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Better washing machine designs and operation could reduce energy and water usage and extend cloth
life. Washing machine studies have been traditionally empirical, since laundering typically involves com-
plex motion of many cloth pieces in an inhomogeneous (fluid, cloth, detergent, agitator) setting. This
paper presents a physics-based model of fully-submerged clothes washing in two- and three-dimensions.
Multiple cloth pieces are modeled as thin elastic plates with tensile, shear, bending, and torsional stiff-
ness, while the wash fluid is modeled with the incompressible Navier–Stokes equations. The fluid–cloth
interaction is modeled via an immersed boundary method, and complex two- and three-dimensional agi-
tator geometries are simulated with a Cartesian domain-mapping technique. The simulations have rela-
tively coarse resolution that does not resolve all length scales for typical washing machine operating
conditions. Hence, the converged results shown here are for moderate Reynolds numbers (Re). The sim-
ulation results include cloth stresses, torque on the wash basket, and the motion and deformation of the
submerged cloth pieces. Specifically, the 3-D results show that the cloth stresses increase and the torque
exerted on the outer wash basket decreases with increasing Re. The simulations examine how cloth
motions differ with Reynolds number and cloth loading. The results reveal that for an agitator-driven
3-D wash geometry at higher Re, cloth pieces near the agitator at the bottom of the wash basket are first
pushed by centrifugal force towards the outer stationary walls of the wash basket, then rise towards the
top surface where they return to the axis of rotation and then sink towards the agitator. The variation of
the center of mass positions of the cloth pieces are shown to increase for higher Re operating conditions.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Clothes washing machines (washers) are ubiquitous in the
modern world. However the clothes washing process has largely
escaped a detailed computational analysis because a physically-
meaningful numerical description of the relevant phenomena has
not been formulated. Detailed physical descriptions of wash pro-
cesses should account for the coupled, unsteady, complex, and
three-dimensional motions of the fluid and cloth mixture when
driven by the complex and moving geometries of the agitator
and wash basket. Numerical solution strategies must simulta-
neously be appropriate for three-dimensional motion of a fluid
and nearly arbitrary deformation of the cloth. This study describes
a clothes washing simulation developed from first principles that
attains these goals.

Most numerical models use computational grids with discrete
points for solving the fluid and solid dynamic equations separately.
However, if the grids are designed to conform to the domain
boundaries, then the unsteady cloth motion and a moving agitator
or wash basket would require redesigning the grid at every time-
step, a task that could dominate the computational effort. Hence,
most existing washing machine studies are limited to testing and
empiricism. The studies given in [1–4] model washing machines
by idealizing clothes as a single fabric ball and then analyzing its
motion; [1] has also modeled each possible stage of the ball’s
motion in a horizontal-axis wash basket. Such reduced-order
methods are suitable for real-time control designs.

However, higher-fidelity simulations are needed to improve
designs to meet ever-increasing demands for better resource utili-
zation. The empiricism in the existing models used for machine
development – such as in [1] – are likely insufficient for prelimin-
ary design. Thus, models, such as that presented here that better
capture the fundamental cloth–water–agitator interactions of
washing machine processes are needed. Note that there is a rich
literature on modeling and simulating cloth motion without cou-
pling to a high-fidelity fluid model [5–11]; these models are mainly
developed for the computer graphics industry.

The capabilities, characteristics, and limitations of the simula-
tions reported here are as follows
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� The simulations allow nearly arbitrary deformation of sub-
merged pieces of cloth in a container with a complicated
time-dependent shape.
� The submerged cloth pieces are modeled as elastic imperme-

able thin plates that undergo large deformations [12]. In
particular, cloth pieces have appropriately high extensional
and in-plane-shear stiffnesses, and appropriately low bending
and torsional stiffnesses.
� The fluid is considered to be incompressible and viscous. Thus,

the Navier–Stokes equations are solved through the model
given in [13]. The fluid has the density of water, but its viscosity
is elevated to prevent numerical problems at the modest grid
resolutions of the current simulations.
� The cloth and fluid dynamics are coupled using an Immersed

Boundary (IB) method [14]. In particular, the local fluid and
cloth velocities are equal based on the viscous no-slip condition
combined with cloth impermeability. The IB method has been
used for many problems involving single and multiple flexible
solids in viscous fluid flow (e.g. [15–21]).
� The moving solid surfaces of the washing machine’s basket and

agitator are modeled through a Cartesian domain-mapping
technique. This approach avoids generation of a new grid at
each time-step.
� The air–water interface is approximated as a flat perfect-slip

surface.
� The modest-grid-resolution results presented here do not simu-

late all the scales of unsteady and turbulent fluid motion at the
Reynolds numbers of representative washing processes. Thus,
the current results are for moderate Reynolds numbers. Since
this simulation attempt is the first of its kind, the emphasis here
is on model development rather than high-resolution results.

The fluid/flexible-structure interaction component of the simu-
lation is validated in [15,22] for problems involving the flutter
regimes of thin cantilever beams, the natural frequencies of elastic
plates, and the motion of a flexible filament in a gravity-driven vis-
cous flow. Additionally, the method for handling the irregular
geometries on a Cartesian grid is validated in this text for the prob-
lems of circular-Couette flow and the flow over a circular cylinder.

The remainder of this paper is organized as follows. In Section 2,
the coupled equations of motion for the cloth pieces and the wash
fluid are given. Here, the mechanical coupling of cloth and fluid is
simulated by adding local body forces and density to the Navier–
Stokes (fluid) equations to represent the stresses and inertial loads
the cloth applies to the fluid. Then, in Section 3, a domain-mapping
technique is described for simulating complex unsteady washing
machine geometries with a stationary Cartesian grid. Section 4
introduces the simulation output measures. This is followed by
the presentation of the two- and then three-dimensional simula-
tions in Sections 5 and 6, respectively, with an emphasis on cloth
motions and the cloth stresses. Finally, Section 7 summarizes this
effort and provides conclusions.
2. Physical and numerical models for the fluid–cloth mixture

