
J. Fluid Mech. (1991), vol. 229, p p .  135158 
Printed in Great Britain 

135 

Evolution of weakly nonlinear water waves in the 
presence of viscosity and surfactant 

By S. W. JOO't, A. F. MESSITER* A N D  W. W. SCHULTZ' 
Department of Mechanical Engineering and Applied Mechanics, University of Michigan, 

Ann Arbor, MI 48109-2125, USA 
Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA 

(Received 21 August 1989 and in revised form 23 January 1991) 

A formal derivation of evolution equations is given for viscous gravity waves and 
viscous capillary-gravity waves with surfactants in water of infinite depth. Multiple 
scales are used to describe the slow modulation of a wave packet, and matched 
asymptotic expansions are introduced to represent the viscous boundary layer at  the 
free surface. The resulting dissipative nonlinear Schrodinger equations show that the 
largest terms in the damping coefficients are unaltered from previous linear results 
up to third order in the amplitude expansions. The modulational instability of 
infinite wavetrains of small but finite amplitude is studied numerically. The results 
show the effect of viscosity and surfactants on the Benjamin-Feir instability and 
subsequent nonlinear evolution. In an inviscid limit for capillary-gravity waves, a 
small-amplitude recurrence is observed that is not directly related to the 
Benjamin-Feir instability. 

1. Introduction 
Although water waves are usually described adequately by inviscid-flow theory, 

the effects of viscosity and interfacial properties become important for waves of short 
wavelength. For sufficiently short waves, the shear-stress boundary condition, which 
is neglected in classical studies, must then be satisfied at the free surface. If the free 
surface is clean and the air above is ignored, the shear-stress vanishes. However, 
when a layer of contaminant (surfactant) is present on the free surface, its 
concentration varies with the motion of the free surface, causing a surface-tension 
gradient that must be balanced by a non-zero surface shear stress. Studying waves 
of short wavelength is important in radar remote sensing of the sea surface, and 
surfactants affect these remote images strongly. 

The highly dissipative effect of surfactants has been observed since classical times 
(Pliny, 77 AD). A qualitative explanation of dissipation caused by variations in 
surface tension was given by Reynolds (1880), as cited by Lamb (1932). Levich (1941, 
1962) later performed a more thorough analysis, and an extension of this work was 
described in the review by Lucassen-Reynders & Lucassen (1969). Miles (1967) has 
described surface-wave damping in closed basins, including the effects of a surfactant 
as well as of solid boundaries. In these mathematical models the surfactant was 
considered as an interfacial film of infinitesimal thickness, with surface tension 
determined by surfactant concentration. A series of more complicated models 
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proposed by Goodrich (1960, 1962) treated the surfactant as an anisotropic 
rheological body. A simpler viscoelastic interfacial constitutive equation that 
compared favourably with experimental measurements was developed by Addison & 
Schechter (1979). Extensive references describing the various effects of surfactants 
on water waves are given by Lucassen (1982). 

In  the aforementioned investigations, the study of viscous damping associated 
with water waves has been confined to  linear theory, in which the wave amplitude 
is infinitesimal and the free-surface boundary conditions are applied a t  a mean 
surface. For weakly nonlinear waves without damping, the slow amplitude evolution 
is described by the nonlinear Schrodinger equation (NLS), first introduced for water 
waves by Zakharov (1968) with a variational method and obtained by Hasimoto & 
Ono ( 1972) using a multivariable method. Comprehensive discussions and extensive 
references for the nonlinear dynamics of deep-water gravity waves were given in the 
reviews by Yuen & Lake (1980, 1982) and in the book by Mei (1983). An extension 
to capillary-gravity waves was given by Djordjevic & Redekopp (1977). 

The damping effect has sometimes been included in the analysis of deep-water 
gravity wavcs through the addition of conjectured small dissipation terms in the 
NLS equation. While a generally accepted model uses a linear dissipation term, Lake 
et al. (1977) and Pereira & Stenflo (1977) included nonlinear representations. Miles 
(1988) considered weakly nonlinear, weakly damped, deep-water capillary-gravity 
waves, and allowed the possibility of a contaminated surface. The NLS equation, 
augmented by a linear damping term, was obtained with the known values of the 
damping coefficient stated for a clean surface or for an inextensible contaminated 
surface. 

The present work develops amplitude equations using matched asymptotic 
expansions as well as multiple scales, since both boundary-layer and potential-flow 
solutions are required. Flow details are shown for specific choices concerning the 
relative orders of magnitude of three small parameters representing non-dimensional 
amplitude, viscosity and surface-tension variation. Non-diffusive insoluble sur- 
factants are considered, and the surface- tension changes are represented in terms of 
surfactant-concentration gradients. A dissipative nonlinear Schrodinger equation is 
obtained, and in this respect the derivation is an elaboration of the work of Miles 
(1988). An expression for the damping coefficient is given, higher-harmonic 
resonances are noted, a modification for pure capillary waves is shown, and some 
numerical results are obtained. 

We first consider gravity waves and then capillary-gravity waves with surfactants. 
In  both cases, the analyses are pertinent to wave packets with narrow-banded 
spectra. In  typical ocean wave spectra, one might expect that short viscous waves 
would appear in a broad band ; e.g. the wavelets described by Kawai (1979) are prob- 
ably more broad-banded than narrow-banded. However, Henderson & Hammack 
(1987) observed a narrow- banded spectrum of capillary-gravity waves. Therefore, it 
is appropriate as a first attempt to describe nonlinear viscous waves by wave-packet 
equations except for resonant cases, for which separate consideration should be 
given. For gravity waves, we examine the case when the thickness of the free-surface 
boundary layer is of the same order as the wave amplitude. For capillary-gravity 
waves, the boundary-layer thickness is considered to be much smaller than the wave 
amplitude, but a stronger dissipative effect is exhibited due to the surfactant. In  
both cases, the resulting equation is a dissipative nonlinear Schrodinger equation 
(dissipative NLS), which contains a linear dissipation term ; the other terms remain 
unaltered from their counterparts for inviscid flow. 
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We adopt the multiple-scale method to represent the wave modulation and a 
boundary-layer scaling to incorporate the effects of viscosity and surfactant. For a 
water depth that is large in comparison with the length of the wave packet, a slow 
modulation in the vertical direction must be added, as introduced by McGoldrick 
(1970) and explained further by Mei (1983). The free-surface boundary layer has been 
considered in several studies of the mean drift in water waves, each using coordinates 
such that a boundary-layer variable could be measured from the actual location of 
the free surface. Longuet-Higgins (1953) and Liu & Davis (1977) used a local 
curvilinear coordinate system moving with the free surface, Phillips (1966) and Craik 
(1982) chose a conformal transformation, and Unliiata & Mei (1970) introduced a 
Lagrangian system. In the present study, our goal is somewhat different, and the 
analysis is extended to higher order. One choice of coordinates that we considered 
initially was an orthogonal system obtained from a higher-order conformal 
transformation. It appeared to us, however, that a more straightforward formulation 
can be achieved by a non-orthogonal system with one coordinate measured 
horizontally and the other measured vertically from the exact location of the free 
surface. 

