
A Self-Tutorial
on

AWK

COMPILED BY:

AMIR SALAREE

DEPT. EARTH AND PLANETARY SCIENCES

NORTHWESTERN UNIVERSITY

FALL 2011

1

Table of Contents

• Why learn AWK?
• Basic Structure
• Executing an AWK script
• Which shell to use with AWK?
• Dynamic Variables
• The Essential Syntax of AWK
• Arithmetic Expressions
• Unary arithmetic operators
• The Autoincrement and Autodecrement Operators
• Assignment Operators
• Conditional expressions
• Regular Expressions
• And/Or/Not
• Commands
• AWK Built-in Variables
• FS - The Input Field Separator Variable
• OFS - The Output Field Separator Variable
• NF - The Number of Fields Variable
• NR - The Number of Records Variable
• RS - The Record Separator Variable
• ORS - The Output Record Separator Variable
• FILENAME - The Current Filename Variable
• Associative Arrays
• Multi-dimensional Arrays
• Example of using AWK's Associative Arrays
• Output of the script
• Picture Perfect PRINTF Output
• PRINTF - formatting output
• Escape Sequences
• Format Specifiers
• Width - specifying minimum field size
• Left Justification
• The Field Precision Value
• Explicit File output
• AWK Numerical Functions
• Trigonometric Functions
• Exponents, logs and square roots

2

• Truncating Integers
• "Random Numbers
• The Lotto script
• String Functions
• The Length function
• The Index Function
• The Substr function
• GAWK's Tolower and Toupper function
• The Split function
• NAWK's string functions
• The Match function
• The System function
• The Getline function
• The systime function
• The Strftime function
• User Defined Functions
• AWK patterns
• Formatting AWK programs
• Environment Variables
• ARGC - Number or arguments (NAWK/GAWK)
• ARGV - Array of arguments (NAWK/GAWK)
• ARGIND - Argument Index (GAWK only)
• FNR (NAWK/GAWK)
• OFMT (NAWK/GAWK)
• RSTART, RLENGTH and match (NAWK/GAWK)
• SUBSEP - Multi-dimensional array separator (NAWK/GAWK)
• ENVIRON - environment variables (GAWK only)
• IGNORECASE (GAWK only)
• CONVFMT - conversion format (GAWK only)
• ERRNO - system errors (GAWK only)
• FIELDWIDTHS - fixed width fields (GAWK only)
• AWK, NAWK, GAWK, or PERL

3

Why learn AWK?

In the past I have covered grep and sed. This section discusses AWK, another cornerstone of UNIX
shell programming. There are three variations of AWK:

AWK - the original from AT&T
NAWK - A newer, improved version from AT&T
GAWK - The Free Software foundation's version

Originally, I didn't plan to discuss NAWK, but several UNIX vendors have replaced AWK with
NAWK, and there are several incompatibilities between the two. It would be cruel of me to not warn
you about the differences. So I will highlight those when I come to them. It is important to know than
all of AWK's features are in NAWK and GAWK. Most, if not all, of NAWK's features are in GAWK.
NAWK ships as part of Solaris. GAWK does not. However, many sites on the Internet have the sources
freely available. If you user Linux, you have GAWK. But in general, assume that I am talking about the
classic AWK unless otherwise noted.

Why is AWK so important? It is an excellent filter and report writer. Many UNIX utilities generates
rows and columns of information. AWK is an excellent tool for processing these rows and columns,
and is easier to use AWK than most conventional programming languages. It can be considered to be a
pseudo-C interpretor, as it understands the same arithmatic operators as C. AWK also has string
manipulation functions, so it can search for particular strings and modify the output. AWK also has
associative arrays, which are incredible useful, and is a feature most computing languages lack.
Associative arrays can make a complex problem a trivial exercise.

I won't exhaustively cover AWK. That is, I will cover the essential parts, and avoid the many variants
of AWK. It might be too confusing to discuss three different versions of AWK. I won't cover the GNU
version of AWK called "gawk." Similarly, I will not discuss the new AT&T AWK called "nawk." The
new AWK comes on the Sun system, and you may find it superior to the old AWK in many ways. In
particular, it has better diagnostics, and won't print out the infamous "bailing out near line ..." message
the original AWK is prone to do. Instead, "nawk" prints out the line it didn't understand, and highlights
the bad parts with arrows. GAWK does this as well, and this really helps a lot. If you find yourself
needing a feature that is very difficult or impossible to do in AWK, I suggest you either use NAWK, or
GAWK, or convert your AWK script into PERL using the "a2p" conversion program which comes
with PERL. PERL is a marvelous language, and I use it all the time, but I do not plan to cover PERL in
these tutorials. Having made my intention clear, I can continue with a clear conscience.

Many UNIX utilities have strange names. AWK is one of those utilities. It is not an abbreviation for
awkward. In fact, it is an elegant and simple language. The work "AWK" is derived from the initials of
the language's three developers: A. Aho, B. W. Kernighan and P. Weinberger.

4

Basic Structure

The essential organization of an AWK program follows the form:

pattern { action }

The pattern specifies when the action is performed. Like most UNIX utilities, AWK is line oriented.
That is, the pattern specifies a test that is performed with each line read as input. If the condition is true,
then the action is taken. The default pattern is something that matches every line. This is the blank or
null pattern. Two other important patterns are specified by the keywords "BEGIN" and "END." As you
might expect, these two words specify actions to be taken before any lines are read, and after the last
line is read. The AWK program below:

BEGIN { print "START" }
 { print }
END { print "STOP" }

adds one line before and one line after the input file. This isn't very useful, but with a simple change,
we can make this into a typical AWK program:

BEGIN { print "File\tOwner"," }
{ print $8, "\t", $3}
END { print " - DONE -" }

I'll improve the script in the next sections, but we'll call it "FileOwner." But let's not put it into a script
or file yet. I will cover that part in a bit. Hang on and follow with me so you get the flavor of AWK.

The characters "\t" Indicates a tab character so the output lines up on even boundries. The "$8" and
"$3" have a meaning similar to a shell script. Instead of the eighth and third argument, they mean the
eighth and third field of the input line. You can think of a field as a column, and the action you specify
operates on each line or row read in.

There are two differences between AWK and a shell processing the characters within double quotes.
AWK understands special characters follow the "\" character like "t". The Bourne and C UNIX shells
do not. Also, unlike the shell (and PERL) AWK does not evaluate variables within strings. To explain,
the second line could not be written like this:

{print "$8\t$3" }

5

That example would print "$8 $3." Inside the quotes, the dollar sign is not a special character. Outside,
it corresponds to a field. What do I mean by the third and eight field? Consider the Solaris "/usr/bin/ls
-l" command, which has eight columns of information. The System V version (Similar to the Linux
version), "/usr/5bin/ls -l," has 9 columns. The third column is the owner, and the eighth (or nineth)
column in the name of the file. This AWK program can be used to process the output of the "ls -l"
command, printing out the filename, then the owner, for each file. I'll show you how.

Update: On a linux system, change "$8" to "$9".

One more point about the use of a dollar sign. In scripting languages like Perl and the various shells, a
dollar sign means the word following is the name of the variable. Awk is different. The dollar sign
means that we are refering to a field or column in the current line. When switching between Perl and
AWK you must remener that "$" has a different meaning. So the following piece of code prints two
"fields" to standard out. The first field printed is the number "5", the second is the fifth field (or
column) on the input line.

BEGIN { x=5 }
{ print x, $x}

6

Executing an AWK script

So let's start writing our first AWK script. There are a couple of ways to do this.

Assuming the first script is called "FileOwner," the invocation would be

ls -l | FileOwner

This might generate the following if there were only two files in the current directory:

File Owner

a.file barnett
another.file barnett
- DONE -

There are two problems with this script. Both problems are easy to fix, but I'll hold off on this until I
cover the basics.

The script itself can be written in many ways. The C shell version would look like this:

#!/bin/csh -f
Linux users have to change $8 to $9
awk '
BEGIN { print "File\tOwner" } \
 { print $8, "\t", $3} \
END { print " - DONE -" } \
'

As you can see in the above script, each line of the AWK script must have a backslash if it is not the
last line of the script. This is necessary as the C shell doesn't, by default, allow strings I have a long list
of complaints about using the C shell.

The Bourne shell (as does most shells) allows quoted strings to span several lines:

#!/bin/sh
Linux users have to change $8 to $9
awk '
BEGIN { print "File\tOwner" }
{ print $8, "\t", $3}
END { print " - DONE -" }
'

The third form is to store the commands in a file, and execute

awk -f filename

7

Since AWK is also an interpretor, you can save yourself a step and make the file executable by add one
line in the beginning of the file:

#!/bin/awk -f
BEGIN { print "File\tOwner" }
{ print $8, "\t", $3}
END { print " - DONE -" }

Change the permission with the chmod command, (i.e. "chmod +x awk_example1.awk"), and the script
becomes a new command. Notice the "-f" option following '#!/bin/awk "above, which is also used in
the third format where you use AWK to execute the file directly, i.e. "awk -f filename". The "-f" option
specifies the AWK file containing the instructions. As you can see, AWK considers lines that start with
a "#" to be a comment, just like the shell. To be precise, anything from the "#" to the end of the line is a
comment (unless its inside an AWK string. However, I always comment my AWK scripts with the "#"
at the start of the line, for reasons I'll discuss later.

Which format should you use? I prefer the last format when possible. It's shorter and simpler. It's also
easier to debug problems. If you need to use a shell, and want to avoid using too many files, you can
combine them as we did in the first and second example.

Which shell to use with AWK?

The format of AWK is not free-form. You cannot put new line breaks just anywhere. They must go in
particular locations. To be precise, in the original AWK you can insert a new line character after the
curly braces, and at the end of a command, but not elsewhere. If you wanted to break a long line into
two lines at any other place, you had to use a backslash:

#!/bin/awk -f
BEGIN { print "File\tOwner" }
{ print $8, "\t", \
$3}
END { print " - DONE -" }

The Bourne shell version would be

#!/bin/sh
awk '
BEGIN { print "File\tOwner" }
{ print $8, "\t", \

8

$3}
END { print "done"}
'

while the C shell would be

#!/bin/csh -f
awk '
BEGIN { print "File\tOwner" }\
{ print $8, "\t", \\
$3}\
END { print "done"}\
'

As you can see, this demonstrates how awkward the C shell is when enclosing an AWK script. Not
only are back slashes needed for every line, some lines need two. (Note - this is true when using old
awk (e.g. on Solaris) because the print statement had to be on one line. Newer AWK's are more flexible
where newlines can be added.) Many people will warn you about the C shell. Some of the problems are
subtle, and you may never see them. Try to include an AWK or sed script within a C shell script, and
the back slashes will drive you crazy. This is what convinced me to learn the Bourne shell years ago,
when I was starting out. I strongly recommend you use the Bourne shell for any AWK or sed script. If
you don't use the Bourne shell, then you should learn it. As a minimum, learn how to set variables,
which by some strange coincidence is the subject of the next section.