The current simulations use an Immersed Boundary (IB)
method [14,23], to couple the motions of the cloth and fluid. The
fluid and cloth have the same local velocity u so there is no relative
slip or penetration at the cloth/fluid interface, and the Navier–
Stokes equations have external forcing f due to the cloth loading
to describe the combined motion of the fluid/cloth mixture:
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Here, x is the vector of independent spatial variables that parame-
terize the fluid volume, t is time, p is pressure, l is the dynamic fluid
viscosity. The location of a point on the deformed cloth mid-plane is
X(g, t), as shown in Fig. 1, where g = (r, s) and g = (s) are two- and
one-dimensional parameterizations on the cloth mid-plane, for
the three- and two-dimensional simulations, respectively. The sim-
ulations use two different grids: a moving Lagrangian mesh for dis-
cretizing g on the cloth, and a stationary Cartesian grid for
discretizing the fluid volume x. K is the Jacobian of the deformed
cloth mid-plane, q is the combined fluid/cloth mixture density, qf

is the uniform fluid density, qs is the undeformed cloth density,
while q is the cloth thickness (qsq is the mass per unit area of the
cloth). F in Eq. (3) is the divergence of the cloth stress-resultants,
derived briefly (with K) in the Appendix A and in more detail in
[22], for a thin plate undergoing large elastic deformations. We will
only mention here that F is related to: (1) the local extension/con-
traction, (2) the normal curvature, (3) the geodesic torsion, and 4)
the surface shear at any point X(g, t) for a given piece of cloth. Cloth
thickness effects are included in F by the large-deformation plate
theory; however the cloth thickness is not geometrically modeled
as the clothes are assumed to be 2-D elements embedded in a
3-D fluid volume. The external forcing f in Eq. (1) is related to F
through the relation given in Eq. (3). For a 2-D piece of cloth in a
3-D fluid volume, F is a 2-D quantity – it is defined throughout
the deformed cloth mid-plane g – and hence F = F(g, t), but note
that Eq. (1) and f are defined for the 3-D fluid volume. Eq. (3) con-
structs f by using F and regularized Dirac delta function d�. The
same approach is used for expressing the 2-D cloth density qsq in
3-D via Eq. (4). The function d� in Eqs. (3)–(5) is a smooth approxi-
mation to a three-dimensional Dirac delta function and is described
in Eqs. (7) and (8) below.

Eq. (5) determines the cloth velocity U from the fluid velocity
field u, while Eq. (6) defines the Lagrangian advection of the
cloth pieces. On the undeformed cloth mid-plane, r and s are
arclength parameters that are everywhere orthogonal. In Fig. 1,
es and er are unit vectors tangent to constant r and s lines and
en = es � er/|es � er| is the cloth-surface normal vector.

The cloth pieces are assumed to be thin, so cloth elastic and
inertial forces are first multiplied with the uniform cloth thickness,
and then these local forces are spread onto the fluid grid using a
regularized Dirac delta function d�, as in Eqs. (3) and (4). As sug-
gested in [23] for x e R3, d� is approximated with a Cartesian prod-
uct of one-dimensional functions /:

d� xð Þ ¼ / xð Þ/ yð Þ/ zð Þ; where x ¼ x; y; zð Þ; ð7Þ

and

/ rð Þ ¼
1
2e 1þ cos pr

e

� �� �
; if rj j 6 e

0; otherwise

(
: ð8Þ

For x e R2 the approximation is similar, but in this case
d�ðxÞ ¼ /ðxÞ/ðyÞ. The one-dimensional regularized Dirac delta
function / has a compact support width of 2e. In the simulations
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Fig. 1. Deformation of the mid-plane of a rectangular cloth piece.
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presented next, for each component / (x), / (y), and / (z), e is cho-
sen as 2hx, 2hy, and 2hz, respectively, where hx, hy, and hz are the
fluid grid spacings along the x, y, and z directions. In this form,
the d� value on a fluid grid point xi,j,k is nonzero only if it is near
a cloth piece.

The Navier–Stokes Eqs. (1) and (2) are solved with a fractional
step method described in [13]. The weak forms of the equations
are discretized with second-order accurate interpolations and inte-
grations, as the fluid volume is discretized with the finite-volume
Cartesian grid Marker-and-Cell (MAC) method shown in [22].
Briefly, the simulations use the implicit Crank-Nicolson method
for the viscous terms and the 3/2 Adams–Bashforth method for
the convective terms in time; these time discretizations are given
in detail in [22]. The simulations use a forward Euler method for
the three-dimensional computations and the implicit Broyden
method [24–26] for the two-dimensional computations for solving
Eq. (6). The details of this process can be found in [22]. The physical
and numerical models were verified in [15,22] as noted above.

3. Numerical method for unsteady flow in complex geometries

Vertical-axis washing machines stir the fluid–cloth mixture
using a moving agitator with a complex three-dimensional geom-
etry. Computations are more expedient using a non-conforming
Cartesian grid (an example is Fig. A.1) to incorporate such irregular
non-stationary domain boundaries rather than remeshing the fluid
grid at every time step. This simulation achieves this by transform-
ing Eqs. (1) and (2) to:

q
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Eq. (9) results in u = uo when H(w) = 1 and Eq. (1) when H(w) = 0,
where H is a regularized or sharp Heaviside function; a general reg-
ularized H is given as:

H wð Þ ¼
0 if w < �c
1
2þ 1

2
w
c þ 1

p sin pw
c

� 	� 	
if wj j 6 c

1 if w > c
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>>: ð11Þ

Alternatively, a sharp Heaviside function is also defined as H(w) = 0
for w < 0, H(w) = 1/2 for w = 0, and H(w) = 1 for w > 0. In Eq. (9), w is
a prescribed scalar function that is negative in the fluid–cloth mix-
ture and greater than zero elsewhere; uo is the prescribed velocity
field outside the fluid–cloth mixture. ko in Eq. (9) is a scalar con-
stant, which is selected in such a way that the diagonal terms in
the resulting matrix equations are the same in both the fluid and
solid regions. In Eq. (11), c controls how the regularized Heaviside
function is spread onto the fluid grid points – note that if using a
sharp H, the value of ko would not have any effect on the results.
Appendix B includes a comparative analysis of the accuracy of the
simulation for both a sharp and a regularized H-function. The
numerical tests given in Appendix B show that the sharp implemen-
tation of H(w) is more accurate than the smooth formulation for the
test problems at least on grid sizes used here, so a sharp H-function
is used in the simulations. A similar formulation has also been given
in [27,28]. For example for an external flow over a cylinder of a
radius R with center at (xo, yo): w ¼ �ðx� xoÞ2 � ðy� yoÞ

2 þ R2. For
complex geometries, such as the 3-D agitator of a washing machine,
w is found from making mathematical operations between elemen-
tal w functions for simple geometries; for example w = max(w1, w2),
where w1 ¼ �ðx� xo;1Þ2 � ðy� yo;1Þ

2 þ R2
1 and w2 ¼ �ðx� xo;2Þ2�

ðy� yo;2Þ
2 þ R2

2 would be the augmented geometry of two
overlapping circles if (xo,1, yo,1) and (xo,2, yo,2) are close. After
generating w functions in this manner, they are transformed to
distance functions [22]. Note that for moving but rigid solid objects
(surrounding the fluid–cloth mixture, i.e. the washing machine
walls and agitator) r � uo ¼ 0.