The formulation for two-dimensional capillary-gravity waves is developed in $2, 
where the coordinate system and governing equations are presented. Suitable 
variables for the methods of multiple scales and matched asymptotic expansions are 
introduced, and the first-order inner and outer solutions are derived. In $3, a 
dissipative NLS equation is derived for viscous gravity waves with slowly varying 
amplitude ; in $4, capillary effects are added. The resulting dissipative NLS equation 
describes the effect of surfactants on the evolution of weakly nonlinear waves. Non- 
uniformities associated with the second- and the third-harmonic resonances and with 
pure capillary waves are discussed. Numerical solutions to the dissipative NLS 
equations are obtained in $5, showing the modulation of viscous wave envelopes in 
the presence of surfactants. 

2. Formulation 
We consider the slow evolution of two-dimensional surface waves influenced by an 

insoluble surfactant as well as by dispersion and weak nonlinearity. The extent of the 
wave packet is taken to be small in comparison with the fluid depth, so that the 
depth may be regarded as infinite. The fluid below the free surface has constant 
density p and viscosity p, and the air above the free surface will be ignored. The 
surfactant is characterized by a surface-dilational modulus M ,  which measures the 
resistance to the compression/expansion type of surface deformation (Lucassen 
1982). Changes in surfactant concentration cause the surface tension c to vary in 
time and space. The flow is caused by initial surface disturbances with small but 
finite amplitude, and is irrotational everywhere except in the boundary layer 
beneath the free surface, since the viscosity is considered to be small. 

In general, the boundary-layer thickness may be much smaller than the wave 
amplitude. Since the boundary-layer part of the solution is expressed in terms of an 
inner variable measured from the surface, matching with an outer potential-flow 
solution is facilitated by the introduction of a coordinate system that moves with the 
free surface. One such system is a non-orthogonal coordinate system (x, y )  generated 
by subtracting the free-surface elevation 9 from the vertical coordinate of a Cartesian 
system (x’, y’) : 

2 = x’, y = y’-q(x,t) ,  (2.1) 
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where r](x, t )  = ~ ( x ‘ ,  t ) ,  and y is directed upward from the mean free surface. The two 
components of the momentum equation are obtained by applying (2.1) to the non- 
dimensional Navier-Stokes equations expressed in the Cartesian coordinate system 
( 2 ’ 7  y’) : 

Ut +uuz + (v- Tt  - W x )  uy = -Px + r z p y  + c[uzz + ( 1  + 7 3  uyy- 27, uzy-Tzz uyl3 
(2 .2a)  

vt + uv, + (v - Tt  - U Y z )  vy = -P, + E[%z + (1 + T 3  vyy - 2% vzy - Tzz vyl. (2.2 b )  

Here, the reciprocals of the wavenumber k and the frequency oo of the linear 
fundamental wave are used as the length and time scales, respectively. The 
horizontal and vertical velocity components u and v are scaled by w a l k ,  and the 
pressure p (with the hydrostatic component subtracted) is scaled by p u t / k 2 .  Since the 
velocity vector is still written using the base vectors of the Cartesian coordinate 
system (x’, y’), only the chain rule has been used to  derive (2.2). The reciprocal of the 
Reynolds number, which is the primary small parameter, is defined as E = k2p/(pw,).  
From the continuity equation for constant density, we have 

u,-T#lzuy+wy = 0. (2.3) 

If the elements of the non-dimensional stress tensor referred to the (x’,y’) 
coordinate system are denoted by Ti,, and n, and n2 are the x‘ and y’ components of 
the unit vector normal to the surface, the surface force per unit area has x’ and y’ 
components F, and F, given by Fi = ~ ~ , n ~ .  Since the slope of the free surface is vz, 
the components of the outward normal are n, = -Tx/L and n2 = 1/L, where 
L = (1  +q;)i. The normal and tangential stresses then become Fini and Fit i ,  where 
t, = n2 and t ,  = -nl. The normal stress on the free surface should balance the product 
of the curvature and the surface-tension coefficient when the pressure above the 
free surface is taken to be zero. In  the present coordinate system, this condition 
is expressed as 

where G = kg/w;  and T = k3u / (pwi ) .  Here, g is the gravitational acceleration acting 
vertically downward, and u is the local surface-tension coefficient. The boundary 
condition (2.4) is applied at  the free surface which is exactly y = 0 due to the 
transformation (2.1). 

The tangential stress on the free surface balances the surface-tension gradient us, 
induced by the surfactant. If we assume that the surface tension u is a function only 
of the local surfactant concentration r, we have, in dimensional form: 

where s is a coordinate along the surface, 

is the surface dilational modulus, and I‘, is the surfactant concentration for the 
undisturbed surface, In  the definition of M ,  a local linear approximation for 
the surface-tension variation has been used near go, the undisturbed value for the 
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surface-tension coefficient ; thus u = uo - M ( F -  To)/T0. Since the surface-tension 
coefficient variations do not occur in the normal-stress boundary condition (2.4) to 
the order considered here, we may replace T by To, the undisturbed surface-tension 
coefficient. The required surface shear-stress condition then becomes 

K 
8 

2q,(v,-u,+q2uy)+(1-q~)(~,+v,-q,wy) = --Lr, at y = 0, (2.5) 

where i? = k3M/put and r = r/ro are, respectively, the non-dimensional surface 
dilational modulus and surfactant concentration. 

When the surfactant is insoluble and non-diffusive (no diffusion along the surface 
nor to and from the bulk fluid), the mass in a surface material element is conserved, 
or D(FZ) /Dt  = 0, where DIDt indicates a material derivative and C is the area of the 
associated surface material element. The surfactant conservation equation (van den 
Tempe1 & van de Riet 1965) in the present coordinate system simplifies to 

r 
L2 r,+ur, = - - ( ~ x + ~ x v x ) .  (2.7) 

The governing equations are completed with the kinematic condition : 

w = qt+uqX at y = 0. (2.8) 
We also require the wave amplitude to be small as measured by a, the initial 

amplitude of the fundamental mode. The relative importance of nonlinearity, 
surfactant, and viscosity is determined through the scaling of a, K ,  and 8, respectively. 
Here, we choose E = d, where K = 0(1), to observe the dissipative effect of 
surfactants in the first approximation. This scaling allows the surfactant con- 
centration to be near the value that causes maximum damping, and thus provides 
the most interesting limit. If k is scaled to be much larger, our analysis gives a 
constant damping coefficient that is recovered simply by taking K --f 00 using the 
present scaling. For a wave with the minimum wave speed (G = To), water with 
p = 1000 kg/m3, g = 9.8 m/s2, and go = 0.074 N/m, has the value d x 0.04. A 
surface pressure (change in surface-tension coefficient from the undisturbed value) of 
0.006 N/m is possible in a ship wake and M might be as large as 0.03 n/n, depending 
on the nature of the surfactant (Lucassen-Reynders & Lucassen 1969). For these 
values, K is approximately 5, which we consider to be O(1).  The relationship between 
a and the boundary-layer thickness, which is O(&, is chosen to determine the viscous 
effects in the amplitude equation a t  third order. 