Dynamic Variables

Since you can make a script an AWK executable by mentioning "#!/bin/awk -f" on the first line,
including an AWK script inside a shell script isn't needed unless you want to either eliminate the need
for an extra file, or if you want to pass a variable to the insides of an AWK script. Since this is a
common problem, now is as good a time to explain the technique. I'll do this by showing a simple
AWK program that will only print one column. NOTE: there will be a bug in the first version. The
number of the column will be specified by the first argument. The first version of the program, which
we will call "Column," looks like this:

#!/bin/sh
#NOTE - this script does not work!
column=$1
awk '{print $column}'

A suggested use is:

ls -l | Column 3

9

This would print the third column from the ls command, which would be the owner of the file. You can
change this into a utility that counts how many files are owned by each user by adding

ls -l | Column 3 | uniq -c | sort -nr

Only one problem: the script doesn't work. The value of the "column" variable is not seen by AWK.
Change "awk" to "echo" to check. You need to turn off the quoting when the variable is seen. This can
be done by ending the quoting, and restarting it after the variable:

#!/bin/sh
column=$1
awk '{print $'$column'}'

This is a very important concept, and throws experienced programmers a curve ball. In many computer
languages, a string has a start quote, and end quote, and the contents in between. If you want to include
a special character inside the quote, you must prevent the character from having the typical meaning. In
the C language, this is down by putting a backslash before the character. In other languages, there is a
special combination of characters to to this. In the C and Bourne shell, the quote is just a switch. It
turns the interpretation mode on or off. There is really no such concept as "start of string" and "end of
string." The quotes toggle a switch inside the interpretor. The quote character is not passed on to the
application. This is why there are two pairs of quotes above. Notice there are two dollar signs. The first
one is quoted, and is seen by AWK. The second one is not quoted, so the shell evaluates the variable,
and replaces "$column" by the value. If you don't understand, either change "awk" to "echo," or change
the first line to read "#!/bin/sh -x."

Some improvements are needed, however. The Bourne shell has a mechanism to provide a value for a
variable if the value isn't set, or is set and the value is an empty string. This is done by using the format:

${variable:-defaultvalue}

This is shown below, where the default column will be one:

#!/bin/sh
column=${1:-1}
awk '{print $'$column'}'

We can save a line by combining these two steps:

#!/bin/sh
awk '{print $'${1:-1}'}'

It is hard to read, but it is compact. There is one other method that can be used. If you execute an AWK
command and include on the command line

variable=value

10

this variable will be set when the AWK script starts. An example of this use would be:

#!/bin/sh
awk '{print $c}' c=${1:-1}

This last variation does not have the problems with quoting the previous example had. You should
master the earlier example, however, because you can use it with any script or command. The second
method is special to AWK. Modern AWK's have other options as well.

The Essential Syntax of AWK

Earlier I discussed ways to start an AWK script. This section will discuss the various grammatical
elements of AWK.

Arithmetic Expressions

There are several arithmetic operators, similar to C. These are the binary operators, which operate on
two variables:

 +--+
 | AWK Table 1 |
 | Binary Operators |
 |Operator Type Meaning |
 +--+
 |+ Arithmetic Addition |
 |- Arithmetic Subtraction |
 |* Arithmetic Multiplication |
 |/ Arithmetic Division |
 |% Arithmetic Modulo |
 |<space> String Concatenation |
 +--+

Using variables with the value of "7" and "3," AWK returns the following results for each operator
when using the print command:

 +---------------------+
 |Expression Result |
 +---------------------+
 |7+3 10 |
 |7-3 4 |
 |7*3 21 |

11

 |7/3 2.33333 |
 |7%3 1 |
 |7 3 73 |
 +---------------------+

There are a few points to make. The modulus operator finds the remainder after an integer divide. The
print command output a floating point number on the divide, but an integer for the rest. The string
concatenate operator is confusing, since it isn't even visible. Place a space between two variables and
the strings are concatenated together. This also shows that numbers are converted automatically into
strings when needed. Unlike C, AWK doesn't have "types" of variables. There is one type only, and it
can be a string or number. The conversion rules are simple. A number can easily be converted into a
string. When a string is converted into a number, AWK will do so. The string "123" will be converted
into the number 123. However, the string "123X" will be converted into the number 0. (NAWK will
behave differently, and converts the string into integer 123, which is found in the beginning of the
string).

Unary arithmetic operators

The "+" and "-" operators can be used before variables and numbers. If X equals 4, then the statement:

print -x;

will print "-4."

The Autoincrement and Autodecrement
Operators

AWK also supports the "++" and "--" operators of C. Both increment or decrement the variables by
one. The operator can only be used with a single variable, and can be before or after the variable. The
prefix form modifies the value, and then uses the result, while the postfix form gets the results of the
variable, and afterwards modifies the variable. As an example, if X has the value of 3, then the AWK
statement

print x++, " ", ++x;

12

would print the numbers 3 and 5. These operators are also assignment operators, and can be used by
themselves on a line:

x++;
--y;

Assignment Operators

Variables can be assigned new values with the assignment operators. You know about "++" and "--."
The other assignment statement is simply:

variable = arithmetic_expression

Certain operators have precedence over others; parenthesis can be used to control grouping. The
statement

x=1+2*3 4;

is the same as

x = (1 + (2 * 3)) "4";

Both print out "74."

Notice spaces can be added for readability. AWK, like C, has special assignment operators, which
combine a calculation with an assignment. Instead of saying

x=x+2;

you can more concisely say:

x+=2;

The complete list follows:

 +---+
 | AWK Table 2 |
 | Assignment Operators |
 |Operator Meaning |
 |+= Add result to variable |
 |-= Subtract result from variable |
 |*= Multiply variable by result |
 |/= Divide variable by result |
 |%= Apply modulo to variable |
 +---+

13

Conditional expressions

The second type of expression in AWK is the conditional expression. This is used for certain tests, like
the if or while. Boolean conditions evaluate to true or false. In AWK, there is a definite difference
between a boolean condition, and an arithmetic expression. You cannot convert a boolean condition to
an integer or string. You can, however, use an arithmetic expression as a conditional expression. A
value of 0 is false, while anything else is true. Undefined variables has the value of 0. Unlike AWK,
NAWK lets you use booleans as integers.

Arithmetic values can also be converted into boolean conditions by using relational operators:

 +---------------------------------------+
 | AWK Table 3 |
 | Relational Operators |
 |Operator Meaning |
 +---------------------------------------+
 |== Is equal |
 |!= Is not equal to |
 |> Is greater than |
 |>= Is greater than or equal to |
 |< Is less than |
 |<= Is less than or equal to |
 +---------------------------------------+

These operators are the same as the C operators. They can be used to compare numbers or strings. With
respect to strings, lower case letters are greater than upper case letters.

Regular Expressions

Two operators are used to compare strings to regular expressions:

 +-----------------------------+
 | AWK Table 4 |
 |Regular Expression Operators |
 |Operator Meaning |
 +-----------------------------+
 |~ Matches |
 |!~ Doesn't match |
 +-----------------------------+

The order in this case is particular. The regular expression must be enclosed by slashes, and comes

14

after the operator. AWK supports extended regular expressions, so the following are examples of valid
tests:

word !~ /START/
lawrence_welk ~ /(one|two|three)/

And/Or/Not

There are two boolean operators that can be used with conditional expressions. That is, you can
combine two conditional expressions with the "or" or "and" operators: "&&" and "||." There is also the
unary not operator: "!."

Commands

There are only a few commands in AWK. The list and syntax follows:

if (conditional) statement [else statement]
while (conditional) statement
for (expression ; conditional ; expression) statement
for (variable in array) statement
break
continue
{ [statement] ...}
variable=expression
print [expression-list] [> expression]
printf format [, expression-list] [> expression]
next
exit

At this point, you can use AWK as a language for simple calculations; If you wanted to calculate
something, and not read any lines for input, you could use the BEGIN keyword discussed earlier,
combined with a exit command:

#!/bin/awk -f
BEGIN {

15

Print the squares from 1 to 10 the first way

 i=1;
 while (i <= 10) {
 printf "The square of ", i, " is ", i*i;
 i = i+1;
 }

do it again, using more concise code

 for (i=1; i <= 10; i++) {
 printf "The square of ", i, " is ", i*i;
 }

now end
exit;
}

The following asks for a number, and then squares it:

#!/bin/awk -f
BEGIN {
 print "type a number";
}
{
 print "The square of ", $1, " is ", $1*$1;
 print "type another number";
}
END {
 print "Done"
}

The above isn't a good filter, because it asks for input each time. If you pipe the output of another
program into it, you would generate a lot of meaningless prompts.

Here is a filter that you should find useful. It counts lines, totals up the numbers in the first column, and
calculates the average. Pipe "wc -c *" into it, and it will count files, and tell you the average number of
words per file, as well as the total words and the number of files.

#!/bin/awk -f
BEGIN {
How many lines
 lines=0;
 total=0;
}
{
this code is executed once for each line
increase the number of files
 lines++;
increase the total size, which is field #1
 total+=$1;

16

}
END {
end, now output the total
 print lines " lines read";
 print "total is ", total;
 if (lines > 0) {
 print "average is ", total/lines;
 } else {
 print "average is 0";
 }
}

You can pipe the output of "ls -s" into this filter to count the number of files, the total size, and the
average size. There is a slight problem with this script, as it includes the output of "ls" that reports the
total. This causes the number of files to be off by one. Changing

lines++;

to

if ($1 != "total") lines++;

will fix this problem. Note the code which prevents a divide by zero. This is common in well-written
scripts. I also initialize the variables to zero. This is not necessary, but it is a good habit.

AWK Built-in Variables

I have mentioned two kinds of variables: positional and user defined. A user defined variable is one
you create. A positional variable is not a special variable, but a function triggered by the dollar sign.
Therefore

print $1;

and

X=1;
print $X;

do the same thing: print the first field on the line. There are two more points about positional variables
that are very useful. The variable "$0" refers to the entire line that AWK reads in. That is, if you had
eight fields in a line,

print $0;

17

is similar to

print $1, $2, $3, $4, $5, $6, $7, $8

This will change the spacing between the fields; otherwise, they behave the same. You can modify
positional variables. The following commands

$2="";
print;

deletes the second field. If you had four fields, and wanted to print out the second and fourth field,
there are two ways. This is the first:

#!/bin/awk -f
{
 $1="";
 $3="";
 print;
}

and the second

#!/bin/awk -f
{
 print $2, $4;
}

These perform similarly, but not identically. The number of spaces between the values vary. There are
two reasons for this. The actual number of fields does not change. Setting a positional variable to an
empty string does not delete the variable. It's still there, but the contents has been deleted. The other
reason is the way AWK outputs the entire line. There is a field separator that specifies what character
to put between the fields on output. The first example outputs four fields, while the second outputs two.
In-between each field is a space. This is easier to explain if the characters between fields could be
modified to be made more visible. Well, it can. AWK provides special variables for just that purpose.