4. Characterization of the simulation outputs

If cloth is primarily cleaned by the relative motion of cloth
pieces, one of the most valuable simulation predictions would be
cloth motion under different specified agitations. Additionally,
the statistics of cloth stresses help predict cloth wear and cloth life.
At any point X on the deformed mid-plane of a given cloth piece
with a uniform thickness q, the large deformation plate theory
gives that the largest extensional strains occur at a distance q/2
away normal to the mid-plane. So the maximum cloth strains
could be expressed as:
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where js and jr are the normal curvatures of the constant r and s
lines (derived in Appendix A), respectively, in Fig. 1. Next, linear
and isotropic plane stress–strain relations are used to estimate
the maximum cloth stress magnitudes as:
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where E is the cloth Young’s modulus and m is Poisson’s ratio. Note
that the points with the highest bending stresses are the same
points where the maximum von Mises stresses jSvMjmax occur. In
the 3-D results presented in Section 6, only the von Mises stress
equivalents of all the three stress components shown in Eq. (13)
will be presented – note that for the 2-D fluid simulations with 1-
D cloth pieces there is only one stress component for the cloth. Fol-
lowing Eq. (13) and Appendix A, the next sections use the following
stiffness constants:

Ke �
Eq

1� m2 ; Ks �
Eq

1þ m
; Kb �

Eq3

12 1� m2ð Þ ; Kt �
Eq3

12 1þ mð Þ
ð14Þ

which are, respectively, extensional, in-plane shear, bending, and
torsional cloth stiffness for a cloth piece with a uniform thickness q.

Aref [29] showed that the advection of particles even in laminar
flows would become chaotic if the velocity field is unsteady. Cha-
otic systems may have different results for slightly different condi-
tions, including different simulation time-step and mesh size [30].
However, their statistics are better behaved. For this reason, the
present simulation results report average absolute maximum cloth
stresses of all cloth pieces, as:

jrjmax ¼
1

Ncloth

XNcloth

k¼1

1
Ak

Z
jrjkmaxdAk; ð15Þ

where Ncloth is the total number of cloth pieces, Ak is the surface

area of each cloth piece, and jrjkmax is the time average of the abso-
lute maximum cloth stress rij through Eq. (13) for each cloth com-
putational point. This time averaging is done over a few washing
machine cycles (specifically noted for each result) after cropping
the initial transient effects. The simulations also report the standard
deviations of the cloth stresses during the same time periods.

5. Two-dimensional simulations

The two-dimensional washing machine simulations presented
here are developmental, since they cannot capture the vertical
tumbling motion of the cloth pieces in a vertical-axis washing
machine. Plus, the simulations assume a fully-wetted wash basket
without the dynamic free-surface present in horizontal-axis
machines. However, they help to verify and illustrate the simula-
tion development.

5.1. Washtub and the initial cloth placements

The simulation setup is as given in Fig. 2. The wash geometry
consists of an outer stationary circular wall (basket) and a rotating
120
o

120
o

r   =  31.86 cmo

3
10

r o

1
5

r o 76
905

r o

Fig. 2. The washtub geometry for the two-dimensional simulat
agitator. Fig. 2 also shows the initial placement of twenty cloth
pieces in the 2D simulations. In all these simulations the washtub
geometry and the initial cloth placements are not varied. The cloth
pieces are randomly placed without overlap, and these cloth pieces
have two different lengths and different (constant) curvatures.

5.2. Operating conditions, physical parameters, and other numerical
simulation details

Unless noted otherwise, the operating conditions and the vari-
ous physical and numerical properties are as given in Table 1,
where h is the uniform mesh-size of the Cartesian grid for solving
Eqs. (9) and (10). The exact values of h are given later in the results
section. The Lagrangian mesh size mentioned in Table 1 is for flat
unstretched cloth. The average Lagrangian to Eulerian mesh size
ratio was selected as unity, because it was shown in [22] that these
simulations are prone to numerical instabilities with ratios less
than 1. The angular speed of the agitator is prescribed by

x ¼ xmax sin 2pftð Þ; ð16Þ

where f is the agitator frequency. The outer wall is stationary.
Hence, uo in Eq. (9) is constructed such that uo = xeZ � r inside
the agitator, where eZ is the unit vector along the Z-axis, and
uo = 0 outside the wash tub. In Table 1 the cloth excess mass density
is with respect to water and is zero if the cloth is neutrally buoyant
in water.

Note that the fluid viscosity here is 1000 times that of water to
lower the computational requirements during simulation
development.

5.3. Dimensionless groups

The following length, time, and mass scales in these simulations

lo ¼ ro; to ¼ 1=xmax; Mo ¼ qf r3
o ; ð17Þ

lead to the dimensionless parameters:

Re¼
qf r2

oxmax

l
; Te¼ Ke

qf x2
maxr3

o
; Be¼ Kb

qf x2
maxr5

o
; In¼ qsq

qf ro
; St¼ f

xmax
:

ð18Þ

In Eq. (18), Re is the Reynolds number, Te is the ratio of the
cloth extensional stiffness force to fluid inertial force, Be is the
ratio of the cloth bending stiffness force to the fluid inertial force,
In is the ratio of the cloth to fluid inertia, and St is the Strouhal
number (dimensionless frequency). The dimensional values
given in Table 1 and Fig. 2 correspond to the following dimension-
less values in all the two-dimensional simulations unless noted
otherwise:
ions and the initial placements of the twenty cloth pieces.



Table 1
Operating conditions, physical and numerical parameters in the 2D simulations.