We introduce the slow variables 

T = a2t, 6 = a(x-c,t), g = ay, (2.9) 
where cg denotes the group velocity of the primary progressive wave. The first two 
small scales are identical to those used by Davey & Stewartson (1974) and Djordjevic 
& Redekopp (1977) for an inviscid fluid with finite depth. The slow modulation in 
the vertical direction is added to suppress the inconsistency in the third-order 
solutions for infinite depth, as explained by Mei (1983) for an inviscid fluid. The slow 
variation in the horizontal direction thus requires a corresponding long-scale 
variation in the vertical direction, and the non-dimensional depth is taken to be 
much larger than the extent of the wave packet, which is O(a-'). 

The flow outside the boundary layer can be described by a velocity potential #, 
which should satisfy the Laplace equation. In the present coordinate system, 

(2.10) 
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We expand the velocity potential $ for small amplitude a :  
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q5 = a5bl+a2$,+a3$,+ ... . (2.11) 

By introducing the slow variables (2.9) and substituting the expansion (2.11) into 
(2.10), we obtain a sequence of equations for the q5i. The lowest-order equation is the 
Laplace one, while higher-order equations are Poisson ones with derivatives of the 
lowest-order terms providing the forcing. The lowest-order equation gives 

$1 = (AE + ACE-') ey + $!(& g, 7), (2.12) 

where E = exp{i(z-t)} and the superscript c denotes the complex conjugate. The 
function A ( t , 7 )  describes a slow variation of amplitude with a mean value of $ a t  
7 = 0, since a is the initial amplitude of this mode. Since the factor ey in (2.12) decays 
exponentially with depth, the slowly varying amplitude A need not depend on g. The 
long-scale velocity potential $: ( t ,g ,7 )  satisfies the Laplace equation in 6 and 9 to 
avoid secular terms arising from the equation for #3. Also, the boundary condition 
$& = 0 at  g = 0 should be imposed to suppress secular terms in the second-order free- 
surface elevation r2 below. In  the present study, we set $: = 0. An example of non- 
zero 4: for a time-varying current is given by Mei (1983). 

The velocity components are obtained from the gradient of the velocity potential 
(2.11) in the 2' and y' coordinates with the transformation (2.1): 

u = ai(AE-A'I3-l) eY+a2($,, + q515-~1, &) + . . . , ( 2 . 1 3 ~ )  
2) = a ( A E + A C E - 1 ) e ~ + ~ 2 $ 2 , + a 3 ( $ 3 , + $ 2 , - ) +  ... . (2.13b) 

From the Bernoulli equation, the pressure for the outer region of irrotational flow is 

P = ~ ~ ~ ~ ~ - ~ c ~ - 1 ~ ~ ~ - ~ 2 ~ $ 2 , - ~ , $ 1 5 - r 1 , # 1 , + ~ ~ $ ~ , + $ ~ , ~ 1 - - a 3 ~ $ 3 , - ~ c , $ 2 5 + $ l r  

- r l t $ 2 y + ~ $ 2 1 / - r 2 t + ~ g r 1 5 ~ ~ l y + ~ ~ 2 2 + $ l s ~ $ l ~ - ~ l z # 1 ~ $ l y l +  ... . (2.14) 

In  the boundary layer, the system (2.2)-(2.8) is solved after introducing the slow 
variables (2.9) and the inner coordinate 

(2.15) 

and expanding the velocity components, pressure surfactant concentration, and free- 
surface elevation for large Reynolds number. The gauge functions for the inner 
expansions are to be determined in a stepwise manner after the scale of the amplitude 
is chosen. The differential equations for the first-order boundary-layer quantities u:, 
$r,pf, and rl are independent of the amplitude scale, with the boundary condition 
for u: obtained by differentiating (2.6) with respect to time and applying (2.7). The 
solutions must also match with the outer solutions found from (2.13)-(2.14). The 
first-order inner solutions, surfactant concentration rl, and surface elevation q1 
become 

q1 = p: = ivr = iAE + c.c., ( 2 . 1 6 ~ )  
u: = (&,+i)AE+c.c., (2.16b) 
r, = (&,+i)AE+c.c., ( 2 . 1 6 ~ )  

where 
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and C.C. denotes the complex conjugate. The linear dispersion equation 

G+T, = 1 (2.17) 

is obtained from the boundary and matching conditions for the pressure and is not 
affected by surfactants. 

Further development of the solutions to (2.2)-(2.8) is summarized in the following 
sections. A more complete development of the algebraic details is given by Joo 
(1989). A t  third order, where we terminate the analysis, the matching condition 
yields the evolution equation for A((,7) in the form of a dissipative NLS equation 
that includes the effects of viscosity, surface tension, and surfactant. 

3. Gravity waves 
We first examine the case when the capillary effect is absent; i.e. we take 

T = r = 0 and then, by necessity, K = 0. The wave amplitude is chosen to be of 
the same order as the boundary-layer thickness, so that 

ha = €4, (3.1) 
where h is an 0(1) proportionality constant. For the first few terms, i t  can be verified 
that the gauge functions for the inner expansions are 

S,(s) = @, (3.2) 

where h is inserted for convenience. The first-order inner and outer solutions are 
identical to those in the previous section except that G is replaced by unity, and Q1 
in (2.16b) is absent; thus u: is independent of y*. 

The second-order term, O(s) ,  in the potential is found to be 

q5z = iA2E2eg-iAAEEyeY+c.c.+q5:(6,q,7). (3.3) 

The solution to the homogeneous equation, F2(& y, 7 )  E2 e2Y +Fl([, g ,  7 )  E eg + c.c., is 
not included. Matching shows that F2 = 0. The other coefficient Fl is set equal to 
zero; taking Fl + 0 would be equivalent to changing A by an amount aFl. The long- 
scale velocity potential $: satisfies the Laplace equation in ( and g which can be 
obtained by extending the expansions of the irrotationality condition to the fourth 
order. (From another viewpoint, the flow at large distances such that [ = 0(1) and 
q = O( I )  is described in this way.) The boundary condition for 4: will be determined 
at third order. The second-order velocity components and the pressure in the outer 
region are found from (2.13)-(2.14). In the boundary layer, the second-order 
equations are found from the expansions of (2.2)-(2.8). After matching with the outer 
solutions, the second-order solutions become 

V: = U E y *  + iA2E2 - iA,E + c.c., 
l j l z  = -A2E2+gAEE+c.c. ,  

p z  = iAAEy*-A2E2+$45E+c.c., 

(3.4a) 
(3.4b) 
(3.4c) 

ui = h2/2(1-i)exp -y* AE+ihAEy*-A2E2+AAEE+c.c.+21A12. ( 3 . 4 4  (5; ) 
A long-scale free-surface elevation $(5 ,7)  that could appear in ((3.4b) as an 
integration constant has been set equal to zero as a consequence of matching the 
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pressures. The group velocity cg has been replaced by i, again so t’hat the pressures 
can be matched. 