FS - The Input Field Separator Variable

AWK can be used to parse many system administration files. However, many of these files do not have
whitespace as a separator. as an example, the password file uses colons. You can easily change the field
separator character to be a colon using the "-F" command line option. The following command will
print out accounts that don't have passwords:

awk -F: '{if ($2 == "") print $1 ": no password!"}' </etc/passwd

There is a way to do this without the command line option. The variable "FS" can be set like any

18

variable, and has the same function as the "-F" command line option. The following is a script that has
the same function as the one above.

#!/bin/awk -f
BEGIN {
 FS=":";
}
{
 if ($2 == "") {
 print $1 ": no password!";
 }
}

The second form can be used to create a UNIX utility, which I will name "chkpasswd," and executed
like this:

chkpasswd </etc/passwd

The command "chkpasswd -F:" cannot be used, because AWK will never see this argument. All
interpreter scripts accept one and only one argument, which is immediately after the "#!/bin/awk"
string. In this case, the single argument is "-f." Another difference between the command line option
and the internal variable is the ability to set the input field separator to be more than one character. If
you specify

FS=": ";

then AWK will split a line into fields wherever it sees those two characters, in that exact order. You
cannot do this on the command line.

There is a third advantage the internal variable has over the command line option: you can change the
field separator character as many times as you want while reading a file. Well, at most once for each
line. You can even change it depending on the line you read. Suppose you had the following file which
contains the numbers 1 through 7 in three different formats. Lines 4 through 6 have colon separated
fields, while the others separated by spaces.

ONE 1 I
TWO 2 II
#START
THREE:3:III
FOUR:4:IV
FIVE:5:V
#STOP
SIX 6 VI
SEVEN 7 VII

The AWK program can easily switch between these formats:

#!/bin/awk -f
{
 if ($1 == "#START") {

19

 FS=":";
 } else if ($1 == "#STOP") {
 FS=" ";
 } else {
 #print the Roman number in column 3
 print $3
 }
}

Note the field separator variable retains its value until it is explicitly changed. You don't have to reset it
for each line. Sounds simple, right? However, I have a trick question for you. What happens if you
change the field separator while reading a line? That is, suppose you had the following line

One Two:Three:4 Five

and you executed the following script:

#!/bin/awk -f
{
 print $2
 FS=":"
 print $2
}

What would be printed? "Three" or "Two:Three:4?" Well, the script would print out "Two:Three:4"
twice. However, if you deleted the first print statement, it would print out "Three" once! I thought this
was very strange at first, but after pulling out some hair, kicking the deck, and yelling at muself and
everyone who had anything to do with the development of UNIX, it is intuitively obvious. You just
have to be thinking like a professional programmer to realize it is intuitive. I shall explain, and prevent
you from causing yourself physical harm.

If you change the field separator before you read the line, the change affects what you read. If you
change it after you read the line, it will not redefine the variables. You wouldn't want a variable to
change on you as a side-effect of another action. A programming language with hidden side effects is
broken, and should not be trusted. AWK allows you to redefine the field separator either before or after
you read the line, and does the right thing each time. Once you read the variable, the variable will not
change unless you change it. Bravo!

To illustrate this further, here is another version of the previous code that changes the field separator
dynamically. In this case, AWK does it by examining field "$0," which is the entire line. When the line
contains a colon, the field separator is a colon, otherwise, it is a space:

#!/bin/awk -f
{
 if ($0 ~ /:/) {
 FS=":";
 } else {
 FS=" ";
 }
 #print the third field, whatever format
 print $3

20

}

This example eliminates the need to have the special "#START" and "#STOP" lines in the input.

OFS - The Output Field Separator Variable

There is an important difference between

print $2 $3

and

print $2, $3

The first example prints out one field, and the second prints out two fields. In the first case, the two
positional parameters are concatenated together and output without a space. In the second case, AWK
prints two fields, and places the output field separator between them. Normally this is a space, but you
can change this by modifying the variable "OFS."

If you wanted to copy the password file, but delete the encrypted password, you could use AWK:

#!/bin/awk -f
BEGIN {
 FS=":";
 OFS=":";
}
{
 $2="";
 print
}

Give this script the password file, and it will delete the password, but leave everything else the same.
You can make the output field separator any number of characters. You are not limited to a single
character.

21

NF - The Number of Fields Variable

It is useful to know how many fields are on a line. You may want to have your script change its
operation based on the number of fields. As an example, the command "ls -l" may generate eight or
nine fields, depending on which version you are executing. The System V version, "/usr/bin/ls -l"
generates nine fields, which is equivalent to the Berkeley "/usr/ucb/ls -lg" command. If you wanted to
print the owner and filename then the following AWK script would work with either version of "ls:"

#!/bin/awk -f
parse the output of "ls -l"
print owner and filename
remember - Berkeley ls -l has 8 fields, System V has 9
{
 if (NF == 8) {
 print $3, $8;
 } else if (NF == 9) {
 print $3, $9;
 }
}

Don't forget the variable can be prepended with a "$." This allows you to print the last field of any
column

#!/bin/awk -f
{ print $NF; }

One warning about AWK. There is a limit of 99 fields in a single line. PERL does not have any such
limitations.

NR - The Number of Records Variable

Another useful variable is "NR." This tells you the number of records, or the line number. You can use
AWK to only examine certain lines. This example prints lines after the first 100 lines, and puts a line
number before each line after 100:

#!/bin/awk -f
{ if (NR >= 100) {

22

 print NR, $0;
}

RS - The Record Separator Variable

Normally, AWK reads one line at a time, and breaks up the line into fields. You can set the "RS"
variable to change AWK's definition of a "line." If you set it to an empty string, then AWK will read
the entire file into memory. You can combine this with changing the "FS" variable. This example treats
each line as a field, and prints out the second and third line:

#!/bin/awk -f
BEGIN {
change the record separator from newline to nothing
 RS=""
change the field separator from whitespace to newline
 FS="\n"
}
{
print the second and third line of the file
 print $2, $3;
}

The two lines are printed with a space between. Also this will only work if the input file is less than
100 lines, therefore this technique is limited. You can use it to break words up, one word per line, using
this:

#!/bin/awk -f
BEGIN {
 RS=" ";
}
{
 print ;
}

but this only works if all of the words are separated by a space. If there is a tab or punctuation inside, it
would not.

ORS - The Output Record Separator Variable

23

The default output record separator is a newline, like the input. This can be set to be a newline and
carriage return, if you need to generate a text file for a non-UNIX system.

#!/bin/awk -f
this filter adds a carriage return to all lines
before the newline character
BEGIN {
 ORS="\r\n"
}
{ print }

FILENAME - The Current Filename Variable

The last variable known to regular AWK is "FILENAME," which tells you the name of the file being
read.

#!/bin/awk -f
reports which file is being read
BEGIN {
 f="";
}
{ if (f != FILENAME) {
 print "reading", FILENAME;
 f=FILENAME;
 }
 print;
}

This can be used if several files need to be parsed by AWK. Normally you use standard input to
provide AWK with information. You can also specify the filenames on the command line. If the above
script was called "testfilter," and if you executed it with

testfilter file1 file2 file3

It would print out the filename before each change. An alternate way to specify this on the command
line is

testfilter file1 - file3 <file2

In this case, the second file will be called "-," which is the conventional name for standard input. I have
used this when I want to put some information before and after a filter operation. The prefix and postfix
files special data before and after the real data. By checking the filename, you can parse the
information differently. This is also useful to report syntax errors in particular files:

#!/bin/awk -f
{

24

 if (NF == 6) {
 # do the right thing
 } else {
 if (FILENAME == "-") {
 print "SYNTAX ERROR, Wrong number of fields,",
 "in STDIN, line #:", NR, "line: ", $0;
 } else {
 print "SYNTAX ERROR, Wrong number of fields,",
 "Filename: ", FILENAME, "line # ", NR,"line: ", $0;
 }
 }
}

Associative Arrays

I have used dozens of different programming languages over the last 20 years, and AWK is the first
language I found that has associative arrays. This term may be meaningless to you, but believe me,
these arrays are invaluable, and simplify programming enormously. Let me describe a problem, and
show you how associative arrays can be used for reduce coding time, giving you more time to explore
another stupid problem you don't want to deal with in the first place.

Let's suppose you have a directory overflowing with files, and you want to find out how many files are
owned by each user, and perhaps how much disk space each user owns. You really want someone to
blame; it's hard to tell who owns what file. A filter that processes the output of ls would work:

ls -l | filter

But this doesn't tell you how much space each user is using. It also doesn't work for a large directory
tree. This requires find and xargs:

find . -type f -print | xargs ls -l | filter

The third column of "ls" is the username. The filter has to count how many times it sees each user. The
typical program would have an array of usernames and another array that counts how many times each
username has been seen. The index to both arrays are the same; you use one array to find the index, and
the second to keep track of the count. I'll show you one way to do it in AWK--the wrong way:

#!/bin/awk -f
bad example of AWK programming
this counts how many files each user owns.
BEGIN {
 number_of_users=0;
}
{
must make sure you only examine lines with 8 or more fields
 if (NF>7) {

25

 user=0;
look for the user in our list of users
 for (i=1; i<=number_of_users; i++) {
is the user known?
 if (username[i] == $3) {
found it - remember where the user is
 user=i;
 }
 }
 if (user == 0) {
found a new user
 username[++number_of_users]=$3;
 user=number_of_users;
 }
increase number of counts
 count[user]++;
 }
}
END {
 for (i=1; i<=number_of_users; i++) {
 print count[i], username[i]
 }
}

I don't want you to read this script. I told you it's the wrong way to do it. If you were a C programmer,
and didn't know AWK, you would probably use a technique like the one above. Here is the same
program, except this example that uses AWK's associative arrays. The important point is to notice the
difference in size between these two versions:

#!/bin/awk -f
{
 username[$3]++;
}
END {
 for (i in username) {
 print username[i], i;
 }
}

This is shorter, simpler, and much easier to understand--Once you understand exactly what an
associative array is. The concept is simple. Instead of using a number to find an entry in an array, use
anything you want. An associative array in an array whose index is a string. All arrays in AWK are
associative. In this case, the index into the array is the third field of the "ls" command, which is the
username. If the user is "bin," the main loop increments the count per user by effectively executing

username["bin"]++;

26

UNIX guru's may gleefully report that the 8 line AWK script can be replaced by:

awk '{print $3}' | sort | uniq -c | sort -nr

True, However, this can't count the total disk space for each user. We need to add some more
intelligence to the AWK script, and need the right foundation to proceed. There is also a slight bug in
the AWK program. If you wanted a "quick and dirty" solution, the above would be fine. If you wanted
to make it more robust, you have to handle unusual conditions. If you gave this program an empty file
for input, you would get the error:

awk: username is not an array

Also, if you piped the output of "ls -l" to it, the line that specified the total would increment a non-
existing user. There are two techniques used to eliminate this error. The first one only counts valid
input:

#!/bin/awk -f
{
 if (NF>7) {
 username[$3]++;
 }
}
END {
 for (i in username) {
 print username[i], i;
 }
}

This fixes the problem of counting the line with the total. However, it still generates an error when an
empty file is read as input. To fix this problem, a common technique is to make sure the array always
exists, and has a special marker value which specifies that the entry is invalid. Then when reporting the
results, ignore the invalid entry.

