GOLD CASTING ALLOYS

Stephen C. Bayne
Department of Operative Dentistry
School of Dentistry
University of North Carolina
Chapel Hill, NC 27599-7450

http://www.dent.unc.edu/portfolios/bayne/dental-materials/

GOLD AND GOLD ALLOYS

History of Use in Dentistry

Lost wax casting process: 1907, William Taggart.
(see the ADA history website)

http://www.vekagesta.nl/cast_inv.html

INDIRECT RESTORATIONS
Review of Errors

ERRORS:

- Impressions: 0.1 to 0.2%
- Models/Casts: ----
- Waxing: ----
- Investing: +1.5 to 1.7%
- Casting: -1.5 to 1.7%
- Finishing/Polishing: ----
- Cementing: ----

Calculation of ideal permissible error:
\[2 \times 25 \mu m / 10,000 \mu m = 0.5\% \]

GENERAL REQUIREMENTS

Mechanical Properties:

- High E (stiffness)
- Moderately high YS and H (resistance to plastic deformation)
- Hardenable by heat treatment (retention of polish)

Biological Properties:

- Biocompatible: no toxic soluble phases
- Non-reactive in the oral environment

REVIEW OF CORROSION

1. Types:
 - Chemical Corrosion, Electrochemical Corrosion

2. Requirements for Electrochemical Corrosion:
 - Anode, Cathode, Circuit, Electrolyte

3. Electrochemical Corrosion Categories:
 - Galvanic Corrosion (macro-galvanic)
 - Local Galvanic Corrosion (structure-selective corrosion)
 - Concentration Cell Corrosion (crevice corrosion)
 - Stress Corrosion
CLASSIFICATION OF ALLOYS

1. Full Gold Crown and Bridge Alloys (based on precious metals)
 a. ADA Classification System (see phase diagrams)
 (1) Type I \(\geq 83\% \) Au (Non-heat hardenable) -- inlay
 (2) Type II \(\geq 78\% \) Au (Non-heat hardenable) -- inlay, onlay, ...
 (3) Type III \(\geq 78\% \) Au (Heat hardenable) -- onlay, crown
 (4) Type IV \(\geq 75\% \) Au (Heat hardenable) -- crown, bridge
 b. Effects of Alloys Components:
 (1) Gold (Au) → Corrosion resistance
 (2) Copper (Cu) → Hardness
 (3) Silver (Ag) → Counteract orange color of copper
 (4) Palladium (Pd) → Increase MP and hardness
 (5) Platinum (Pt) → Increase MP
 (6) Zinc (Zn) → Prevent oxidation during melting (O\textsubscript{2} getter)

TERMINOLOGY

1. Precious Metal = containing metals of high economic value such as gold, platinum, palladium, silver, (rhodium), (iridium), (gold, platinum, palladium, silver, (rhodium), (iridium), (rhuthenium), and (osmium).
2. Noble Metal = a precious metal that is resistant to tarnish. This excludes “silver” by definition.
3. Low Gold Alloys = Alloys containing <75% gold (less than 50 a/o gold) which means that gold atoms represent less than every other atom.
4. Gold-substitute Alloys = precious metal alloys not containing gold.
5. Base-Metal Alloys = alloys not containing precious metals to impart their corrosion resistance.

COMMERCIAL EXAMPLES

<table>
<thead>
<tr>
<th>No.</th>
<th>Alloy Type</th>
<th>Impurities</th>
<th>Fusion Met</th>
<th>Liquidus</th>
<th>LCTE °/°C</th>
<th>Tm °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Type I</td>
<td>0.1</td>
<td>17.4</td>
<td>1.7</td>
<td>15.5</td>
<td>790</td>
</tr>
<tr>
<td>2</td>
<td>Type II</td>
<td>0.2</td>
<td>16.8</td>
<td>1.6</td>
<td>15.0</td>
<td>790</td>
</tr>
<tr>
<td>3</td>
<td>Metal</td>
<td>0.3</td>
<td>15.6</td>
<td>1.5</td>
<td>14.0</td>
<td>790</td>
</tr>
<tr>
<td>4</td>
<td>Type III</td>
<td>0.4</td>
<td>14.8</td>
<td>1.4</td>
<td>13.0</td>
<td>790</td>
</tr>
<tr>
<td>5</td>
<td>Type IV</td>
<td>0.5</td>
<td>13.6</td>
<td>1.3</td>
<td>12.0</td>
<td>790</td>
</tr>
</tbody>
</table>