Radius of the other basket (ro) 31.86 cm
Mesh size (h/ro) 33.9 � 10�3–4.2 � 10�3

Agitator’s peak rotation speed (xmax)a 120 rpm
Agitator rotation frequency (f)a 2/p Hz
Cloth extensional stiffness (Ke) 8 � 103 N/m
Cloth bending stiffness (Kb) 1 � 10�5 N.m
Cloth excess mass density (qsq)b 9.3 � 10�2 kg/m2

Length of the cloth pieces 26.08 & 17.39 cm
Average cloth thickness (q) 2.4 � 10�4 m
Fluid density (qf) 1000 kg/m3

Fluid dynamic viscosity (l) 1 kg/(m s)
Number of cloth pieces 20
Dirac delta function half width (e) 2h
Average Lagrangian to Eulerian mesh size ratio 1

a The agitator makes one full revolution before reversing.
b Relative to a neutrally-buoyant cloth piece in water (=0 if neutrally buoyant).
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Re ¼ 1300; Te ¼ 1:6; Be ¼ 1:9� 10�8; In ¼ 2:9� 10�4;

and St ¼ 0:05:
5.4. Results

The simulations predicted significantly different cloth trajecto-
ries with successively refined time-step and mesh-size, in agree-
ment with the observations of chaotic advection of particle paths
in unsteady flows [29]. However, the statistics of the average abso-
lute cloth stress and the root mean square value of the torque on
the outer wall were observed to converge acceptably. Specifically,
Table 2 shows the effect of changing the uniform dimensionless
Eulerian mesh size h/ro on the statistics of the absolute cloth stres-
ses scaled by ro = qf ro

2xmax
2 and on the dimensionless 2-D rms

torque exerted on the outer washtub cylinder scaled by so = qf ro
4

xmax
2. These simulations were conducted with the dimensionless

time-step Dtxmax = 9.42 � 10�5. The (dimensionless) value h/ro =
4.2 � 10�3 corresponds to an Eulerian grid size of 513 � 513
points, and the simulation video is attached as a supplemental file
to this paper.

The stresses in Table 2 are larger using poorer resolution due to
the unresolved complex cloth wrinkles. It has been shown in Ref.
[22] that a minimum Lagrangian to Eulerian grid size ratio about
unity is required to ensure accurate and stable results using
the current fluid–structure-interaction coupling method (the
immersed boundary method), so it is not useful to increase the
Lagrangian points on the cloth without simultaneously refining
the Eulerian grid. Table 2 also shows that the dimensionless rms
torque estimate on the outer wall is within 7% for the finest two
grids. Additionally, Table 3 confirms the relative insensitivity of
changing the time-step for h/ro = 17.0 � 10�3.

The simulations showed that the cloth pieces preserve their ini-
tial length as they move and deform in the 2-D washtub; their
motion was observed to be fast near the tip of the agitator as they
Table 2
The effect of Eulerian mesh refinement on the statistics of the absolute cloth stresses
and the rms torque on the outer wall between the beginning of the second and the
fourth agitation cycles, as the agitator completes 4 full revolutions in opposite
directions. These simulations use Re = 1300 and Dtxmax = 9.42 � 10�5.

h/ro j�rjmax=ro Standard deviation
in r

(rms torque on the outer
wall)/so

33.9 � 10�3 24.0 10.3 Not measured
17.0 � 10�3 9.4 3.2 4.0 � 10�3

8.5 � 10�3 5.6 1.0 1.4 � 10�3

4.2 � 10�3 4.9 0.9 1.5 � 10�3
get wrinkled. Note that, since the present 2-D fluid, 1-D cloth
simulations are only developmental, more results will be analyzed
in Section 6 for the motion of 2-D cloth pieces in 3-D fluid. As a
sample illustration, the effect on cloth motion of changing cloth
bending stiffness is shown in Fig. 3 with Re = 1300, h/ro = 17.0 �
10�3 and Dtxmax = 1.9 � 10�4. The vertical sequence of snapshots
in the left column of Fig. 3 shows the motion of a thicker (or stiffer)
cloth with Be = 1.9 � 10�5. The time duration between each frame
is approximately a quarter period of the agitator rotation cycle, so
the agitator rotates about 180� between each snapshot. Fig. 3
shows that the cloth pieces with smaller Be wrinkle more, which
is expected based on a prior analysis of flexible filaments in fluid
flow [18].
6. Three-dimensional simulations

Unlike the 2-D case, 3-D simulations can predict the axial tum-
bling motion of cloth pieces in a vertical-axis washing machine.
However, the computational cost of these simulations is higher,
and, since the emphasis here is on model development, the coarse
grid results presented here represent moderate Re operating
conditions.

There are many ways the flow can become three-dimensional.
The agitator may have a three-dimensional shape or it may
have finite axial extent. Even if the agitator is two-dimensional,
instabilities lead to periodic role cells similar to that seen in
Taylor-Couette flow or the finite extent of the cloth in the axial
(vertical) direction would force 3-D behavior. Complicated free-
surface or tub-bottom conditions would make the problem 3-D,
as would the common practice of axial agitator motion. For the
case studied here, three-dimensional motion is primarily caused
by the agitator shape, and the finite extent of the agitator and cloth
pieces in the axial (vertical) direction.

6.1. Washtub geometry and initial cloth positions

This study pertains to a vertical-axis washing machine. Figs. 4
and 5 illustrate the threefold-symmetric washing machine agita-
tor. In Fig. 4, z is the wash basket’s vertical axis and is zero at the
flat basket bottom, while x’ and y’ are body-attached orthogonal
axes that span the horizontal plane defining one-third of the three-
fold symmetric agitator, with their origin at the axis of rotation of
the agitator. In addition to the moving agitator, the washtub is
assumed to have an outer stationary cylinder with a radius of
31 cm. Fig. 5 is an image of the appearance of the washtub geom-
etry using the level-set function w described in Section 3 with a
Cartesian grid resolution of 33 � 33 � 33 points. In the following
simulations the grid resolution varies from 33 � 33 � 33 to
65 � 65 � 65 points. Fig. 5 also shows the air–water interface,
modeled as a perfect-slip flat surface, at a height H = 23.76 cm
above the washtub bottom.

All simulations shown here have square (15 cm � 15 cm) cloth
pieces, initially positioned in a radial arrangement with small indi-
vidual shifts and tilts to obtain a random cloth configuration
quickly. In the simulations shown next, each cloth piece is discret-
ized with 7 � 7 to 14 � 14 Lagrangian grid points.