#!/bin/awk -f
BEGIN {
 username[""]=0;
}
{
 username[$3]++;
}
END {
 for (i in username) {
 if (i != "") {
 print username[i], i;
 }
 }
}

This happens to fix the other problem. Apply this technique and you will make your AWK programs
more robust and easier for others to use.

27

Multi-dimensional Arrays

Some people ask if AWK can handle multi-dimensional arrays. It can. However, you don't use
conventional two-dimensional arrays. Instead you use associative arrays. (Did I even mention how
useful associative arrays are?) Remember, you can put anything in the index of an associative array. It
requires a different way to think about problems, but once you understand, you won't be able to live
without it. All you have to do is to create an index that combines two other indices. Suppose you
wanted to effectively execute

a[1,2] = y;

This is invalid in AWK. However, the following is perfectly fine:

a[1 "," 2] = y;

Remember: the AWK string concatenation operator is the space. It combines the three strings into the
single string "1,2." Then it uses it as an index into the array. That's all there is to it. There is one minor
problem with associative arrays, especially if you use the for command to output each element: you
have no control over the order of output. You can create an algorithm to generate the indices to an
associative array, and control the order this way. However, this is difficult to do. Since UNIX provides
an excellent sort utility, more programmers separate the information processing from the sorting. I'll
show you what I mean.

Example of using AWK's Associative Arrays

I often find myself using certain techniques repeatedly in AWK. This example will demonstrate these
techniques, and illustrate the power and elegance of AWK. The program is simple and common. The
disk is full. Who's gonna be blamed? I just hope you use this power wisely. Remember, you may be the
one who filled up the disk.

Having resolved my moral dilemma, by placing the burden squarely on your shoulders, I will describe
the program in detail. I will also discuss several tips you will find useful in large AWK programs. First,
initialize all arrays used in a for loop. There will be four arrays for this purpose. Initialization is easy:

u_count[""]=0;
g_count[""]=0;
ug_count[""]=0;
all_count[""]=0;

28

The second tip is to pick a convention for arrays. Selecting the names of the arrays, and the indices for
each array is very important. In a complex program, it can become confusing to remember which array
contains what. I suggest you clearly identify the indices and contents of each array. To demonstrate, I
will use a "_count" to indicate the number of files, and "_sum" to indicate the sum of the file sizes. In
addition, the part before the "_" specifies the index used for the array, which will be either "u" for user,
"g" for group, "ug" for the user and group combination, and "all" for the total for all files. In other
programs, I have used names like

username_to_directory[username]=directory;

Follow a convention like this, and it will be hard for you to forget the purpose of each associative array.
Even when a quick hack comes back to haunt you three years later. I've been there.

The third suggestion is to make sure your input is in the correct form. It's generally a good idea to be
pessimistic, but I will add a simple but sufficient test in this example.

if (NF != 10) {
ignore
} else {

etc.

I placed the test and error clause up front, so the rest of the code won't be cluttered. AWK doesn't have
user defined functions. NAWK, GAWK and PERL do.

The next piece of advice for complex AWK scripts is to define a name for each field used. In this case,
we want the user, group and size in disk blocks. We could use the file size in bytes, but the block size
corresponds to the blocks on the disk, a more accurate measurement of space. Disk blocks can be found
by using "ls -s." This adds a column, so the username becomes the fourth column, etc. Therefore the
script will contain:

size=$1;
user=$4;
group=$5;

This will allow us to easily adapt to changes in input. We could use "$1" throughout the script, but if
we changed the number of fields, which the "-s" option does, we'd have to change each field reference.
You don't want to go through an AWK script, and change all the "$1" to "$2," and also change the "$2"
to "$3" because those are really the "$1" that you just changed to "$2." Of course this is confusing.
That's why it's a good idea to assign names to the fields. I've been there too.

Next the AWK script will count how many times each combination of users and groups occur. That is,
I am going to construct a two-part index that contains the username and groupname. This will let me
count up the number of times each user/group combination occurs, and how much disk space is used.

Consider this: how would you calculate the total for just a user, or for just a group? You could rewrite
the script. Or you could take the user/group totals, and total them with a second script.

You could do it, but it's not the AWK way to do it. If you had to examine a bazillion files, and it takes a
long time to run that script, it would be a waste to repeat this task. It's also inefficient to require two
scripts when one can do everything. The proper way to solve this problem is to extract as much
information as possible in one pass through the files. Therefore this script will find the number and size

29

for each category:

Each user
Each group
Each user/group combination
All users and groups

This is why I have 4 arrays to count up the number of files. I don't really need 4 arrays, as I can use the
format of the index to determine which array is which. But this does maake the program easier to
understand for now. The next tip is subtle, but you will see how useful it is. I mentioned the indices
into the array can be anything. If possible, select a format that allows you to merge information from
several arrays. I realize this makes no sense right now, but hang in there. All will become clear soon. I
will do this by constructing a universal index of the form

<user> <group>

This index will be used for all arrays. There is a space between the two values. This covers the total for
the user/group combination. What about the other three arrays? I will use a "*" to indicate the total for
all users or groups. Therefore the index for all files would be "* *" while the index for all of the file
owned by user daemon would be "daemon *." The heart of the script totals up the number and size of
each file, putting the information into the right category. I will use 8 arrays; 4 for file sizes, and 4 for
counts:

u_count[user " *"]++;
g_count["* " group]++;
ug_count[user " " group]++;
all_count["* *"]++;

u_size[user " *"]+=size;
g_size["* " group]+=size;
ug_size[user " " group]+=size;
all_size["* *"]+=size;

This particular universal index will make sorting easier, as you will see. Also important is to sort the
information in an order that is useful. You can try to force a particular output order in AWK, but why
work at this, when it's a one line command for sort? The difficult part is finding the right way to sort
the information. This script will sort information using the size of the category as the first sort field.
The largest total will be the one for all files, so this will be one of the first lines output. However, there
may be several ties for the largest number, and care must be used. The second field will be the number
of files. This will help break a tie. Still, I want the totals and sub-totals to be listed before the individual
user/group combinations. The third and fourth fields will be generated by the index of the array. This is
the tricky part I warned you about. The script will output one string, but the sort utility will not know
this. Instead, it will treat it as two fields. This will unify the results, and information from all 4 arrays
will look like one array. The sort of the third and fourth fields will be dictionary order, and not
numeric, unlike the first two fields. The "*" was used so these sub-total fields will be listed before the
individual user/group combination.

The arrays will be printed using the following format:

30

for (i in u_count) {
 if (i != "") {
 print u_size[i], u_count[i], i;
 }
}
O

I only showed you one array, but all four are printed the same way. That's the essence of the script. The
results is sorted, and I converted the space into a tab for cosmetic reasons.

Output of the script

I changed my directory to /usr/ucb, used the script in that directory. The following is the output:

size count user group
3173 81 * *
3173 81 root *
2973 75 * staff
2973 75 root staff
88 3 * daemon
88 3 root daemon
64 2 * kmem
64 2 root kmem
48 1 * tty
48 1 root tty

This says there are 81 files in this directory, which takes up 3173 disk blocks. All of the files are owned
by root. 2973 disk blocks belong to group staff. There are 3 files with group daemon, which takes up 88
disk blocks.

As you can see, the first line of information is the total for all users and groups. The second line is the
sub-total for the user "root." The third line is the sub-total for the group "staff." Therefore the order of
the sort is useful, with the sub-totals before the individual entries. You could write a simple AWK or
grep script to obtain information from just one user or one group, and the information will be easy to
sort.

There is only one problem. The /usr/ucb directory on my system only uses 1849 blocks; at least that's
what du reports. Where's the discrepancy? The script does not understand hard links. This may not be a
problem on most disks, because many users do not use hard links. Still, it does generate inaccurate
results. In this case, the program vi is also e, ex, edit, view, and 2 other names. The program only exists
once, but has 7 names. You can tell because the link count (field 2) reports 7. This causes the file to be
counted 7 times, which causes an inaccurate total. The fix is to only count multiple links once.
Examining the link count will determine if a file has multiple links. However, how can you prevent
counting a link twice? There is an easy solution: all of these files have the same inode number. You can
find this number with the -i option to ls. To save memory, we only have to remember the inodes of files
that have multiple links. This means we have to add another column to the input, and have to renumber
all of the field references. It's a good thing there are only three. Adding a new field will be easy,
because I followed my own advice.

31

The final script should be easy to follow. I have used variations of this hundreds of times and find it
demonstrates the power of AWK as well as provide insight to a powerful programming paradigm.
AWK solves these types of problems easier than most languages. But you have to use AWK the right
way.

Note - this version was written for a Solaris box. You have to verify if ls is generating the right number
of arguments. The -g argument may need to be deleted, and the check for the number of files may have
to be modified. UpdatedI added a Linux version below - to be downloaded.