PROCESSING CYCLES

<table>
<thead>
<tr>
<th>CAE2</th>
<th>Gold Alloys</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T_a)</td>
<td>590°C</td>
</tr>
<tr>
<td>(T_b)</td>
<td>890°C</td>
</tr>
</tbody>
</table>

Alloy LCTE = 16-18 ppm/°C
CASTING PROBLEMS
for Gold Alloys

A. Distortion:
1. Margins: Probability highest in thinner portions of pattern.
 a. Wax Deformation: Improper removal or handling of pattern.
 b. Premature Quenching: wait until button loses red color.
 c. Investment Expansion/Contraction:

B. Surface Irregularities:
1. Fine Surface Roughness: Inherent particle size of investment
 a. High W/P ratio increases surface roughness.
 b. Low W/P ratio decreases investment adaptation or flow.
 c. Prolonged burnout encourages investment decomposition.
 d. Overheating alloy encourages investment decomposition.
 e. Overheating alloy encourages reaction with investment.
2. Surface Defects:
 a. Nodules: air bubbles trapped on the pattern during investing.
 (Use surfactant; paint pattern; vacuum invest; vibrate)
 b. Ridges or Veins: poor wetting causing water films on pattern.
 (Use surfactant; vacuum invest; vibrate investment carefully).
3. Gross Surface Defects:
 a. Fins: cracked investment (from overheating)

C. Incomplete Castings:
1. Internal Porosity: due to improper solidification.
 a. Improper Spruing: Diameter too small or too long.
 b. Low Temperature: Investment or metal too cold.
 c. Included Gases: Contaminated gold or oxidized old gold.
 d. Occluded Gases: Improper burnout of pattern.
2. Incomplete External Shape:
 a. Insufficient casting pressure.
 b. Excessive back pressure from investment.
 c. Suck back into sprue.

CASTING PROBLEMS
for Gold Alloys

C. Incomplete Castings:

1. Internal Porosity: due to improper solidification.
 a. Improper Spruing: Diameter too small or too long.
 b. Low Temperature: Investment or metal too cold.
 c. Included Gases: Contaminated gold or oxidized old gold.
 d. Occluded Gases: Improper burnout of pattern.
2. Incomplete External Shape:
 a. Insufficient casting pressure.
 b. Excessive back pressure from investment.
 c. Suck back into sprue.

CASTING PROBLEMS
for Gold Alloys

C. Incomplete Castings:

1. Internal Porosity: due to improper solidification.
 a. Improper Spruing: Diameter too small or too long.
 b. Low Temperature: Investment or metal too cold.
 c. Included Gases: Contaminated gold or oxidized old gold.
 d. Occluded Gases: Improper burnout of pattern.
2. Incomplete External Shape:
 a. Insufficient casting pressure.
 b. Excessive back pressure from investment.
 c. Suck back into sprue.

CASTING PROBLEMS
for Gold Alloys

C. Incomplete Castings:

1. Internal Porosity: due to improper solidification.
 a. Improper Spruing: Diameter too small or too long.
 b. Low Temperature: Investment or metal too cold.
 c. Included Gases: Contaminated gold or oxidized old gold.
 d. Occluded Gases: Improper burnout of pattern.
2. Incomplete External Shape:
 a. Insufficient casting pressure.
 b. Excessive back pressure from investment.
 c. Suck back into sprue.