The differential equation for q5, is found from the third-order terms in (2.10). The 
solution to the homogeneous equation is dropped for the same reason as cited for q52. 
The solution then has the form 

$3 = -P33E3eY+ AA,E2(&g+ yeu) -AAi(+u+ y e”)-p,,Ey2eu + C.C. + &(E, g,  7). 

(3.5) 

The outer solutions v, and p ,  for the O(& terms in the vertical component of the 
velocity and the hydrodynamic pressure are then obtained from (2.13b) and (2.14) 

The solution vt for the boundary layer at third order is, after matching with 
(2.13 b), 

+A2$4Ey*2- 2iAA,Ey* -3j3E3 +$4A,E2 -$4Ai + C.C. + q5!& (3.6) 

The third-order free-surface elevation then becomes 

q3 = -$iA3E3 + 3ilAI2AE + 2h2AE+2iAA,E2+34,E +A,E+q:(c ,  T ) ,  (3.7) 

a t  g = O  where the condition alA12 q5& = 2 -  
a t  

has been imposed to suppress secular terms. The equations for p,* obtained from 
(2.2b) can be solved with the boundary condition generated from (2.4) to yield 

p,* = &12AEy*2-AA2E2y*+&4,Ey* +4A2AE-$iA3E3+ 3ilAI2AE 

+ 2iAA,E2 +&4,E+A,E+ C.C. -2AIAI2y* + 7:(6,7). (3.9) 

The matching condition for this pressure with the outer solution (2.14) finally gives 

q 3 6 , 7 )  = at  !I= 0 (3.10) 

for terms independent of E, and 

A,+2A2A+~iA,, = -2iIAI2A (3.11) 
for terms linear in E. 

Except for the additional term 2A2A, the amplitude equation (3.11) is identical to  
the NLS equation that governs the amplitude modulation of gravity waves in 
inviscid flow. It is thus appropriate to  call the amplitude equation a dissipative NLS 
equation. From (3.11), the integral of IAI2 with respect to 6 is easily found to decay 
as exp ( - 4A27). 

For infinite wavetrains independent off;, the solution A0(7) of (3.11) that satisfies 
A,(O) = a, is 

~ ~ ( 7 )  = a,exp - ~ 2 ; \ 2 ~ + - - ~ l a O l 2 ( e - 4 ~ ~ ~ -  I)], (3.12) 

where a, is a complex constant with laOl = i, as explained earlier. Here, the expression 
la,12 is kept to show the amplitude dependence explicitly. In  the inviscid limit, 
A + O ,  the Stokes wave (to third order) is recovered. The decaying factor in (3.12), 
combined with (2.9) and (3.1), becomes exp ( - 2 e t ) .  Thus, the damping coefficient D, 

1 [ 2 i  
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for weakly nonlinear gravity waves is D, = 2s, which is idcntical to the linear result 
of Stokes (1845). In retrospect, we could instead have shown that the damping 
coefficient is unaffected by nonlinearity at this order using the dissipation function 
and its expansion for small amplitude. Viscosity also causes a phase shift, as can be 
seen from (3.12). 

4. Capillary-gravity waves 
We now consider capillary-gravity waves with a surfactant on the free surface. 

For the gravity wave in the previous section, the amplitude of the wave is chosen to 
be of the same order as the boundary-layer thickness so that nonlinearity and 
dissipation both appear in the amplitude equation. When a surfactant is present, 
however, lower-order dissipation is expected; thus, the amplitude is chosen to be of 
lower order than the boundary-layer thickness : 

Aa = &, (4.1) 

where h is again a proportionality constant. The gauge functions for the inner 
expansions now become 

&&) = $7. (4.2) 

The first-order solutions, O(d) ,  are given by (2.13)-(2.14) for the outer region of 
irrotational flow and by (2.16) for the boundary layer. Since the non-dimensional 
surface dilational modulus K and the Weber number To are non-zero, the boundary- 
layer solutions for the horizontal velocity component and displacement are affected 
by the surfactant a t  the leading order, and the linear dispersion relationship (2.17) 
is that for capillary-gravity waves. 

The equation for the O(@) term q52 in the velocity potential is identical to  that for 
the gravity wave (because and ql are identical), but the appropriate solution now 
includes a solution of the homogeneous equation : 

q52 = FEZ e2@ + iAzE2 ev - iA,Ey ev + c.c. + &(E,  g, T ) ,  (4.3) 

where F ( ~ , T )  can be determined through matching. Again, the long-scale potential 4; 
should satisfy the Laplace equation, with the boundary condition to be determined 
through matching of the third-order solutions. 

The boundary-layer equations and boundary conditions for the O(d) terms are 
found as before by substituting the expansions into (2.2) - (2.8). Some of the terms 
are different from those for gravity waves because the boundary-layer thickness is 
now small in comparison with the wave amplitude. Only the main results are shown 
here; details are given by Joo (1989). 

After determining the vertical velocity component vz as before, the second-order 
free-surface elevation becomes 

q2 = iFE2 - A2E2 + ( 1 - cg ) A,  E + c . c . , (4.4) 

where the long-scale quantity T,$((, 8 , ~ )  is omitted in anticipation of the matching 
condition for the second-order pressure. After (4.4) is substituted into the boundary 
condition for p:, the inner solution for the second-order pressure is obtained : 

p z  = (1 + 3T0) ($--A2) E2 + (1 -cg +2T0)A,E+ C.C. (4.5) 



144 S. W .  JOO, A. F .  Messiter and W. W. Schultz 

Matching (4.5) with the outer solution (2.14) gives the slowly varying amplitude 4’ 
i3 To and the group velocity cg as 

A2, (4.6) 

cg = t(l +2T0), (4.7) 

F = -  
1 - 3T0 

respectively. It is noteworthy that q2 and p: are not affected by viscosity and 
surfactant. Since the amplitude a is taken to  be much larger than the boundary-layer 
thickness &, nonlinearity is dominant ; the correction due to viscosity or surfactant 
on surface elevation and surface pressure first appear a t  third order. The group 
velocity (4.7) thus agrees with the relationship for a linear capillary-gravity wave in 
inviscid flow. Also, F blows up as To --f 5 ;  a second-harmonic resonance persists in the 
presence of dissipative effects. A complete discussion of this resonant behaviour was 
given by McGoldrick (1970). A modified asymptotic flow description for small values 
of ITo - $1 is discussed below. 

The boundary-layer solution for u: is affected by the nonlinear behaviour of the 
surfactant. However, 7, and p: are not affected by u: for the same reason as 
mentioned above. The solution for u: thus is omitted. 