6.2. Operating conditions, physical parameters, and other numerical
simulation details

Table 4 lists the operating conditions, and physical and numer-
ical parameters in these simulations, unless noted otherwise.
In Table 4, hvertical is the Eulerian mesh size along the vertical
z-direction, while hlateral is the Eulerian mesh size along the lateral
(x, y) axes (note that as explained in Section 3, the simulation uses



Table 3
Effect of changing the time step on the statistics of the absolute cloth stresses
between the beginning of the second and third agitation cycles, with Re = 1300,
h/ro = 17.0 � 10�3.

Dtxmax jrjmax=ro Standard deviation

1.9 � 10�4 8.9 2.6
1.9 � 10�4/2 8.3 2.5
1.9 � 10�4/4 8.9 2.6
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a Cartesian mesh to model the washing machine geometry). Also,
the Lagrangian mesh size in Table 4 is measured along the constant
r- and s-lines on the cloth pieces that are defined in Section 2. The
computational domain is three times wider in its lateral directions
than its height, and the simulation uses a three times denser Carte-
sian grid along the vertical axis. Note that in Table 4 the dynamic
viscosity of the fluid is mentioned to vary between 10�1 and 101

[kg/(m s)], which corresponds to a Re between 12,000 and 120.
Fig. 3. The effect of changing bending stiffness on cloth motion in 2-D with Re = 1300, h
Be = 1.9 � 10�5 and the snapshots in the right column are for Be = 1.9 � 10�8. Snapshot
Markers+ are attached on two different clothes to aid tracing.
The agitator angular speed is given through Eq. (16), and the outer
wall is stationary. Hence, uo in Eq. (9) is constructed such that
uo = xeZ � r inside the agitator, where eZ is the unit vector along
the Z-axis, and uo = 0 outside the wash tub. Note that the simula-
tions were observed in [22] to be prone to numerical instabilities
with Lagrangian to Eulerian ratios less than unity, so a higher than
1 ratio is selected.

6.3. Dimensionless groups

The dimensionless groups are similar to the ones given for the
2-D simulations. The length, time, and mass scales are the same.
In addition to Eq. (18), the following additional dimensionless
groups are introduced:

Se ¼ Ks

qf x2
maxr3

o
; To ¼ Kt

qf x2
maxr5

o
: ð19Þ
/ro = 17.0 � 10�3 and Dtxmax = 1.9 � 10�4. The snapshots in the left column are for
s differ by a quarter period of the agitator cycle corresponding to a 180� rotation.



Fig. 3 (continued)
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Fig. 4. A partial simplified view of the agitator. The left plot is the top view and the right plot is the front view of the mid-section of the 1/3th symmetric part of the agitator.
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In Eq. (19), Se and To are the ratios of the cloth in-plane shear and
torsional stiffness forces to fluid inertial forces. The dimensional
values given in Sections 6.1 and 6.2 yield the following dimension-
less values in the simulations unless noted otherwise.

Re ¼ 12;000 to 120; Te ¼ 170; Se ¼ 6:4� 10�2;
Be¼ 2:2� 10�8; To¼ 2:2�10�8; In¼ 3:0�10�4; St¼ 0:05:
6.4. Results

The effect of changing the grid resolution is examined for 16
cloth pieces for Re = 1200 and 120, where Re for a typical
wash cycle is of order 106. The computational cost of the three-
dimensional simulations prevented finer resolution simulations
for higher Re. Table 5 shows the effect of changing the dimension-
less lateral Eulerian mesh size hlateral/ro on the absolute von
Mises Lagrangian stresses jSvM jmax scaled by ro = qf ro

2xmax
2 (the

hlateral/hvertical ratio is fixed). Table 6 shows the effect of hlateral/ro

on the rms torque exerted on the outer cylinder, scaled by so = qf

ro
4xmax

2H. These simulations use dimensionless time-step
Dtxmax = 5.0 � 10�4, and the statistics were measured between
the fourth and the twelfth agitation cycles. The Lagrangian to
Eulerian mesh width ratio was kept constant near 1 and the value
hlateral = 3.5 � 10�2 corresponds to an Eulerian grid size of
65 � 65 � 65 points.

Table 5 shows that for Re = 120 the dimensionless cloth stresses
fluctuate between 6 and 7; for Re = 1200 the stresses decrease as
the grid is refined, but the 33% decrease between h/ro = 7 � 10�2



Fig. 5. The washtub geometry as resolved using a Cartesian grid size resolution of
33 � 33 � 33 points and the representative r–z projections of pathlines of the cloth
pieces’ center of mass inside the washtub as shown with the red lines. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table 4
Operating conditions, physical and numerical parameters in the 3-D simulations.

Agitator peak rotation speed (xmax)a 120 rpm
Agitator rotational frequency (f)a 2/p Hz
Cloth extensional stiffness (Ke) 8 � 105 N/m
Cloth in-plane shear stiffness (Ks) 3 � 102 N/m
Cloth bending stiffness (Kb) 1 � 10�5 N.m
Cloth torsional stiffness (Kt) 1 � 10�5 N.m
Cloth excess mass density (qsq)b 9.3 � 10�2 kg/m2

Cloth size (L � L) 15 cm � 15 cm (square)
Average cloth thickness (q) 2.4 � 10�4 m
Water density (qf) 1 � 103 kg/m3

Water dynamic viscosity (l) 10�1–101 kg/(m s)
Dirac delta function half width (e) 2hlateral and 2hvertical

Minimum Lagrangian to Eulerian mesh size ratio 1.15
hlateral/hvertical 3

a The agitator makes one full revolution before reversing.
b With respect to the mass of the displaced water (would be zero if neutrally

buoyant in water).

Table 6
Effect of grid resolution on the torque on the outer wall between the fourth and the
twelfth agitation cycles for 16 cloth pieces with Dtxmax = 5.0 � 10�4. For � see the
text.

hlateral/ro Rms torque on the outer wall/so

Re = 12,000 Re = 1200 Re = 120

7.0 � 10�2 –� 5.85 � 10�4 1.05 � 10�2

4.7 � 10�2 –� 5.39 � 10�4 7.76 � 10�3

3.5 � 10�2 1.51 � 10�4 5.36 � 10�4 6.70 � 10�3

Table 7
Effect of changing the time step on jSvM jmax between the fourth and twelfth agitation
cycles for 16 cloth pieces with Re = 1200, h/ro = 7.0 � 10�2.