This is a fully working version of the program, that accurately counts disk space, appears below:

#!/bin/sh
find . -type f -print | xargs /usr/bin/ls -islg |
awk '
BEGIN {
initialize all arrays used in for loop
 u_count[""]=0;
 g_count[""]=0;
 ug_count[""]=0;
 all_count[""]=0;
}
{
validate your input
 if (NF != 11) {
ignore
 } else {
assign field names
 inode=$1;
 size=$2;
 linkcount=$4;
 user=$5;
 group=$6;

should I count this file?

 doit=0;
 if (linkcount == 1) {
only one copy - count it
 doit++;
 } else {
a hard link - only count first one
 seen[inode]++;
 if (seen[inode] == 1) {
 doit++;
 }
 }
if doit is true, then count the file
 if (doit) {

total up counts in one pass
use description array names
use array index that unifies the arrays

first the counts for the number of files

32

 u_count[user " *"]++;
 g_count["* " group]++;
 ug_count[user " " group]++;
 all_count["* *"]++;

then the total disk space used

 u_size[user " *"]+=size;
 g_size["* " group]+=size;
 ug_size[user " " group]+=size;
 all_size["* *"]+=size;
 }
 }
}
END {
output in a form that can be sorted
 for (i in u_count) {
 if (i != "") {
 print u_size[i], u_count[i], i;
 }
 }
 for (i in g_count) {
 if (i != "") {
 print g_size[i], g_count[i], i;
 }
 }
 for (i in ug_count) {
 if (i != "") {
 print ug_size[i], ug_count[i], i;
 }
 }
 for (i in all_count) {
 if (i != "") {
 print all_size[i], all_count[i], i;
 }
 }
} ' |
numeric sort - biggest numbers first
sort fields 0 and 1 first (sort starts with 0)
followed by dictionary sort on fields 2 + 3
sort +0nr -2 +2d |
add header
(echo "size count user group";cat -) |
convert space to tab - makes it nice output
the second set of quotes contains a single tab character
tr ' ' ' '
done - I hope you like it

Remember when I said I didn't need to use 4 different arrays? I can use just one. This is more
confusing, but more concise

#!/bin/sh
find . -type f -print | xargs /usr/bin/ls -islg |

33

awk '
BEGIN {
initialize all arrays used in for loop
 count[""]=0;
}
{
validate your input
 if (NF != 11) {
ignore
 } else {
assign field names
 inode=$1;
 size=$2;
 linkcount=$4;
 user=$5;
 group=$6;

should I count this file?

 doit=0;
 if (linkcount == 1) {
only one copy - count it
 doit++;
 } else {
a hard link - only count first one
 seen[inode]++;
 if (seen[inode] == 1) {
 doit++;
 }
 }
if doit is true, then count the file
 if (doit) {

total up counts in one pass
use description array names
use array index that unifies the arrays

first the counts for the number of files

 count[user " *"]++;
 count["* " group]++;
 count[user " " group]++;
 count["* *"]++;

then the total disk space used

 size[user " *"]+=size;
 size["* " group]+=size;
 size[user " " group]+=size;
 size["* *"]+=size;
 }
 }
}
END {
output in a form that can be sorted

34

 for (i in count) {
 if (i != "") {
 print size[i], count[i], i;
 }
 }
} ' |
numeric sort - biggest numbers first
sort fields 0 and 1 first (sort starts with 0)
followed by dictionary sort on fields 2 + 3
sort +0nr -2 +2d |
add header
(echo "size count user group";cat -) |
convert space to tab - makes it nice output
the second set of quotes contains a single tab character
tr ' ' ' '
done - I hope you like it

Picture Perfect PRINTF Output

So far, I described several simple scripts that provide useful information, in a somewhat ugly output
format. Columns might not line up properly, and it is often hard to find patterns or trends without this
unity. As you use AWK more, you will be desirous of crisp, clean formatting. To achieve this, you
must master the printf function.

PRINTF - formatting output

The printf is very similar to the C function with the same name. C programmers should have no
problem using printf function.

Printf has one of these syntactical forms:

printf (format);
printf (format, arguments...);
printf (format) >expression;
printf (format, arguments...) > expression;

The parenthesis and semicolon are optional. I only use the first format to be consistent with other
nearby printf statements. A print statement would do the same thing. Printf reveals it's real power when
formatting commands are used.

35

The first argument to the printf function is the format. This is a string, or variable whose value is a
string. This string, like all strings, can contain special escape sequences to print control characters.

Escape Sequences

The character "\" is used to "escape" or mark special characters. The list of these characters is in table
below:

 +---+
 | AWK Table 5 |
 | Escape Sequences |
 |Sequence Description |
 +---+
 |\a ASCII bell (NAWK only) |
 |\b Backspace |
 |\f Formfeed |
 |\n Newline |
 |\r Carriage Return |
 |\t Horizontal tab |
 |\v Vertical tab (NAWK only) |
 |\ddd Character (1 to 3 octal digits) (NAWK only) |
 |\xdd Character (hexadecimal) (NAWK only) |
 | Any character c |
 +---+

It's difficult to explain the differences without being wordy. Hopefully I'll provide enough examples to
demonstrate the differences.

With NAWK, you can print three tab characters using these three different representations:

printf("\t\11\x9\n");

A tab character is decimal 9, octal 11, or hexadecimal 09. See the man page ascii(7) for more
information. Similarly, you can print three double-quote characters (decimal 34, hexadecimal 22, or
octal 42) using

printf("\"\x22\42\n");

You should notice a difference between the printf function and the print function. Print terminates the
line with the ORS character, and divides each field with the OFS separator. Printf does nothing unless
you specify the action. Therefore you will frequently end each line with the newline character "\n," and
you must specify the separating characters explicitly.

36

Format Specifiers

The power of the printf statement lies in the format specifiers, which always start with the character
"%." The format specifiers are described in table 6:

 +--+
 | AWK Table 6 |
 | Format Specifiers |
 |Specifier Meaning |
 +--+
 |c ASCII Character |
 |d Decimal integer |
 |e Floating Point number |
 | (engineering format) |
 |f Floating Point number |
 | (fixed point format) |
 |g The shorter of e or f, |
 | with trailing zeros removed |
 |o Octal |
 |s String |
 |x Hexadecimal |
 |% Literal % |
 +--+

Again, I'll cover the differences quickly. Table 3 illustrates the differences. The first line states
"printf(%c\n",100.0)"" prints a "d."

 +--------------------------------+
 | AWK Table 7 |
 | Example of format conversions |
 |Format Value Results |
 +--------------------------------+
 |%c 100.0 d |
 |%c "100.0" 1 (NAWK?) |
 |%c 42 " |
 |%d 100.0 100 |
 |%e 100.0 1.000000e+02 |
 |%f 100.0 100.000000 |
 |%g 100.0 100 |
 |%o 100.0 144 |
 |%s 100.0 100.0 |
 |%s "13f" 13f |
 |%d "13f" 0 (AWK) |
 |%d "13f" 13 (NAWK) |
 |%x 100.0 64 |
 +--------------------------------+

This table reveals some differences between AWK and NAWK. When a string with numbers and
letters are coverted into an integer, AWK will return a zero, while NAWK will convert as much as
possible. The second example, marked with "NAWK?" will return "d" on some earlier versions of
NAWK, while later versions will return "1."

37

Using format specifiers, there is another way to print a double quote with NAWK. This demonstrates
Octal, Decimal and Hexadecimal conversion. As you can see, it isn't symmetrical. Decimal conversions
are done differently.

printf("%s%s%s%c\n", "\"", "\x22", "\42", 34);

Between the "%" and the format character can be four optional pieces of information. It helps to
visualize these fields as:

%<sign><zero><width>.<precision>format

I'll discuss each one separately.

Width - specifying minimum field size

If there is a number after the "%," this specifies the minimum number of characters to print. This is the
width field. Spaces are added so the number of printed characters equal this number. Note that this is
the minimum field size. If the field becomes to large, it will grow, so information will not be lost.
Spaces are added to the left.

This format allows you to line up columns perfectly. Consider the following format:

printf("%st%d\n", s, d);

If the string "s" is longer than 8 characters, the columns won't line up. Instead, use

printf("%20s%d\n", s, d);

As long as the string is less than 20 characters, the number will start on the 21st column. If the string is
too long, then the two fields will run together, making it hard to read. You may want to consider
placing a single space between the fields, to make sure you will always have one space between the
fields. This is very important if you want to pipe the output to another program.

Adding informational headers makes the output more readable. Be aware that changing the format of
the data may make it difficult to get the columns aligned perfectly. Consider the following script:

#!/usr/bin/awk -f
BEGIN {
 printf("String Number\n");
}
{
 printf("%10s %6d\n", $1, $2);
}

It would be awkward (forgive the choice of words) to add a new column and retain the same alignment.

38

More complicated formats would require a lot of trial and error. You have to adjust the first printf to
agree with the second printf statement. I suggest

#!/usr/bin/awk -f
BEGIN {
 printf("%10s %6sn", "String", "Number");
}
{
 printf("%10s %6d\n", $1, $2);
}

or even better

#!/usr/bin/awk -f
BEGIN {
 format1 ="%10s %6sn";
 format2 ="%10s %6dn";
 printf(format1, "String", "Number");
}
{
 printf(format2, $1, $2);
}

The last example, by using string variables for formatting, allows you to keep all of the formats
together. This may not seem like it's very useful, but when you have multiple formats and multiple
columns, it's very useful to have a set of templates like the above. If you have to add an extra space to
make things line up, it's much easier to find and correct the problem with a set of format strings that are
together, and the exact same width. CHainging the first columne from 10 characters to 11 is easy.

Left Justification

The last example places spaces before each field to make sure the minimum field width is met. What
do you do if you want the spaces on the right? Add a negative sign before the width:

printf("%-10s %-6d\n", $1, $2);

This will move the printing characters to the left, with spaces added to the right.

39

The Field Precision Value

The precision field, which is the number between the decimal and the format character, is more
complex. Most people use it with the floating point format (%f), but surprisingly, it can be used with
any format character. With the octal, decimal or hexadecimal format, it specifies the minimum number
of characters. Zeros are added to met this requirement. With the %e and %f formats, it specifies the
number of digits after the decimal point. The %e "e+00" is not included in the precision. The %g
format combines the characteristics of the %d and %f formats. The precision specifies the number of
digits displayed, before and after the decimal point. The precision field has no effect on the %c field.
The %s format has an unusual, but useful effect: it specifies the maximum number of significant
characters to print.

If the first number after the "%," or after the "%-," is a zero, then the system adds zeros when padding.
This includes all format types, including strings and the %c character format. This means "%010d" and
"%.10d" both adds leading zeros, giving a minimum of 10 digits. The format "%10.10d" is therefore
redundant. Table 8 gives some examples:

 +--+
 | AWK Table 8 |
 | Examples of complex formatting |
 |Format Variable Results |
 +--+
 |%c 100 "d" |
 |%10c 100 " d" |
 |%010c 100 "000000000d" |
 +--+
 |%d 10 "10" |
 |%10d 10 " 10" |
 |%10.4d 10.123456789 " 0010" |
 |%10.8d 10.123456789 " 00000010" |
 |%.8d 10.123456789 "00000010" |
 |%010d 10.123456789 "0000000010" |
 +--+
 |%e 987.1234567890 "9.871235e+02" |
 |%10.4e 987.1234567890 "9.8712e+02" |
 |%10.8e 987.1234567890 "9.87123457e+02" |
 +--+
 |%f 987.1234567890 "987.123457" |
 |%10.4f 987.1234567890 " 987.1235" |
 |%010.4f 987.1234567890 "00987.1235" |
 |%10.8f 987.1234567890 "987.12345679" |
 +--+
 |%g 987.1234567890 "987.123" |
 |%10g 987.1234567890 " 987.123" |
 |%10.4g 987.1234567890 " 987.1" |
 |%010.4g 987.1234567890 "00000987.1" |

40

 |%.8g 987.1234567890 "987.12346" |
 +--+
 |%o 987.1234567890 "1733" |
 |%10o 987.1234567890 " 1733" |
 |%010o 987.1234567890 "0000001733" |
 |%.8o 987.1234567890 "00001733" |
 +--+
 |%s 987.123 "987.123" |
 |%10s 987.123 " 987.123" |
 |%10.4s 987.123 " 987." |
 |%010.8s 987.123 "000987.123" |
 +--+
 |%x 987.1234567890 "3db" |
 |%10x 987.1234567890 " 3db" |
 |%010x 987.1234567890 "00000003db" |
 |%.8x 987.1234567890 "000003db" |
 +--+

There is one more topic needed to complete this lesson on printf.