Terms O(& in (2.10) give the differential equation for the third-order potential 4,. 
The appropriate solution is 

e”+- 6TO e2Y ] + IAI2AE-e2” 6TO [ $rIz:) 1 - 3T0 1-3To 
4, = F, E3 e3Y + F2 E2 e2Y - A3E3 

y e 2”) -AA,C (1-2T, e21+ y eY) 
2 

+ AA, E2( 7 e” + y ev + ___ 
1-3To 

-$4S,Ey2eu+c.c.+&(5, g , ~ ) ,  (4.8) 

where the slowly varying amplitudes F3([ ,  7 )  and F2(5, 7) are to be determined from 
the matching condition. As in the derivation of 42, a first-harmonic term in the 
solution to the homogeneous equation is dropped. The vertical velocity component 
v, is then obtained from (2.13b), and (2.14) yields the third-order pressure: 

1 - 21To e2Y 6To c3Y 5-9To 
ev - 2( 1 - 3T0) 1 - 3T0 1-3To 

1 - 15T0 1-6T0-6Ti 2y- 
e 

p ,  = i3F3 E3 e3Y + i2F2 E2 e2Y - iA3E3 

1-3To 1-3To 

+ilAI2AE [-eY- 2 3( 1 - 5T0) 
1-3To 1 - 3T0 

+iAAC 5( eY-e2”-ye2Y)-A,Ee’+c.c.+ (71t-&,)q52y+~g&,. (4.9) 

The third-order boundary-layer solutions are again obtained from the continuity 
equation (2.3) for v:, the free-surface boundary condition (2.8), and the vertical 
momentum equation (2.2 b) for p:. The third-order free-surface elevation q3 is then 
obtained as 
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where the condition 

$& = 2(1-T0) 1A2~5-i(&oAA~-Q~ACA5) at y =  0 (4.11) 

has been imposed to suppress secular terms. As mentioned earlier, (4.11) is the 
boundary condition for $:; thus, is uniquely determined once A is obtained from 
(4.15) below. Additional nonlinear forcing terms are present in (4.1 1)  because of the 
surfactant. 

Solving the differential equation for p: with the associated boundary condition 
results in 

A3 E3 + i( 1 + 3T0) F2E2 1 3( 1 + 12T0 + 21Ti )  
2( 1 - 3T0) 

Applying the matching condition for the pressure, we determine F, and F3: 

We also obtain 

(4.12) 

(4.13 a )  

(4.13 b)  

(4.14) 

and the amplitude equation for the capillary-gravity wave with viscosity and 
surfactant : 

A,+- A +gi(4c-8T0+ 1)A, = -1 .9T; - 15T0 + 8 IAI2A. h2 K [ K  + i( 4 2  - K ) ]  

22 /2  K 2 - 4 2 K +  1 4( 1 - 3T0) 
(4.15) 

This is the one-dimensional form of the equation given by Miles (1988), now with the 
dependence on K shown explicitly in the coefficient of A .  

Two more non-uniformities are observed, in addition to the one for the second- 
harmonic resonance (To = Q).  In (4.13b), the amplitude F3 becomes unbounded as To 
approaches a; thus a third-harmonic resonance occurs. As To approaches unity (the 
value for pure capillary waves), 7; in (4.14) is singular, and a rescaling of the long- 
scale free-surface elevation is required, as explained below. 

The dissipation term proportional to A in (4.15) is associated with the surfactant 
in the case K = O( l),  whereas for a clean surface the dissipation is of higher order, as 
shown in the previous section where different scaling was required. Therefore, if 
either A or K is zero, the dissipation term in (4.15) is absent, and we recover the 
amplitude equation for capillary-gravity waves in inviscid flow. The linear term of 
(4.15) has a complex coefficient ; the imaginary part is related to the decay rate, and 
the real part corresponds to a frequency change due to the surfactant. 



146 S. W .  JOO, A .  F. Messiter and W.  W.  Schultz 

A solution of (4.15) for infinite wavetrains which depends only on T is 

Since the slow time is now defined as 7 = &t/A2 due to  (4.1), the damping coefficient 
D, for an infinite wavetrain (4.16) becomes 

42K2 D, = 
1 

4 ( ~ ~ - . \ / 2 ~ + 1 ) @ '  
(4.17) 

which has a maximum a t  K = 4 2 .  At this maximum, the frequency shift due to the 
surfactant disappears. The damping coefficient (4.17) agrees with the result of Levich 
(1941, 1962) and Lucassen-Reynders & Lucassen (1969) for linear capillary waves, as 
can be seen by expanding their solutions for large Reynolds number. It is clear from 
the result that the damping effect is greatly enhanced by the surfactant. 

The above results including the evolution equation (4.15) and the damping 
coefficient (4.17) are obtained for i? = O(&). However, they are valid even when the 
non-dimensional surface dilational modulus is not small. In the limit K +  co, Qo 
becomes -i, u: and I', vanish on the surface, and the dissipation coefficient D, 
becomes &/2!. The surface tension in the normal-stress boundary condition again 
stays constant through the third-order approximation. 

In  the derivation of these expansions, we have noted that singular behaviour 
appears for certain values of the Weber number. The case for To = 5 corresponds t o  
second-harmonic resonance and is related to Wilton's ripples. The non-uniformity 
can be removed by considering a superposition of the fundamental wave and its 
second harmonic in the first approximation and by adding an intermediate slow 
timescale, as in McGoldrick (1970) for inviscid flow. We start by considering a Weber 
number near the resonance value : 

To = :+ap', (4.18) 
where p = O( 1 )  is a constant. An appropriate solution for 4, is now 

= Al(c,  ijEeY+A,(c, tjE2e2y+c.c., (4.19) 
instead of (2.12), where f =  at = ?/a (4.20) 
is the new time variable. The subsequent analysis proceeds as before except for the 
added complexity due to the presence of second-harmonic terms in the first-order 
solutions. For example, an appropriate solution of the homogeneous equation for q52 
should include third- and fourth-harmonic terms. A matching condition for the 
second-order pressure finally gives 

A,f = -AYA, (4.21 a )  
A2f+i@++A2t = @;, (4.21 b )  

in addition to the group velocity cg = Q ,  the correct value when To = i. 
The evolution equations (4.21) are equivalent to the second-harmonic resonance 

equations given by McGoldrick (1970), except that a term proportional to p i s  added 
to account for values of the Weber number close to Q. The coefficients for the terms 
with spatial variation are different because the slow variable 6 is constant a t  points 
moving with the group velocity ; adding cg a/a[ to a/at" leads to  the same terms as in 
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McGoldrick (1970). For large [PI, equations (4.21) are consistent with previous 
results. As I f ' l + .  00,  (4.21 b) reduces to 

(4.22) 

which, with (4.18), is found to agree with (4.6). Using (4.22) to remove A ,  in (4.21 a )  

(4.23) 
3T 

This equation can also be obtained from (4.15) by using (4.18), setting T = at, 
and noting that the dissipation and the dispersion terms become small as To+$. 
Thus, the results for To + f and for To close to $ match asymptotically as To+$ and 

A set of solutions of (4.21) for infinite wavetrains without 5-dependence can be 

A - b -iei (4.24 a )  1 -  oe 

A2 
3iT ' 

A ,  = 2 

gives 1 
iA,f = -- IA,12A,. 