Dtxmax jSvM jmax=ro Standard deviation

5.0 � 10�4 � 2 11.86 7.44
5.0 � 10�4 12.89 8.39
5.0 � 10�4/2 11.61 5.81
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and h/ro = 4.7 � 10�2 has dropped to a 5% difference between
h/ro = 4.7 � 10�2 and h/ro = 3.5 � 10�2. Additionally, note the
significant decrease in the ratio of the standard deviation to the
mean stresses for Re = 1200. Moreover, for the Re = 12,000 case
Table 5
Effect of grid resolution on jSvM jmax between the fourth and the twelfth agitation cycles fo

hlateral/ro jSvM jmax=ro

Re = 12,000 Re = 1200 Re = 1

7.0 � 10�2 –� 12.89 6.20
4.7 � 10�2 –� 8.63 6.21
3.5 � 10�2 20.9 8.19 6.81

Fig. 6. The time histories of the maximum average cloth stresses jrssjmax , jrrr jmax , jrsr jma

Dtxmax = 5.0 � 10�4. The dashed horizontal line on the right figure is the measured ave
using h/ro = 7.0 � 10�2 and 4.7 � 10�2, some of the cloth pieces
erroneously penetrated into the rotating agitator causing severe
deformation of the cloth that distorted the statistics of the cloth
stresses. This is the reason these values are not reported for those
cases. These results show that the cloth stresses increase with Re,
because with lower viscous forces, the fluid inertial forces domi-
nate the cloth dynamics and result in more complex cloth mixing
resulting in higher deformations (on the other hand with lower
Re, the cloth motions are smoother and the cloth deformations
are milder). Here, jSvM jmax/ro is the ratio of the cloth elastic forces
to the fluid inertial forces, and Table 5 suggests this ratio increases
with Re, as the cloth motion gets more complex and the cloth
deformations increase along with fluid inertial effects. However,
the dimensionless torque in Table 6 show a decreasing trend with
r 16 cloth pieces with Dtxmax = 5.0 � 10�4. For � see the text.

Standard deviation

20 Re = 12,000 Re = 1200 Re = 120

–� 8.39 1.63
–� 4.01 1.65
12.7 2.06 1.47

x (plots on the left); jSVM jmax (plot on the right) for 16 cloth pieces with Re = 1200,
rage of the von Mises stresses between the fourth and the twelfth agitation cycles.



Fig. 7. Snapshots of the 16 cloth motion with Re = 12,000 (left column), 1200 (middle column), and 120 (right column), using the finest grid (h/ro = 3.5 � 10�2). Snapshots
differ by a half agitation cycle, corresponding to the full rotation of the agitator in one direction.
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increasing Re. This is because this torque is more dependent on
the skin friction (not the complexity of the motion within the
wash basket); here the dimensionless skin friction is defined by
(lout/on)/(1/2qfxmax

2ro
2), where ut is the tangential velocity near

the solid surface and n is the normal direction into the fluid.
Sample time histories of the cloth stresses for 16 cloth pieces with
Re = 1200, Dtxmax = 5.0 = 10�4 are shown in Fig. 6.

Table 7 shows the effect of the time-step on the cloth stress
magnitudes between the fourth and twelfth agitation cycles,
for 16 cloth pieces, Re = 1200, and for a grid resolution of
h/ro = 7.0 � 10�2. These results show that for these conditions,
the average cloth stresses fluctuate between 11.6 and 12.9, while
the standard deviation fluctuates between 5.8 and 8.4. This time-
step convergence study was performed at the coarse grid because:
(i) the computational cost of further refining the time-step on fine
grids was high and (ii) using large-time steps on finer grids occa-
sionally led to simulation-failure when one of the cloth pieces
came too close to the agitator and suffered very large deformations



Fig. 7 (continued)

(a) (b)

Fig. 8. All the cloth pieces’ (left) and each cloth piece’s (right) center of mass trajectories from the 4th to 12th agitation cycles at Re = 12,000.
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at high speed – this will be further explained below. Table 7 con-
firms the results in Table 5 are relatively insensitive to time-step.

Representative pathlines of the cloth pieces’ centers of mass
inside the washtub are shown schematically in Fig. 5. For
Re P 1200, the inertial effect of the agitator pushes the cloth
pieces towards the outer drum along the bottom of the washtub
as shown schematically in Fig. 5. Mass continuity requires these
cloth pieces to elevate near the outer drum and then to move
towards the center of the washtub, near the free surface. Finally,
the cloth pieces descend near the center of the washtub. For coarse
time-step or grid resolution, the simulations may fail if cloth pieces
erroneously penetrate the agitator, since the agitator moves
quickly compared to the surrounding fluid, which in turn leads
to very high cloth elastic forces. On the other hand, at the lower
Reynolds number (Re = 120), the cloth pieces mainly rotate about
their relatively stationary center of mass.



(a) (b)

Fig. 9. All the cloth pieces’ (left) and each cloth piece’s (right) center of mass trajectories from the 4th to 12th agitation cycles at Re = 1200.

(a) (b)

Fig. 10. All the cloth pieces’ (left) and each cloth piece’s (right) center of mass trajectories from the 4th to 12th agitation cycles at Re = 120.

Fig. 11. The rms distance of all the cloth points (r0) from their time and space
average of the center of mass.
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Fig. 7 shows snapshots of the cloth motion for Re = 12,000 (left
column), Re = 1200 (middle column), and Re = 120 (right column),
using the finest grid (h/ro = 3.5 � 10�2). The snapshots differ by a
half agitation cycle, corresponding to a full rotation of the agitator
in one direction. Simulation videos for h/ro = 3.5 � 10�2 are
attached as supplemental files to this paper.

