bm (35)

and

_ n .._, = - — * „ , (36)
-AT <*n Pm

where Uf has been eliminated using (30) evaluated at r = 1 and 2 = 0. The
orthogonality property allows Cm to be eliminated from these equations to
reduce the linear system by half, giving

i%mn-Gm, + ̂  Aj) =fm. (37)
-N °<n \ Pm I

The coefficients are

2PmJl(Pm)

t ] + F(fi, m, n), (38)

and

( ( t ) (Ji)) Pn,), (41)
where F(/3, m, n) is a complicated function that becomes zero for the
no-slip case /3—>0. We do not list F(/3, m, n) here. These integrations were
performed with the symbolic manipulator REDUCE and with the aid of some
integrals listed by Yoo and Joseph (20). The integrals were checked by
numerical integration.

Because Dn and D_n are complex conjugates, we need solve for only 2N
real unknowns, 9t(DB) and 3 (D n ) for n = l,2,...,N and not for the 2N
complex unknowns Dn in (15). Equating the real and imaginary parts of (37)
for m = 1, 2,..., N gives a 2N x 2N real linear system to be solved for the
unknown coefficients Dn. Since we use the orthogonal and conjugate
properties, the linear system solved here is one-fourth the size of that for
the equivalent truncation in (15).
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THE DIE-SWELL PROBLEM 417

4. Results

Solution of the linear system

We have found the algebraic system (37) to be rather ill-conditioned.
Double-precision arithmetic is required even for modest N. Surprisingly, we
find that using Gaussian elimination on the complex system does not yield
results as accurate as solving the same system with twice the number of real
equations. Presumably there are advantages in pivoting the real and
imaginary parts separately.

As we shall show, the solutions exhibit oscillations. An attempt to inhibit
these oscillations by overdetermining the system was unsuccessful; that is,
taking more inner products than basis functions had little effect on the
solution convergence or the oscillations.

Matching

To compare the matching procedures, we define an E2 (or RMS) error as

]= f jz £ - [QM - Q0U,(O]2] , (42)

where Q represents a flow quantity and M is the number of evenly-spaced
collocation points in the r-direction such that rm = m/M. This error
definition is a discretized version of the I^-norm corresponding to the inner
product weighted by 1/r. The value of M we use is 500, which is significantly
more than twice the number of oscillations in the error.

The matching of the stream function at the exit is quite good both for the
method of Trogdon and Joseph (15) and for that presented above. Instead,
we compare the axial and radial velocities, where the oscillations occur.
Figures 3 show the matching of the axial and radial velocities inside and
outside the die for three values of N using the adjoint method and when the
surface tension and slip coefficients are zero. Note that the number of
oscillations is half the truncation number N. In all cases, the inner-
expansion flow variables oscillate about the outer-expansion solution, which
is relatively free of oscillations. These 'Gibbs' oscillations are common at
boundary-condition discontinuities. The results using the inner-product
rJi(qnr) method from (15) are more sensitive to an apparent singularity at

The convergence of E2 is shown in Fig. 4 for the adjoint method and the
method of Trogdon and Joseph (15) for the case with zero surface tension
and slip. For the adjoint method, the radial and axial velocities converge
roughly as O(N~^) and the stream function at a rate greater than O(N~l).
The spurious velocity oscillations do not decrease with increasing truncation
number N for the method of Trogdon and Joseph as shown in Fig. 4. The
convergence rates for both methods are unaffected by adding surface
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Fio. 3. Velocity matching at the exit x = 0: velocities
inside the die; velocities outside the die. The axial
velocities, in contrast to the radial velocities, are non-zero at

the centre-line r = 0. (a) N = 25

n
a
c
r
H
N

Z
o
n
ow
50

 at U
niversity of M

ichigan on Septem
ber 9, 2014

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 

http://qjmam.oxfordjournals.org/


JO

3-0

2-5

20

1-5

10

0-5

0 0

Velocity

-

-

-

_^—•

***** 1

x\\\ \
1 1 1

00 0-2 0-4 0-6
r

Fio. 3. (c) N = 100

0-8

Matching
error

10

001

0-00001

0-0011

0-00011

X
en
O
w

m
r
r
-o
50
O
03
rm

Fio. 4. RMS matching convergence: adjoint eigen-
function method; the method of Trogdon and Joseph
(15); O stream function; • axial velocity; O radial velocity

 at U
niversity of M

ichigan on Septem
ber 9, 2014

http://qjm
am

.oxfordjournals.org/
D

ow
nloaded from

 

http://qjmam.oxfordjournals.org/


420 W. W. SCHULTZ AND C. GERVASIO

tension since the strength of the singularity is not modified. In the case of
infinite surface tension, we recover the coefficients given by Trogdon and
Joseph (14) when we use their method. Other than the poorer matching at
the exit of the Trogdon and Joseph method, the two methods show similar
results.