ITo-gl/a+ 00. 

obtained as 

(4.243) 

where B = Q[3?- (sgn ?) ( 9 p +  161b,12)t], (4.25) 

and b, is a complex constant. The sign in (4.25) has been chosen so that 8 + 0  when 
IF!-+ 00. Then, also lA21 + O ,  and hence b, becomes identical to a, as lm + co. When P 
is zero, the wavetrains obtained by McGoldrick (1970) are recovered from 

A non-uniformity related to the third-harmonic resonance is observed when 
To = a. We can expect more non-uniformities for To = l / ( n +  1)  (n = 3,4, ...), corre- 
sponding to nth-harmonic resonance. Uniform expansions near these resonance 
values of the Weber number can be obtained by modifying those introduced for 
To = f above, as discussed by Dias & Bridges (1990) most recently. 

Still another non-uniformity occurs for values of To close to unity, when the 
surfacc-tension force is large in comparison with the gravitational force. I n  this case, 
the long-wave solutions for the velocity potential and the surface elevation must be 
modified. Since the orders of magnitude change, it is now convenient to omit 
subscripts and to denote the largest 'long-wave' terms by &$O and d q 0 ,  where $O and 
qo are not necessarily O( 1). By repeating the previous derivations when 1 - To Q 1, we 
find that the equations analogous to (4.11) and (4.14) become 

(4.24)-(4.25). 

- +( 1 + 2T,) 7; + $: = 2( 1 - To) -- i(Q,AAP-Q~AcAE) a& (4.26) 

(l-To)qo = +(l+2TO)&@'. (4.27) 

When l--To = 0 ( 1 ) ,  then 9' = O(1) but qo = O(&);  qo and #' can be replaced by &qi 
and $:, respectively, and (4.11) and (4.14) are recovered. When ei 4 1 -To Q 1, 
qo = O{&/( 1 - To)} while $O remains O( 1). In  the distinguished limit corresponding to 
l-To = O(&), all terms in (4.26) and (4.27) are retained. Finally, for 1 -To -4 &, 
yo = O( 1) while = 0({ (1 -To)/&}). Thus, for pure capillary disturbances in the 
presence of a surfactant, there is a long-wave component with a surface elevation 
dq0(5,7), whereas the corresponding long-wave potential is of higher order ; qo is deter- 
mined by (4.26). For a clean surface, however, the non-uniformity a t  To = 1 disappears 
because Q = 0 and & is proportional to 1 -To. 
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5. Numerical solution of the dissipative NLS equations 
The dissipative NLS equations derived above can describe the evolution of viscous 

wave envelopes when the Weber number is not too close to the value for three-wave 
resonances, To = 5. They are special cases of the Ginzburg-Landau equation, which 
is a generic amplitude equation describing the nonlinear development of unstable 
waves in many physical systems. Ginzburg-Landau equations have been studied 
intensively by many authors including Newel1 & Whitehead (1969), Stewartson & 
Stuart (1971), Kopell & Howard (1981), and Keefe (1985), often in the context of a 
dynamical systems approach with just a few spatial modes. The linear stability of 
periodic-wave solutions was analysed by Stuart & DiPrima (1978) in the absence of 
dissipation, and generalized by Holmes (1985) and Doering et al. (1988) to dissipative 
systems with complex dispersive and nonlinear coefficients. 

In particular, Miles (1988) studied the stability of periodic wavetrains for waves 
with surfactant, showing that unstable inviscid waves become transiently stable 
under the influence of dissipation. Joo (1989) performed a similar linear stability 
analysis using modified Bessel functions and arrived independently at the same 
stability criteria (when scaled appropriately). These analyses extend the linear 
stability analysis of Stuart & DiPrima (1978) to incorporate capillary and viscous 
effects and extend the stability results for inviscid capillary-gravity waves obtained 
by Djordjevic & Redekopp (1977) to water of infinite depth. 

We first consider a perturbation to the wavetrain (3.12) for gravity waves and 
write 

A norm for one spatial period, 

A = A0(7) [l +B,(7)ei15+B2(7)e-i15]. (5.1) 

can be used as a measure of the growth or decay of the disturbance. 

wavenumber when 
For inviscid flow, the sideband resonance disappears regardless of the disturbance 

(5.3) 
4 3  1 -- < T, < $. 
2 

The corresponding stability analysis for waves in water of finite depth has been 
reported by Djordjevic & Redekopp (1977). The stability band (5.3) corresponds to 
the deep-water limit of their stable region, which lies between the minimum phase 
speed and the second-harmonic resonance. The other stable regions seem to 
disappear as the depth approaches infinity. Although only neutral stability is 
predicted for (5.3), large-time computations for this range of To show strikingly 
different behaviour from that in the other neutrally stable regions, as shown below. 
When 0 < To < 1 - l/:, the lower instability boundary for the disturbance wave- 
number I stays at zero, whereas the upper bound increases with To until it blows up 
at  To = 1 - 4%. When the Weber number exceeds the value for the second-harmonic 
resonance, the upper bound decreases with the Weber number. As To+ 1, the upper 
bound approaches 1 = 1 / 4 3 ,  which is smaller than the value 1 = 2 4 2  for gravity 
waves. 

Numerical solutions of the NLS equation have been obtained by Yuen & Ferguson 
(1978) and Weideman & Herbst (1987) and many others, with an emphasis on 
modulational instability and recurrence of the Fermi-Pasta-Ulam type (Fermi, 
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Pasta & Ulam 1965). Yuen & Ferguson (1978) examined the relationship between 
Benjamin-Feir instability and recurrence and showed two types of recurrence, 
' simple ' and ' complex '. They explained that for modulations with the sideband 
perturbation wavenumber I in the range 81a,12 < 1' < 321a,12 the recurrence is simple 
because all higher harmonics of the prescribed modulation are stable. For 
modulations with 0 < Z2 < 81a,I2, the recurrence is complex (quasi-periodic) because 
at least one higher harmonic of the prescribed mode lies in the unstable region. 
Weideman & Herbst (1987) obtained similar solutions using finite-difference, 
spectral, and pseudospectral methods, and compared the effectiveness of these 
methods. We use a pseudospectral method to solve the dissipative NLS equations for 
capillary-gravity waves. This method is appropriate for our purpose, once an 
aliasing error is suppressed by introducing a sufficient number of degrees of freedom 
(number of collocation points). 

The initial condition (5.1) is specialized to a simple case 

A = a,(l+bcoslLJ. (5.4) 

Modulational behaviour for different initial sideband amplitudes, B, and B,, will be 
discussed later in this section. 

A periodic boundary condition 

is imposed using a Fourier-collocation method with the computational domain 
-n / l<  < n/I. Hence we apply periodic boundary conditions with the same wave- 
length as the disturbance. The slowly varying amplitude is then expressed as 

where we choose N as a positive integer power of 2 and a fast Fourier transformation 
is used to compute the Fourier coefficients a,. As in the analyses, the amplitude of 
a, is i, and b is small. In particular, we set a, = x,(O) = 0.5 and b = 2A",(O) = 2A"_,(O) 
= 2 A - , ( O )  = 0.1 for most of the computations, unless otherwise specified. A fourth- 
order Hamming modified predictor-corrector method is used for time marching. The 
fourth-order Runge-Kutta method is used for automatic adjustment of the initial 
time increment and for computation of starting values. For most computations, the 
maximum time step is 0.01, and the number of collocation points is 32 for one initial 
period in 6. 