The serial snapshots in Fig. 7 (and the videos) show that with
lower Re, the tumbling rate is slower and the cloth pieces follow
a more pronounced rotational motion with the agitator. In addi-
tion, Figs. 8–10 illustrate the trajectories of: (i) all the cloth pieces’
common center of mass position and (ii) each of the 16 cloth
pieces’ center of mass position on a plane spanned by the height
z from the bottom of the washtub and the horizontal radius
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. This horizontal radius measures the cloth center of

mass from the radial center of the agitator (Fig. 4).
The center of mass analyses of the cloth pieces in Figs. 8–10

conform to the trajectories plotted in Fig. 5 – especially for the
cases with Re P 1200. Further analyses of the cloth motion
revealed that the azimuthal angular motion was only significant
for the case with Re = 120. Note in Fig. 8 that for the case with
Re = 12,000, one of the cloth pieces became stuck at the bottom,
because it got too close to the rotating impeller at the bottom of
the wash basket and then could not separate from it (this particu-
lar simulation is not used for the convergence arguments of Tables
5 and 6). This problem is caused by coarse grid resolution for
Re = 12,000 and the assumption in the numerical method that
the fluid velocity and the cloth velocity are locally the same. To
better assess the effect of Re on the cloth scatter, Fig. 11 plots
the rms distance of all the cloth points from their geometrically
and time averaged centers from the plots in Fig. 8–10. Fig. 11
shows the range of scatter increases as the Re increases. However,
the increase in the range of scatter is relatively modest between
Re = 1200 and Re = 12,000, in comparison to the difference
between Re = 120 and Re = 1200.



Fig. 12. Illustrative snapshots of the motion of 16 (left column), 32 (middle column), and 64 (right column) cloth pieces with Re = 1200, Dtxmax = 5.0 � 10�4, and hlateral/
ro = 7 � 10�2. Snapshots differ by a half agitation cycle, corresponding to the full rotation of the agitator in one direction.
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The effect of changing the cloth loading in the washtub is
shown at Re = 1200 (approximately 1/1000th of a typical wash
cycle Re) and Dtxmax = 5.0 � 10�4. The ratio of the total dry mass
of the cloth pieces to the mass of the water in the washtub is
approximately 1.7 � 10�3, 3.3 � 10�3, and 6.6 � 10�3 for the simu-
lations with 16, 32, and 64 cloth pieces, respectively. The left, mid-
dle, and right columns of Fig. 12, respectively, show snapshots
from the motion of 16, 32 and 64 cloth pieces. Again, the
snapshots differ by a half agitation cycle, corresponding to a full
rotation of the agitator in one direction. These simulations use
hlateral/ro = 7 � 10�2.

From the simulation sequences in Fig. 12, the cloth pieces seem
to move together (lack relative motion) when cloth loading is
increased with fixed grid resolution. Although this is partly
because the increased viscous effects due to the smaller inter-cloth
spacing with heavier cloth loadings, the effect of overlapping reg-
ularized delta functions also causes the simulated cloth to closely
follow its neighbors.



Fig. 12 (continued)
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7. Conclusions

Two- and three-dimensional cloth/water washing machine sim-
ulations have been developed, and initial parametric studies have
been conducted to assess the numerical technique, predicted cloth
motion, and predicted cloth stresses. Here, the simulated motions
of the cloth and water are both based on numerical solutions of the
governing conservation laws for mass and momentum under exci-
tation from a complex-shape agitator. The Navier–Stokes equa-
tions are used for the fluid. The equations for thin elastic plates
undergoing arbitrary deformation are used for the cloth. The two
solutions are coupled through an immersed boundary method that
spreads the physical properties of the cloth onto the fluid-solution
grid. The driving motions of the complex-shape agitator are
similarly spread onto the fluid solution grid using a sharp level-
set method to implement moving- and stationary-boundary
conditions.

Although limited computational resources meant the simula-
tion Reynolds number was kept artificially low compared that in
actual clothes washing machines, the overall effort is successful.
This contention is based on the following two observations. (1)
The simulations capture the expected cloth tumbling motion in a
vertical-axis washing machine. (2) The statistics of the cloth stres-
ses and the torque exerted on the wash basket converged with
mesh refinement.

These simulations were developed to predict cloth motion dur-
ing a deep-water vertical-axis wash cycle. They show that when
the Reynolds number is sufficiently high (Re P 1000), the cloth
pieces’ center of mass (cm) positions move along the orbits shown
in Fig. 5, but for lower Re the cloth pieces have a near constant cen-
ter-of-mass position and merely rotate about their center of mass.
Additionally, the cloth stresses were observed to increase and the
torque exerted on the outer wash basket was observed to decrease
with increasing Re. The variation of the center of mass positions of
the cloth pieces are shown to increase with Re. However, the
numerical method coupling the fluid and cloth leads to artificially
stickiness between cloth pieces at high cloth loadings. Overall, the
simulations look promising. Greater computational resources
would better handle higher Re and allow the effects of different
agitator motions to be assessed.
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Appendix A. Derivation of F(g, t)

The following derivation of F(g, t) is given in greater detail in
Ref. [22] and it follows the classic theory of Ref. [12] for thin elastic
plates. The unit vectors on the deformed cloth mid-plane (Fig. 1)
are defined as

es ¼
@X
@s
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@s
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�
; and en ¼

es � er
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The local area element of the plate’s deformed mid-plane is

dA ¼ es � erj jdsdr ¼ Kdsdr ðA:4Þ

and the normal curvatures along constant-r and -s curves are,
respectively,
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The geodesic torsion of the cloth deformed mid-plane is propor-
tional to the s that is defined here as
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s ¼ @2X
@r@s

� en: ðA:6Þ

Using these geometrical quantities and assuming a linear-elastic
thin plate response, the following stress-(N) and internal
moment-(M) resultants, across the cloth thickness q, can be found
for an isotropic plate under plane-stress loading [22]

Nss ¼
Eq
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Mss ¼ � Eq3

12 1�m2ð Þ js þ mjrð Þ;

Msr ¼ �Mrs ¼ Eq3
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Mrr ¼ Eq3

12 1�m2ð Þ jr þ mjsð Þ;

ðA:8Þ

where E and m are the Young’s modulus and Poisson’s ratio of the
plate material. Nsr denotes to the stress-resultant along the r direc-
tion, but on a cloth section normal to s. Msr is the internal moment-
resultant due to Nsr. The total internal-moment resultants on the
constant r and s lines, respectively, are defined in Eq. (A.9).

Ms ¼ Msser þMsres

Mr ¼ Mrser þMrres
; ðA:9Þ

The flexible plate’s stress- and moment-resultants lead to (Ref.
[22]) the following force field (divergence of the stress-resultants),
which is imposed as a body force in the fluid dynamic equations
given in Sections 2 and 3:

F ¼ 1
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Fig. A.1. 2-D circular-Couette flow with a Cartesian grid.