The stresses, as expected from their higher derivatives, show larger
amplitude oscillations and they do not converge with increasing truncation
(21). Because the shear stress is discontinuous at the exit, we would expect
larger stress oscillations in this global approach. Presumably some conver-
gence acceleration procedures could be applied to get the stresses to
converge.

Free-surface profiles

The free-surface swell is shown in Fig. 5 for various values of (Ca Vf)~
l.

The swell is largest for zero surface tension; about 11-3 percent. The
free-surface slope T/' is shown for small and zero surface tensions and
different N in Fig. 6. This shows that small surface tension and truncation
play an important role only near the exit. It appears that r\' at the origin is
converging to zero for large N (represented by a linear slope as z —*0 on
this log-log plot).

The convergence of »j'(0) is shown in Fig. 7 for zero and small surface
tension. The curve for Ca~1 = 0 is consistent with T / ' ( 0 ) - » 0 , although at a
slow algebraic convergence rate O(N~^). The convergence is slow at the
origin because the exponential decay of the eigenfunction does not
contribute at z = 0. The most important conclusion that can be drawn from
Fig. 7 is that the global analysis appears to agree with the local analysis in
the limit of infinite truncation number. We find from the global analysis that
the free-surface slope exiting the die is zero. Previous global analyses have
not been able to satisfactorily demonstrate that local and global solutions
agree.

In section 2 we indicated that the free surface is no longer constrained to
separate at r/'(0) = 0 when surface tension is non-zero. The curve for
Ca~1 = 0-l in Fig. 7 shows that contrary to the macroscopic view of the
separation trends in Fig. 5, the separation angle can appear to increase
when surface tension is added. For the limits of the truncation used, it is
unclear whether r/(0)—*0 for this surface-tension value. On the other hand,
it is quite clear that r;'(0) is not converging to zero for the larger
surface-tension curve Ca"1 = 1.

Effect of adding slip

We have indicated that increased surface tension does not improve the
matching convergence, since it does not affect the singularity. Adding slip
relieves the singularity, and hence, even small values of slip can improve the
convergence, as shown in Fig. 8. This figure reproduces the adjoint results
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001

FIG. 9. Convergence of free-surface slope at exit with Ca ' = 0:

in Fig. 4 for zero surface tension and no slip and adds the convergence
curves for the same method when small slip, 0 = 0-01, is added. These
figures show trends toward exponential convergence, typical of spectral
results applied to problems without singularities. Adding more slip greatly
improves the matching convergence.

We also indicated in section 2 that the free surface is still constrained to
separate at 77'(0) = 0 when slip is present. Figure 9 shows the convergence
of 77'(0) when shp is added to the zero-surface-tension solution. It is easily
seen that slip facilitates the convergence to 7/'(0)—*•().

5. Conclusions
The global analysis presented here agrees with the local analysis

presented by Michael (7). This states that the free-surface slope at the die is
zero when surface tension is absent. Discrepancies between these computa-
tions and experiments or other computations can be explained by very high
or infinite free-surface curvature at the exit. The solution convergence is
slow at the exit; consequently, many terms are needed. Using the inner
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FIG. 10. Error in kinematic boundary condition from linearization:
free-surface location from (15); free-surface location where ip =

product with the adjoint reduces the size of the linear system by half,
allowing us to use more terms than the Trogdon and Joseph method for the
same computation power. Perhaps more importantly, the size of the
oscillations is reduced, giving closer matching and faster convergence.

There are two problems with the approach used in this study. The first is
that the slow convergence requires extrapolation to infinite truncation to
reach some of the conclusions. This is typical of the use of global methods
on problems that have singularities (22). We expect that the solution
convergence could be unproved using acceleration techniques (a simple
application of Shanks's transformation did not help), but the best approach
would be to handle the singularity separately. We are presently undertaking
this task using singular finite-element methods (10).

The second problem is that the boundary conditions are linearized about
a cylindrical surface with no swell. This assumes that TJ and TJ' are small,
which we can now check a posteriori. The value of r) is approximately 0-1
while the largest value of r\', occurring for zero surface tension, is less than
0-16, the same order as the jet swell. We can check our linearization
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assumptions more carefully by testing the fully nonlinear boundary condi-
tions. For example, we compare the location where xp = 1 to the free-
surface location predicted by (15) in Fig. 10. For this example, we see that
the agreement is less than satisfactory, although the convergence trends of
the separation angle are similar. It can be shown that adding slip or surface
tension makes the linearization more appropriate.

It is obvious that a fully nonlinear approach using singular finite-element
methods is desired to confirm these observations.
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