Question 1: Let \(n \geq 2 \) be an integer. Let \(\mathbb{Z}/n \) be the set \(\{0, 1, 2, \ldots, n-1\} \). We define two binary operations + and \(\cdot \) on \(\mathbb{Z}/n \) as follows. If \(a, b \in \mathbb{Z}/n \), then \(a + b \) is defined to be the element \(0 \leq c < n \) such that \(a + b \) and \(c \) differ by a multiple of \(n \).
Similarly, \(a \cdot b \) is defined to be the element \(0 \leq d < n \) such that \(a \cdot b \) and \(d \) differ by a multiple of \(n \). For example, if \(n = 5 \) then \(3 + 4 = 2 \), \(2 + 3 = 0 \), \(2 \cdot 4 = 3 \), and \(4 \cdot 4 = 1 \).
Prove that \((\mathbb{Z}/n, +, \cdot, 0, 1) \) is a ring. Show that if \(n \) is composite, then \(\mathbb{Z}/n \) is not a field.

Question 2: Suppose \((L, +, \cdot, 0, 1) \) is a field and \(K \) is a subfield of \(L \). Then we obtain a function \(\bullet : K \times L \to L \) sending \((k, \ell) \) to \(k \cdot \ell \). Prove that \((L, +, \bullet, 0) \) is a \(K \)-vector space.