Table A.1
Effect of the grid resolution on the accuracy of the 2-D steady, laminar, and circular Coue

h/ri Maximum error Convergence R

0.0646 0.0365 –
0.0324 0.0309 0.24
0.0162 0.012 1.4
where Q1 and Q2 are the shear forces due to the bending moments
that are obtained from the angular momentum equation given in
Eq. (A.11)), without the inertial effects (see [22] for a discussion
on this assumption).
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Appendix B

The fluid-rigid solid interaction part of the simulation was val-
idated by solving the 2-D laminar circular-Couette flow, as well as
the external flow over a cylinder at Re = 100.

The geometry of the first problem is as given in Fig. A.1. There is
an inner cylinder with a radius ri that is moving with an angular
speed Xi and there is an outer cylinder with a radius ro that is mov-
ing with an angular speed Xo. The space between the inner and
outer cylinders is assumed to be filled with an incompressible
Newtonian fluid. The exact solution of this problem is given by:

uex ¼
Xir2

i �Xor2
o

r2
i � r2

o

� �
r þ ri

2r2
o

r2
i � r2

o

� �
Xo �Xi

r

� �
eh ðA:12Þ

where eh is a unit vector rotating along h shown in Fig. A.1.
For laminar and steady flow solutions, the convective and pres-

sure terms of the Navier–Stokes equations drop out in the exact
solution. For Xi/Xo = 6.13, ri/ro = 0.34, Re = qfroXo(ro � ri)/l = 131,
and DtroXo/(ro � ri) = 2.5 � 10�3, Tables A.1 and A.2 compare the
simulation and analytical results using a sharp Heaviside function
(H) In Eq. (9) and regularized Heaviside function with c = 2h,
respectively, where the maximum and root-mean-square (rms)
error are defined in Eq. (A.13). In Eq. (A.13) usim is the numerically
predicted velocity and uex is the exact solution from Eq. (A.12).

Maximum error : max
usim � uex

uex

� �
;

Rms error :
1

Ngrid

X
Ngrid

usim � uex

uex

� �2
2
4

3
5

1=2

ðA:13Þ

Tables A.1 and A.2 show that the convergence rate of the formula-
tion given in Eqs. (9) and (10) are higher by using regularized
Heaviside functions (H) with c = 2h; however, the errors on the
coarse grid sizes were lower with using the sharp Heaviside
functions. This latter observation is the reason for why the current
simulation uses the sharp Heaviside formulation in the washing
machine simulations that have coarse grid resolutions, especially
for the 3-D case.

In a second validation case, the fluid-rigid solid interaction part
of the simulation was used to predict the maximum and minimum
lift coefficient (CL), and mean drag coefficient ðCDÞ induced on a cir-
cular cylinder in an external flow (Fig. A.2), as well as the Strouhal
number (St) corresponding to the non-dimensional frequency of
the vorticity shedding; these numbers are defined as:

CD ¼
Fx

1
2 qf U

2
oD

; CD ¼
Fy

1
2 qf U2

oD
; St ¼ fD

Uo
;

tte flow with a sharp H.

ate Rms error Convergence rate

0.0105 –
7.95 � 10�3 0.40
3.47 � 10�3 1.2



Table A.2
Effect of the grid resolution on the accuracy of the 2-D steady, laminar, and circular
Couette flow with a regularized H.

h/ri Maximum
error

Convergence
rate

Rms error Convergence
rate

0.0646 0.1133 – 0.0469 –
0.0324 0.04 1.5 0.0167 1.5
0.0162 0.01 2.0 4.0 � 10�3 2.1

a/2

a/2

a/4 3a/4

d x

y

Uo

Fig. A.2. Numerical setup of the simulations of a 2D flow past a circular cylinder.

Table A.3
Comparison of the present results with the others in the literature at Re = 100.

CD CL St Domain size

Present (c = 0) 1.40 ±0.33 0.166 ± 0.0098 30d � 30d
Present (c = 0) 1.34 ±0.33 0.166 ± 0.0098 60d � 60d
Present (c = 2h)a 1.43 ±0.37 0.166 ± 0.0098 30d � 30d
Present (c = 2h)a 1.41 ±0.37 0.166 ± 0.0098 60d � 60d
Ref. [32] – – 0.163 Experiment
Ref. [31] 1.33 ±0.32 0.165 70d � 100d
Ref. [33] 1.39 – 0.16 30d � 15d
Ref. [34] 1.42 0.29 (rms) 0.164 32d � 16d
Ref. [35] 1.37 ±0.323 0.160 30d � 15d
Ref. [36] 1.40 ±0.34 0.168 29.9d � 16.7d

a Note that, the results with c = 2h presented here were yet to converge with
respect to the grid size (a grid size of 1025 � 1025 was used for a domain size of
60d � 60d and a grid size of 2049 � 2049 was used for a domain size of 30d � 30d),
but the results presented here with sharp H are converged.
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where Fx and Fy are the fluid-forces induced on the cylinder on the
horizontal (positive: downstream direction) and vertical (positive:
upward direction), Uo is the inflow speed, and f is the frequency
of the vorticity shedding (as measured from the fluctuations of
the Fx and Fy). In the simulations the boundary conditions were
specified as inflow at the upstream, a convective boundary condi-
tion, @u

@t þ ce
@u
@x ¼ 0, at the downstream boundary, where ce is the

average horizontal speed (u) at the downstream, as suggested by
[31], and at the top and bottom boundaries: (i) similar convective
boundary conditions for the vertical component of the flow speed
(v) and (ii) a condition on u such that the viscous stresses are con-
tinuous at the top and bottom boundaries. Note that this validation
study also tests the convective, pressure, and unsteady flow effects
that were missing in the previous steady Couette flow study.

The results for Re = qfUoD/l = 100 are given in Table A.3 with a
few other results from the published literature. The results show
that the predictions with the current simulation using c = 0 (sharp
H) in Eq. (9) and with a domain size of (60d � 60d) yield to compar-
ative results with respect to the other existing results. On the other
hand, the simulation predictions using a regularized H with c = 2h
yielded into slightly higher lift and drag forces than the ones given
in the literature.
Appendix C. Supplementary material

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.compfluid.
2014.05.005.
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