Figure 1 illustrates the evolution of the Stokes wave for zero viscosity when 
subject to the modulation described by (5.4). Evolution of the envelope amplitude 
IA(E, 7)1 is shown in figure 1 (a,  c and e ) ,  whereas the magnitude of each Fourier 
coefficient Ian(7)1 ( n  = 0, 1,2, ...) is plotted in figure 1 ( b , d  and f). Since IAnI is 
symmetric about n = 0 owing to (5.4), the evolution for negative n is deleted for 
clarity. The perturbation wavenumber I = 1 corresponds to complex recurrence 
(figure la ,b); l  = 2 corresponds to the maximum initial growth rate and simple 
recurrence (figure 1 c, d ) .  These figures agree with the results of Yuen & Ferguson 
(1978) and Weideman & Herbst (1987), who provide detailed explanations. For the 
simple recurrence, the fundamental (n = 0) and sideband (n = f 1) modes are 
periodic, as can be also seen in figure 8. The higher modes (not shown in figure 8), 
excited due to nonlinear interaction, are not exactly periodic, but they are not 
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7 = 40 L I  

7 = 0  

n =  16 n = O  

FIQURE 1.  Evolution of modulations for inviscid gravity waves ( A  = 0) and perturbation amplitude 
b = 0.1 : (a) 1 = 1 ,  physical space - 27c/1< 6 < 0 ; ( b )  1 = 1 ,  Fourier space ; (c) 1 = 2, physical space 
- 2 n / l <  E < 0; (d )  1 = 2, Fourier space; ( e )  1 = 4, physical space - 2 n / l <  5 < 0;  ( f )  1 = 4, Fourier 
space. 

dominant at any stage, making the modulation almost periodic in time. When 1 lies 
outside of the instability range 0 < l2 < 321a,J2, a very nearly periodic oscillation is 
observed (figure 1 e ) ,  which is in good agreement with the neutral stability predicted 
by the linear analysis. The corresponding Fourier-space solution (figure 1 f) shows 
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10 20 30 40 
T 

FIQURE 2. Evolution of modulations for gravity waves expressed by N(r ) /N(O)  for 
I = 1 (-), 1 = 2 (---), 1 = 22/2 (---), and 1 = 4 (------). 

that none of the higher harmonics is excited and that the sidebands never become 
dominant. 

In figure 2, the same cases as in figure 1 are described using the norm N defined in 
(5.2). The behaviour for small r is in precise agreement with the linear analysis. The 
growth rate is a maximum when 1 = 2 and decreases as 1 increases, resulting in larger 
recurrence periods, until i t  becomes zero for 1 = 2 4 2 .  When 1 becomes larger than 
2 4 2 ,  an oscillation due to neutral stability is observed, as predicted by the linear 
analysis. When 1 decreases from 2, the initial growth rate again decreases, but 
complex recurrence is observed for 1 < 4 2 .  

Figure 3 shows the evolution of the slowly varying envelope A gravity waves with 
small viscosity. The initial condition and the perturbation wavenumber 1 are 
identical to those cases shown in figure 1.  Here, the dissipative NLS equation (3.11) 
is solved with h = 0.125. In  figure 3(a) and 3 ( b ) ,  the values of 1 lie in the instability 
range, and the initial behaviour shows a modulational instability despite viscous 
dissipation, in agreement with the analysis in the previous section for small A. 
Compared to the corresponding cases in figure 1, the spikes are attenuated a t  later 
times for both the complex and the simple recurrence. I n  figure 3(c ) ,  the value 
1 = 4 lies outside the instability range. 

The norm for viscous gravity waves is plotted in figure 4. In figure 4(a), h = 0.125 
as in figure 3, and the dependence of the modulation on the perturbation wavenumber 
examined. The amplitudes of the recurrence are attenuated, as is also seen in figure 
3, and the spikes are smoother. The value 1 = 0.05 lies within the instability range in 
the inviscid limit ( A  = 0) ,  but shows decay in figure 4(a). The effect of h is illustrated 
in figure 4(b) with 1 = 2 fixed. As h becomes larger, the amplitude and periodic of 
recurrence decrease ; when h = 0.5, we observe monotonic decay. Figure 4 (c) shows 
the effect of the disturbance amplitude b when 1 = 2. For small time the growth rate 
does not demonstrate amplitude dependence, whereas for larger time the recurrence 
period increases as b decreases. Other calculations for neutral stability (e.g. 1 = 4) 
shows that the modulational behaviour is hardly affected by changes in b and is 
almost exclusively dependent on 1, as expected from the linear analysis. 
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FIQURE 3. Evolution of modulations for gravity waves with small viscosity (A = 0.125) in 
physical space -2n/Z < < 0:  (a)  Z = 1 ; ( b )  1 = 2 ;  (c) 1 = 4. 

For capillary-gravity waves with surfactants, the dissipative NLS equation is 
given by (4.15). The coefficient for the dissipation term is independent of thc Weber 
number To, and the coefficients for the dispersion and nonlinear terms depend only 
on To. The term that corresponds to  the frequency change in the coefficient for the 
dissipation term can be absorbed in the carrier wave and does not contribute to the 
magnitude of the envelope wave. The qualitative behaviour of the modulation is then 
expected to be identical to that for the gravity waves when To is outside the range 
(5.3), for the so-called self-focusing type of NLS equation. When To is in the range 
(5.3), equation (4.15) is of the defocusing type. Then, the long-time modulation 
exhibits quite different features from the simple oscillation with constant amplitude 
and frequency found for neutral stability of the self-focusing type. A discussion of 
self-focusing and defocusing NLS equations was given by Peregrine (1983). 

Figure 5 shows the evolution of inviscid capillary-gravity waves ( K  = A = 0). The 
perturbation wavenumber is chosen as 1 = 2, and four different values of surface 
tension are considered. For pure gravity waves (To = 0) ,  the maximum growth rate 
and simple recurrence are observed as in figure 3. For pure capillary waves (To = l ) ,  
1 = 2 lies outside the instability region ; thus, an oscillation is observed with constant 
amplitude and frequency. For To = 0.1, 1 = 2 is closer to  the lower bound of the 
instability region 1 = 0, and so complex recurrence occurs. The value To = 0.3 lies 
between 1 - 4; and g, and the modulation shows initial neutral stability, as predicted 
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FIQURE 4. Evolution of modulations for gravity waves: (a) A = 0.125 and b = 0.1 are fixed, and the 
perturbation wavenumber varies aa 2 = 0.05 (-), I = 1 (---), I = 2 (---), and 2 = 4 (-----) ; 
( b )  2 = 2 and b = 0.1 are fixed, and the viscous dissipation varies ash = 0 (-), A = 0.125 (---), 
A = 0.25) (---), A = 0.5 (----), and A = 1 (...... );  (c )  1 = 2 and A = 0.125 are fixed, and the 
perturbation varies aa b = 0.01 (-), b = 0.1 (---), b = 0.2 (---), and b = 0.3 (-----). 
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FIQURE 5. Evolution of modulations for inviscid capillary-gravity waves ( A  = K = 0) for 
perturbation wavenumber 2 = 2 and Weber number: To (-), To = 0.1 (---), To = 0.3 (......), 
and To = 1 (---). 

by the analysis. However, for large time an additional periodic behaviour is 
observed. The large-scale period increases as 1 decreases, as can be seen in figure 6 (a ) ,  
where I = 1 while the other parameters remain unchanged (To = 0.3 and K = h = 0). 
The corresponding profile for amplitude evolution is given in figure 6 ( b ) .  Initially, the 



154 S. W.  Joo, A .  F .  Messiter and W.  W.  Schultz 

1' I 7 = 8OU I 
0 20 40 60 80 

7 

FIGURE 6. Evolution of modulations for inviscid capillary-gravity waves ( A  = K = 0) for 
perturbation wavenumber 1 = 1 and Weber number To = 0.3: (a)  N(T) /N(O) ;  ( b )  I A ( ~ , T ) ~ .  

