Question 1: (courtesy of Justin) Given a vector space V over a field k and $v_1, \ldots, v_n \in V$, we obtain a function $T : k^n \to V$ defined by $T(a_1, \ldots, a_n) = a_1v_1 + \cdots + a_nv_n$.

(a) prove that T is a linear function

(b) prove that T is injective if and only if v_1, \ldots, v_n are linearly independent.

(c) prove that T is surjective if and only if $\text{Span}(v_1, \ldots, v_n) = V$.

Question 2: Given a field k and a non-negative integer n, show that any two vector spaces over k of dimension n are isomorphic.

Question 3: Given a vector space V and a subvector space W, we defined V/W in class. Check that addition and scalar multiplication are well-defined. Prove that V/W is a vector space under these operations.