Explicit File output

Instead of sending output to standard output, you can send output to a named file. The format is

printf("string\n") > "/tmp/file";

You can append to an existing file, by using ">>:"

printf("string\n") >> "/tmp/file";

Like the shell, the double angle brackets indicates output is appended to the file, instead of written to
an empty file. Appending to the file does not delete the old contents. However, there is a subtle
difference between AWK and the shell.

Consider the shell program:

#!/bin/sh
while x=`line`
do
 echo got $x >>/tmp/a
 echo got $x >/tmp/b
done

This will read standard input, and copy the standard input to files "/tmp/a" and "/tmp/b." File "/tmp/a"
will grow larger, as information is always appended to the file. File "/tmp/b," however, will only
contain one line. This happens because each time the shell see the ">" or ">>" characters, it opens the
file for writing, choosing the truncate/create or appending option at that time.

41

Now consider the equivalent AWK program:

#!/usr/bin/awk -f
{
 print $0 >>"/tmp/a"
 print $0 >"/tmp/b"
}

This behaves differently. AWK chooses the create/append option the first time a file is opened for
writing. Afterwards, the use of ">" or ">>" is ignored. Unlike the shell, AWK copies all of standard
input to file "/tmp/b."

Instead of a string, some versions of AWK allow you to specify an expression:

[note to self] check this one - it might not work
printf("string\n") > FILENAME ".out";

The following uses a string concatenation expression to illustrate this:

#!/usr/bin/awk -f
END {
 for (i=0;i<30;i++) {
 printf("i=%d\n", i) > "/tmp/a" i;
 }
}

This script never finishes, because AWK can have 10 additional files open, and NAWK can have 20. If
you find this to be a problem, look into PERL.

I hope this gives you the skill to make your AWK output picture perfect.

AWK Numerical Functions

In previous tutorials, I have shown how useful AWK is in manipulating information, and generating
reports. When you add a few functions, AWK becomes even more, mmm, functional.

There are three types of functions: numeric, string and whatever's left. Table9 lists all of the numeric
functions:

 +----------------------------------+
 | AWK Table 9 |
 +----------------------------------+
 | Numeric Functions |
 |Name Function Variant |
 +----------------------------------+
 |cos cosine AWK |
 |exp Exponent AWK |
 |int Integer AWK |

42

 |log Logarithm AWK |
 |sin Sine AWK |
 |sqrt Square Root AWK |
 |atan2 Arctangent NAWK |
 |rand Random NAWK |
 |srand Seed Random NAWK |
 +----------------------------------+

Trigonometric Functions

Oh joy. I bet millions, if not dozens, of my readers have been waiting for me to discuss trigonometry.
Personally, I don't use trigonometry much at work, except when I go off on a tangent.

Sorry about that. I don't know what came over me. I don't usually resort to puns. I'll write a note to
myself, and after I sine the note, I'll have my boss cosine it.

Now stop that! I hate arguing with myself. I always lose. Thinking about math I learned in the year 2
B.C. (Before Computers) seems to cause flashbacks of high school, pimples, and (shudder) times best
left forgotten. The stress of remembering those days must have made me forget the standards I
normally set for myself. Besides, no-one appreciates obtuse humor anyway, even if I find acute way to
say it.

I better change the subject fast. Combining humor and computers is a very serious matter.

Here is a NAWK script that calculates the trigonometric functions for all degrees between 0 and 360. It
also shows why there is no tangent, secant or cosecant function. (They aren't necessary). If you read the
script, you will learn of some subtle differences between AWK and NAWK. All this in a thin veneer of
demonstrating why we learned trigonometry in the first place. What more can you ask for? Oh, in case
you are wondering, I wrote this in the month of December.

#!/usr/bin/nawk -f
#
A smattering of trigonometry...
#
This AWK script plots the values from 0 to 360
for the basic trigonometry functions
but first - a review:
#
(Note to the editor - the following diagram assumes
a fixed width font, like Courier.
otherwise, the diagram looks very stupid, instead of slightly stupid)
#
Assume the following right triangle
#
Angle Y
#
|

43

|
|
a | c
|
|
+------- Angle X
b
#
since the triangle is a right angle, then
X+Y=90
#
Basic Trigonometric Functions. If you know the length
of 2 sides, and the angles, you can find the length of the third side.
Also - if you know the length of the sides, you can calculate
the angles.
#
The formulas are
#
sine(X) = a/c
cosine(X) = b/c
tangent(X) = a/b
#
reciprocal functions
cotangent(X) = b/a
secant(X) = c/b
cosecant(X) = c/a
#
Example 1)
if an angle is 30, and the hypotenuse (c) is 10, then
a = sine(30) * 10 = 5
b = cosine(30) * 10 = 8.66
#
The second example will be more realistic:
#
Suppose you are looking for a Christmas tree, and
while talking to your family, you smack into a tree
because your head was turned, and your kids were arguing over who
was going to put the first ornament on the tree.
#
As you come to, you realize your feet are touching the trunk of the tree,
and your eyes are 6 feet from the bottom of your frostbitten toes.
While counting the stars that spin around your head, you also realize
the top of the tree is located at a 65 degree angle, relative to your eyes.

You suddenly realize the tree is 12.84 feet high! After all,
tangent(65 degrees) * 6 feet = 12.84 feet

All right, it isn't realistic. Not many people memorize the
tangent table, or can estimate angles that accurately.
I was telling the truth about the stars spinning around the head, however.

#
BEGIN {
assign a value for pi.
 PI=3.14159;

44

select an "Ed Sullivan" number - really really big
 BIG=999999;
pick two formats
Keep them close together, so when one column is made larger
the other column can be adjusted to be the same width
 fmt1="%7s %8s %8s %8s %10s %10s %10s %10sn";
print out the title of each column
 fmt2="%7d %8.2f %8.2f %8.2f %10.2f %10.2f %10.2f %10.2fn";
old AWK wants a backslash at the end of the next line
to continue the print statement
new AWK allows you to break the line into two, after a comma
 printf(fmt1,"Degrees","Radians","Cosine","Sine",
 "Tangent","Cotangent","Secant", "Cosecant");

 for (i=0;i<=360;i++) {
convert degrees to radians
 r = i * (PI / 180);
in new AWK, the backslashes are optional
in OLD AWK, they are required
 printf(fmt2, i, r,
cosine of r
 cos(r),
sine of r
 sin(r),
#
I ran into a problem when dividing by zero.
So I had to test for this case.
#
old AWK finds the next line too complicated
I don't mind adding a backslash, but rewriting the
next three lines seems pointless for a simple lesson.
This script will only work with new AWK, now - sigh...
On the plus side,
I don't need to add those back slashes anymore
#
tangent of r
 (cos(r) == 0) ? BIG : sin(r)/cos(r),
cotangent of r
 (sin(r) == 0) ? BIG : cos(r)/sin(r),
secant of r
 (cos(r) == 0) ? BIG : 1/cos(r),
cosecant of r
 (sin(r) == 0) ? BIG : 1/sin(r));
 }
put an exit here, so that standard input isn't needed.
 exit;
}

NAWK also has the arctangent function. This is useful for some graphics work, as

arc tangent(a/b) = angle (in radians)

Therefore if you have the X and Y locations, the arctangent of the ratio will tell you the angle. The

45

atan2() function returns a value from negative pi to positive pi.

Exponents, logs and square roots

The following script uses three other arithmetic functions: log, exp, and sqrt. I wanted to show how
these can be used together, so I divided the log of a number by two, which is another way to find a
square root. I then compared the value of the exponent of that new log to the built-in square root
function. I then calculated the difference between the two, and converted the difference into a positive
number.

#!/bin/awk -f
demonstrate use of exp(), log() and sqrt in AWK
e.g. what is the difference between using logarithms and regular arithmetic
note - exp and log are natural log functions - not base 10
#
BEGIN {
what is the about of error that will be reported?
 ERROR=0.000000000001;
loop a long while
 for (i=1;i<=2147483647;i++) {
find log of i
 logi=log(i);
what is square root of i?
divide the log by 2
 logsquareroot=logi/2;
convert log of i back
 squareroot=exp(logsquareroot);
find the difference between the logarithmic calculation
and the built in calculation
 diff=sqrt(i)-squareroot;
make difference positive
 if (diff < 0) {
 diff*=-1;
 }
 if (diff > ERROR) {
 printf("%10d, squareroot: %16.8f, error: %16.14f\n",
 i, squareroot, diff);
 }
 }
 exit;
}

Yawn. This example isn't too exciting, except to those who enjoy nitpicking. Expect the program to
reach 3 million before you see any errors. I'll give you a more exciting sample soon.

46

Truncating Integers

All version of AWK contain the int function. This truncates a number, making it an integer. It can be
used to round numbers by adding 0.5:

printf("rounding %8.4f gives %8dn", x, int(x+0.5));

Random Numbers

NAWK has functions that can generate random numbers. The function rand returns a random number
between 0 and 1. Here is an example that calculates a million random numbers between 0 and 100, and
counts how often each number was used:

#!/usr/bin/nawk -f
old AWK doesn't have rand() and srand()
only new AWK has them
how random is the random function?
BEGIN {
srand();
 i=0;
 while (i++<1000000) {
 x=int(rand()*100 + 0.5);
 y[x]++;
 }
 for (i=0;i<=100;i++) {
 printf("%dt%d\n",y[i],i);
 }
 exit;
}

If you execute this script several times, you will get the exact same results. Experienced programmers
know random number generators aren't really random, unless they use special hardware. These
numbers are pseudo-random, and calculated using some algorithm. Since the algorithm is fixed, the
numbers are repeatable unless the numbers are seeded with a unique value. This is done using the
srand function above, which is commented out. Typically the random number generator is not given a
special seed until the bugs have been worked out of the program. There's nothing more frustrating than
a bug that occurs randomly. The srand function may be given an argument. If not, it uses the current
time and day to generate a seed for the random number generator.

47

The Lotto script

I promised a more useful script. This may be what you are waiting for. It reads two numbers, and
generates a list of random numbers. I call the script "lotto.awk."