I T = 8Ou- 
0 20 40 60 80 
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FIQURE 7 .  Evolution of modulations for capillary-gravity waves in the presence of viscosity 
( A  = 0.125) and surfactant ( K  = d2) for perturbation wavenumber 1 = 1 / ~ ' 6  and Weber number: 
( a )  To = 0.1 (-), To = 0.1339 (---), To = 0.3 (---), and To = 1 (-----); ( b )  To = 0.3, physical 
space -2n / l  < 6 < 0. 

behaviour is similar to that for neutral stability, but the amplitude then gradually 
decreases and the frequency starts to change until the initial envelope disintegrates 
a t  about 7 = 30; still later (7 w 60), the initial form of the envelope is almost 
completely recovered. Therefore, this phenomenon can be referred to as a small- 
amplitude recurrence, different from the recurrence related to Benjamin-Feir 
instability. 

In figure 7, we examine the effect of dissipation due to viscosity and a surfactant ; 
h = 0.125, K = 4 2 ,  and 1 = 1 / 4 6 .  The perturbation wavenumber corresponds to the 
maximum growth rate for inviscid pure capillary waves. The norm for the case To = 1 
grows to a maximum at  twice its initial value near 7 = 50 (figure 7a) .  When To = 0.1, 
the instability with complex recurrence is observed despite viscous dissipation, 
whereas for To slightly smaller than 1 - 41 (To = 0.1339), the complex recurrence is 
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FIGURE 8. Evolution of dominant Fourier modes for inviscid gravity waves for 1 = 2 and initial 
sideband amplitudes: (a) B,  = B, = 0.05 for n = 0 (-----) and n = f 1 (-); ( b )  B, = 0.05 and 
B, = 0.05 for n = 0 (-----) and n = f 1 (-); (c) B, = 0.05 and B, = 0 for n = 0 (-----), 
n = - l ( -  ), and n = 1 (------). 

suppressed by dissipation, and monotonic decay is observed. For To = 0.3, a 
disintegration of the wave envelope is obvious even with viscous damping, as can be 
seen clearly in the corresponding evolution profile in figure 7 ( b ) .  From figure 7, we 
can also deduce that the period of the disintegration-recovery has increased from 
that in figure 6 because a smaller 1 has been considered. 

In all the calculations above, the initial condition used is (5.4), which corresponds 
to a symmetric amplitude modulation. We now consider more general modulations 
by using (5.1) instead, with B,(O) and B,(O) not necessarily equal and real as in (5.4). 
For simplicity, the results for inviscid gravity waves are presented in figure 8. Only 
the dominant fundamental and the sideband modes are plotted. In all the cases 
considered, the wavenumber perturbation is 1 = 2, so that all exhibit an initial 
Benjamin-Feir instability followed by simple recurrence. In figure 8 (a ) ,  the given 
initial condition is identical to those in figure 1 (a,  a), and so the results are identical. 
In figure 8 ( b ) ,  it is obvious that the phase difference changes the modulational 
behaviour significantly, including the recurrence period. Figure 8 (c) shows the effect 
of different initial sideband amplitudes, here showing an increase in the recurrence 
period with a decrease in amplitude. In figure 8 ( c ) ,  only one of the sideband modes 
is present initially, but subsequent evolution shows that the other mode is 
automatically excited to produce the Benjamin-Feir instability. The initially 

6 FLM 229 
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different sideband amplitudes in figure 8 (c) become nearly identical, as predicted by 
Stiassnie & Kroszynski (1982), but they recover their difference periodically in the 
subsequent recurrence. 

6. Concluding remarks 
The methods of multiple scales and matched asymptotic expansions have been 

used in a formal derivation of evolution equations for weakly nonlinear viscous water 
waves. The result is the nonlinear Schrodinger equation with an additional linear 
dissipation term. The present analysis is valid when both the amplitude of the wave 
and the viscous effect (or equivalently boundary-layer thickness) are small, and is 
restricted to wave packets with narrow-banded spectra. For both gravity waves and 
capillary-gravity waves with an insoluble surfactant, the largest terms in the 
damping coefficients are identical to classical linear results. For capillary-gravity 
waves, non-uniformities are observed despite dissipation due to the surfactant. Near 
the second-harmonic resonance, a modified state of evolution equations is obtained, 
which are matched asymptotically with the non-resonant results. For pure capillary 
waves, a rescaling of the long-scale free-surface elevation is required in the presence 
of surfactants. 

The derived evolution equations are solved numerically to examine the modulation 
of infinite wavetrains with sideband disturbances of the Benjamin-Feir type. The 
computations show that in the presence of dissipation the modulation has the same 
initial behaviour as the inviscid case but eventually decays to zero in agreement with 
linear theory. In the inviscid limit, the instability condition obtained originally by 
Benjamin & Feir (1967) is recovered for gravity waves, whereas a stable range of 
Weber number is found for capillary-gravity waves, which agrees with that obtained 
by Djordjevic & Redekopp (1977). In this range, spectral computations show a new 
type of recurrence not directly related to the Benjamin-Feir instability. 

One of the original goals of this study was to determine the validity of the linear 
dissipation terms added to the amplitude equations of previous studies. We found 
that the scaling restrictions required to obtain dissipation in the amplitude equation 
at  third order do not allow nonlinear dissipation - a higher-order analysis would be 
required. Adding an insoluble surfactant with a linear dependence of surface-tension 
coefficient on concentration again allows only linear dissipation, consistent with 
many experimental observations. Soluble or diffusive surfactants generally exhibit 
smaller surface dilational modulus (Levich 1962), but we have determined that these 
modifications would also have dissipative terms that are predicted by linear theory. 
However, nonlinear dissipation may be modelled using a nonlinear or time- 
dependent surface-tension constitutive relationship. Since this type of relationship 
has not been experimentally documented, we leave this for further study. 

The results for capillary-gravity waves near the second-harmonic resonance are 
unaffected by viscosity or surfactant because the amplitude of the wave is taken to 
be much larger than the boundary-layer thickness. If the two were taken to be of the 
same order, the coupled evolution equations would be modified by dissipative terms. 
The present method will allow us to examine the effect of dissipation or surfactants 
on Wilton’s ripples. 
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