#!/usr/bin/nawk -f
BEGIN {
Assume we want 6 random numbers between 1 and 36
We could get this information by reading standard input,
but this example will use a fixed set of parameters.
#
First, initialize the seed
 srand();
How many numbers are needed?
 NUM=6;
what is the minimum number
 MIN=1;
and the maximum?
 MAX=36;
How many numbers will we find? start with 0
 Number=0;
 while (Number < NUM) {
 r=int(((rand() *(1+MAX-MIN))+MIN));
have I seen this number before?
 if (array[r] == 0) {
no, I have not
 Number++;
 array[r]++;
 }
 }

now output all numbers, in order
 for (i=MIN;i<=MAX;i++) {
is it marked in the array?
 if (array[i]) {
yes
 printf("%d ",i);
 }
 }
 printf("\n");
 exit;
}

If you do win a lottery, send me a postcard.

48

String Functions

Besides numeric functions, there are two other types of function: strings and the whatchamacallits.
First, a list of the string functions:

 +---+
 | AWK Table 10 |
 | String Functions |
 |Name Variant |
 +---+
 |index(string,search) AWK, NAWK, GAWK |
 |length(string) AWK, NAWK, GAWK |
 |split(string,array,separator) AWK, NAWK, GAWK |
 |substr(string,position) AWK, NAWK, GAWK |
 |substr(string,position,max) AWK, NAWK, GAWK |
 |sub(regex,replacement) NAWK, GAWK |
 |sub(regex,replacement,string) NAWK, GAWK |
 |gsub(regex,replacement) NAWK, GAWK |
 |gsub(regex,replacement,string) NAWK, GAWK |
 |match(string,regex) NAWK, GAWK |
 |tolower(string) GAWK |
 |toupper(string) GAWK |
 +---+

Most people first use AWK to perform simple calculations. Associative arrays and trigonometric
functions are somewhat esoteric features, that new users embrace with the eagerness of a chain smoker
in a fireworks factory. I suspect most users add some simple string functions to their repertoire once
they want to add a little more sophistication to their AWK scripts. I hope this column gives you enough
information to inspire your next effort.

There are four string functions in the original AWK: index(), length(), split(), and substr(). These
functions are quite versatile.

The Length function

What can I say? The length() function calculates the length of a string. I often use it to make sure my
input is correct. If you wanted to ignore empty lines, check the length of the each line before processing
it with

if (length($0) > 1) {
. . .
}

49

You can easily use it to print all lines longer than a certain length, etc. The following command centers
all lines shorter than 80 characters:

#!/bin/awk -f
{
 if (length($0) < 80) {
 prefix = "";
 for (i = 1;i<(80-length($0))/2;i++)
 prefix = prefix " ";
 print prefix $0;
 } else {
 print;
 }
}

The Index Function

If you want to search for a special character, the index() function will search for specific characters
inside a string. To find a comma, the code might look like this:

sentence="This is a short, meaningless sentence.";
if (index(sentence, ",") > 0) {
printf("Found a comma in position \%d\n", index(sentence,","));
}

The function returns a positive value when the substring is found. The number specified the location of
the substring.

If the substring consists of 2 or more characters, all of these characters must be found, in the same
order, for a non-zero return value. Like the length() function, this is useful for checking for proper input
conditions.

The Substr function

The substr() function can extract a portion of a string. One common use is to split a string into two
parts based on a special character. If you wanted to process some mail addresses, the following code
fragment might do the job:

#!/bin/awk -f
{
field 1 is the e-mail address - perhaps

50

 if ((x=index($1,"@")) > 0) {
 username = substr($1,1,x-1);
 hostname = substr($1,x+1,length($1));
the above is the same as
hostname = substr($1,x+1);
 printf("username = %s, hostname = %s\n", username, hostname);
 }
}

The substr() function takes two or three arguments. The first is the string, the second is the position.
The optional third argument is the length of the string to extract. If the third argument is missing, the
rest of the string is used.

The substr function can be used in many non-obvious ways. As an example, it can be used to convert
upper case letters to lower case.

#!/usr/bin/awk -f
convert upper case letters to lower case
BEGIN {
 LC="abcdefghijklmnopqrstuvwxyz";
 UC="ABCDEFGHIJKLMNOPQRSTUVWXYZ";
}
{
 out="";
look at each character
 for(i=1;i<=length($0);i++) {
get the character to be checked
 char=substr($0,i,1);
is it an upper case letter?
 j=index(UC,char);
 if (j > 0) {
found it
 out = out substr(LC,j,1);
 } else {
 out = out char;
 }
 }
 printf("%s\n", out);
}

GAWK's Tolower and Toupper function

GAWK has the toupper() and tolower() functions, for convenient conversions of case. These functions
take strings, so you can reduce the above script to a single line:

#!/usr/local/bin/gawk -f
{
 print tolower($0);

51

}

The Split function

Another way to split up a string is to use the split() function. It takes three arguments: the string, an
array, and the separator. The function returns the number of pieces found. Here is an example:

#!/usr/bin/awk -f
BEGIN {
this script breaks up the sentence into words, using
a space as the character separating the words
 string="This is a string, is it not?";
 search=" ";
 n=split(string,array,search);
 for (i=1;i<=n;i++) {
 printf("Word[%d]=%s\n",i,array[i]);
 }
 exit;
}

The third argument is typically a single character. If a longer string is used, only the first letter is used
as a separator.

NAWK's string functions

NAWK (and GAWK) have additional string functions, which add a primitive SED-like functionality:
sub(), match(), and gsub().

Sub() performs a string substitution, like sed. To replace "old" with "new" in a string, use

sub(/old/, "new", string)

If the third argument is missing, $0 is assumed to be string searched. The function returns 1 if a
substitution occurs, and 0 if not. If no slashes are given in the first argument, the first argument is
assumed to be a variable containing a regular expression. The sub() only changes the first occurrence.
The gsub() function is similar to the g option in sed: all occurrence are converted, and not just the first.
That is, if the patter occurs more than once per line (or string), the substitution will be performed once
for each found pattern. The following script:

#!/usr/bin/nawk -f
BEGIN {

52

 string = "Another sample of an example sentence";
 pattern="[Aa]n";
 if (gsub(pattern,"AN",string)) {
 printf("Substitution occurred: %s\n", string);
 }

 exit;
}

print the following when executed:

Substitution occurred: ANother sample of AN example sentence

As you can see, the pattern can be a regular expression.

The Match function

As the above demonstrates, the sub() and gsub() returns a positive value if a match is found. However,
it has a side-effect of changing the string tested. If you don't wish this, you can copy the string to
another variable, and test the spare variable. NAWK also provides the match() function. If match()
finds the regular expression, it sets two special variables that indicate where the regular expression
begins and ends. Here is an example that does this:

#!/usr/bin/nawk -f
demonstrate the match function

BEGIN {
 regex="[a-zA-Z0-9]+";
}
{
 if (match($0,regex)) {
RSTART is where the pattern starts
RLENGTH is the length of the pattern
 before = substr($0,1,RSTART-1);
 pattern = substr($0,RSTART,RLENGTH);
 after = substr($0,RSTART+RLENGTH);
 printf("%s<%s>%s\n", before, pattern, after);
 }
}

Lastly, there are the whatchamacallit functions. I could use the word "miscellaneous," but it's too hard
to spell. Darn it, I had to look it up anyway.

53

 +---+
 | AWK Table 11 |
 | Miscellaneous Functions |
 |Name Variant |
 +---+
 |getline AWK, NAWK, GAWK |
 |getline <file NAWK, GAWK |
 |getline variable NAWK, GAWK |
 |getline variable <file NAWK, GAWK |
 |"command" | getline NAWK, GAWK |
 |"command" | getline variable NAWK, GAWK |
 |system(command) NAWK, GAWK |
 |close(command) NAWK, GAWK |
 |systime() GAWK |
 |strftime(string) GAWK |
 |strftime(string, timestamp) GAWK |
 +---+

The System function

NAWK has a function system() that can execute any program. It returns the exit status of the program.

if (system("/bin/rm junk") != 0)
print "command didn't work";

The command can be a string, so you can dynamically create commands based on input. Note that the
output isn't sent to the NAWK program. You could send it to a file, and open that file for reading.
There is another solution, however.

The Getline function

AWK has a command that allows you to force a new line. It doesn't take any arguments. It returns a 1,
if successful, a 0 if end-of-file is reached, and a -1 if an error occurs. As a side effect, the line
containing the input changes. This next script filters the input, and if a backslash occurs at the end of
the line, it reads the next line in, eliminating the backslash as well as the need for it.

#!/usr/bin/awk -f
look for a as the last character.
if found, read the next line and append
{
 line = $0;
 while (substr(line,length(line),1) == "\\") {

54

chop off the last character
 line = substr(line,1,length(line)-1);
 i=getline;
 if (i > 0) {
 line = line $0;
 } else {
 printf("missing continuation on line %d\n", NR);
 }
 }
 print line;
}

Instead of reading into the standard variables, you can specify the variable to set:

getline a_line
print a_line;

NAWK and GAWK allow the getline function to be given an optional filename or string containing a
filename. An example of a primitive file preprocessor, that looks for lines of the format

#include filename

and substitutes that line for the contents of the file:

#!/usr/bin/nawk -f
{
a primitive include preprocessor
 if (($1 == "#include") && (NF == 2)) {
found the name of the file
 filename = $2;
 while (i = getline < filename) {
 print;
 }
 } else {
 print;
 }
}

NAWK's getline can also read from a pipe. If you have a program that generates single line, you can
use

"command" | getline;
print $0;

or

"command" | getline abc;
print abc;

If you have more than one line, you can loop through the results:

55

while ("command" | getline) {
 cmd[i++] = $0;
}
for (i in cmd) {
 printf("%s=%s\n", i, cmd[i]);
}

Only one pipe can be open at a time. If you want to open another pipe, you must execute

close("command");

This is necessary even if the end of file is reached.

The systime function

The systime() function returns the current time of day as the number of seconds since Midnight,
January 1, 1970. It is useful for measuring how long portions of your GAWK code takes to execute.

#!/usr/local/bin/gawk -f
how long does it take to do a few loops?
BEGIN {
 LOOPS=100;
do the test twice
 start=systime();
 for (i=0;i<LOOPS;i++) {
 }
 end = systime();
calculate how long it takes to do a dummy test
 do_nothing = end-start;
now do the test again with the *IMPORTANT* code inside
 start=systime();
 for (i=0;i<LOOPS;i++) {
How long does this take?
 while ("date" | getline) {
 date = $0;
 }
 close("date");
 }
 end = systime();
 newtime = (end - start) - do_nothing;

 if (newtime <= 0) {
 printf("%d loops were not enough to test, increase it\n",
 LOOPS);
 exit;
 } else {

56

 printf("%d loops took %6.4f seconds to execute\n",
 LOOPS, newtime);
 printf("That's %10.8f seconds per loop\n",
 (newtime)/LOOPS);
since the clock has an accuracy of +/- one second, what is the error
 printf("accuracy of this measurement = %6.2f%%\n",
 (1/(newtime))*100);
 }
 exit;
}

The Strftime function

GAWK has a special function for creating strings based on the current time. It's based on the
strftime(3c) function. If you are familiar with the "+" formats of the date(1) command, you have a good
head-start on understanding what the strftime command is used for. The systime() function returns the
current date in seconds. Not very useful if you want to create a string based on the time. While you
could convert the seconds into days, months, years, etc., it would be easier to execute "date" and pipe
the results into a string. (See the previous script for an example). GAWK has another solution that
eliminates the need for an external program.

The function takes one or two arguments. The first argument is a string that specified the format. This
string contains regular characters and special characters. Special characters start with a backslash or the
percent character. The backslash characters with the backslash prefix are the same I covered earlier. In
addition, the strftime() function defines dozens of combinations, all of which start with "%." The
following table lists these special sequences:

+---+
| AWK Table 12 |
| GAWK's strftime formats |
+---+
|%a The locale's abbreviated weekday name |
|%A The locale's full weekday name |
|%b The locale's abbreviated month name |
|%B The locale's full month name |
|%c The locale's "appropriate" date and time representation |
|%d The day of the month as a decimal number (01--31) |
|%H The hour (24-hour clock) as a decimal number (00--23) |
|%I The hour (12-hour clock) as a decimal number (01--12) |
|%j The day of the year as a decimal number (001--366) |
|%m The month as a decimal number (01--12) |
|%M The minute as a decimal number (00--59) |
|%p The locale's equivalent of the AM/PM |
|%S The second as a decimal number (00--61). |
|%U The week number of the year (Sunday is first day of week) |
|%w The weekday as a decimal number (0--6). Sunday is day 0 |
|%W The week number of the year (Monday is first day of week) |
|%x The locale's "appropriate" date representation |

57

|%X The locale's "appropriate" time representation |
|%y The year without century as a decimal number (00--99) |
|%Y The year with century as a decimal number |
|%Z The time zone name or abbreviation |
|%% A literal %. |
+---+

Depending on your operating system, and installation, you may also have the following formats:

+---+
| AWK Table 13 |
| Optional GAWK strftime formats |
+---+
|%D Equivalent to specifying %m/%d/%y |
|%e The day of the month, padded with a blank if it is only one digit |
|%h Equivalent to %b, above |
|%n A newline character (ASCII LF) |
|%r Equivalent to specifying %I:%M:%S %p |
|%R Equivalent to specifying %H:%M |
|%T Equivalent to specifying %H:%M:%S |
|%t A TAB character |
|%k The hour as a decimal number (0-23) |
|%l The hour (12-hour clock) as a decimal number (1-12) |
|%C The century, as a number between 00 and 99 |
|%u is replaced by the weekday as a decimal number [Monday == 1] |
|%V is replaced by the week number of the year (using ISO 8601) |
|%v The date in VMS format (e.g. 20-JUN-1991) |
+---+

One useful format is

strftime("%y_%m_%d_%H_%M_%S")

This constructs a string that contains the year, month, day, hour, minute and second in a format that
allows convenient sorting. If you ran this at noon on Christmas, 1994, it would generate the string

94_12_25_12_00_00

Here is the GAWK equivalent of the date command:

#! /usr/local/bin/gawk -f
#

BEGIN {
 format = "%a %b %e %H:%M:%S %Z %Y";
 print strftime(format);
}

You will note that there is no exit command in the begin statement. If I was using AWK, an exit
statement is necessary. Otherwise, it would never terminate. If there is no action defined for each line
read, NAWK and GAWK do not need an exit statement.

If you provide a second argument to the strftime() function, it uses that argument as the timestamp,

58

instead of the current system's time. This is useful for calculating future times. The following script
calculates the time one week after the current time:

#!/usr/local/bin/gawk -f
BEGIN {
get current time
 ts = systime();
the time is in seconds, so
 one_day = 24 * 60 * 60;
 next_week = ts + (7 * one_day);
 format = "%a %b %e %H:%M:%S %Z %Y";
 print strftime(format, next_week);
 exit;
}

User Defined Functions

Finally, NAWK and GAWK support user defined functions. This function demonstrates a way to print
error messages, including the filename and line number, if appropriate:

#!/usr/bin/nawk -f
{
 if (NF != 4) {
 error("Expected 4 fields");
 } else {
 print;
 }
}
function error (message) {
 if (FILENAME != "-") {
 printf("%s: ", FILENAME) > "/dev/tty";
 }
 printf("line # %d, %s, line: %s\n", NR, message, $0) >> "/dev/tty";
}

AWK patterns

In my first tutorial on AWK, I described the AWK statement as having the form

pattern {commands}

I have only used two patterns so far: the special words BEGIN and END. Other patterns are possible,
yet I haven't used any. There are several reasons for this. The first is that these patterns aren't necessary.

59

You can duplicate them using an if statement. Therefore this is an "advanced feature." Patterns, or
perhaps the better word is conditions, tend to make an AWK program obscure to a beginner. You can
think of them as an advanced topic, one that should be attempted after becoming familiar with the
basics.

A pattern or condition is simply an abbreviated test. If the condition is true, the action is performed. All
relational tests can be used as a pattern. The "head -10" command, which prints the first 10 lines and
stops, can be duplicated with

{if (NR <= 10) {print}}

Changing the if statement to a condition shortens the code:

NR <= 10 {print}

Besides relational tests, you can also use containment tests, i. e. do strings contain regular expressions?
Printing all lines that contain the word "special" can be written as

{if ($0 ~ /special/) {print}}

or more briefly

$0 ~ /special/ {print}

This type of test is so common, the authors of AWK allow a third, shorter format:

/special/ {print}

These tests can be combined with the AND (&&) and OR (||) commands, as well as the NOT (!)
operator. Parenthesis can also be added if you are in doubt, or to make your intention clear.

The following condition prints the line if it contains the word "whole" or columns 1 and 2 contain
"part1" and "part2" respectively.

($0 ~ /whole/) || (($1 ~ /part1/) && ($2 ~ /part2/)) {print}

This can be shortened to

/whole/ || $1 ~ /part1/ && $2 ~ /part2/ {print}

There is one case where adding parenthesis hurts. The condition

/whole/ {print}

works, but

(/whole/) {print}

does not. If parenthesis are used, it is necessary to explicitly specify the test:

($0 ~ /whole) {print}

A murky situation arises when a simple variable is used as a condition. Since the variable NF specifies

60

the number of fields on a line, one might think the statement

NF {print}

would print all lines with one of more fields. This is an illegal command for AWK, because AWK does
not accept variables as conditions. To prevent a syntax error, I had to change it to

NF != 0 {print}

I expected NAWK to work, but on some SunOS systems it refused to print any lines at all. On newer
Solaris systems it did behave properly. Again, changing it to the longer form worked for all variations.
GAWK, like the newer version of NAWK, worked properly. After this experience, I decided to leave
other, exotic variations alone. Clearly this is unexplored territory. I could write a script that prints the
first 20 lines, except if there were exactly three fields, unless it was line 10, by using

NF == 3 ? NR == 10 : NR < 20 { print }

But I won't. Obscurity, like puns, is often unappreciated.

There is one more common and useful pattern I have not yet described. It is the comma separated
pattern. A common example has the form:

/start/,/stop/ {print}

This form defines, in one line, the condition to turn the action on, and the condition to turn the action
off. That is, when a line containing "start" is seen, it is printed. Every line afterwards is also printed,
until a line containing "stop" is seen. This one is also printed, but the line after, and all following lines,
are not printed. This triggering on and off can be repeated many times. The equivalent code, using the
if command, is:

{
 if ($0 ~ /start/) {
 triggered=1;
 }
 if (triggered) {
 print;
 if ($0 ~ /stop/) {
 triggered=0;
 }
 }
}

The conditions do not have to be regular expressions. Relational tests can also be used. The following
prints all lines between 20 and 40:

(NR==20),(NR==40) {print}

You can mix relational and containment tests. The following prints every line until a "stop" is seen:

(NR==1),/stop/ {print}

There is one more area of confusion about patterns: each one is independent of the others. You can
have several patterns in a script; none influence the other patterns. If the following script is executed:

61

NR==10 {print}
(NR==5),(NR==15) {print}
/xxx/ {print}
(NR==1),/NeVerMatchThiS/ {print}

and the input file's line 10 contains "xxx," it would be printed 4 times, as each condition is true. You
can think of each condition as cumulative. The exception is the special BEGIN and END conditions. In
the original AWK, you can only have one of each. In NAWK and GAWK, you can have several
BEGIN or END actions.

Formatting AWK programs

Many readers have questions my style of AWK programming. In particular, they ask me why I include
code like this:

Print column 3
print $3;

when I could use

print $3 # print column 3

After all, they reason, the semicolon is unnecessary, and comments do not have to start on the first
column. This is true. Still I avoid this. Years ago, when I started writing AWK programs, I would find
myself confused when the nesting of conditions were too deep. If I moved a complex if statement
inside another if statement, my alignment of braces became incorrect. It can be very difficult to repair
this condition, especially with large scripts. Nowadays I use emacs to do the formatting for me, but 10
years ago I didn't have this option. My solution was to use the program cb, which is a "C beautifier."
By including optional semicolons, and starting comments on the first column of the line, I could send
my AWK script through this filter, and properly align all of the code.

Environment Variables

I've described the 7 special variables in AWK, and briefly mentioned some others NAWK and GAWK.
The complete list follows:

 +--------------------------------+
 | AWK Table 14 |
 |Variable AWK NAWK GAWK |

62

 +--------------------------------+
 |FS Yes Yes Yes |
 |NF Yes Yes Yes |
 |RS Yes Yes Yes |
 |NR Yes Yes Yes |
 |FILENAME Yes Yes Yes |
 |OFS Yes Yes Yes |
 |ORS Yes Yes Yes |
 +--------------------------------+
 |ARGC Yes Yes |
 |ARGV Yes Yes |
 |ARGIND Yes |
 |FNR Yes Yes |
 |OFMT Yes Yes |
 |RSTART Yes Yes |
 |RLENGTH Yes Yes |
 |SUBSEP Yes Yes |
 |ENVIRON Yes |
 |IGNORECASE Yes |
 |CONVFMT Yes |
 |ERRNO Yes |
 |FIELDWIDTHS Yes |
 +--------------------------------+

Since I've already discussed many of these, I'll only cover those that I missed earlier.

ARGC - Number or arguments
(NAWK/GAWK)

The variable ARGC specifies the number of arguments on the command line. It always has the value
of one or more, as it counts its own program name as the first argument. If you specify an AWK
filename using the "-f" option, it is not counted as an argument. If you include a variable on the
command line using the form below, NAWK does not count as an argument.

nawk -f file.awk x=17

GAWK does, but that is because GAWK requires the "-v" option before each assignment:

gawk -f file.awk -v x=17

GAWK variables initialized this way do not affect the ARGC variable.

ARGV - Array of arguments (NAWK/GAWK)

63

The ARGV array is the list of arguments (or files) passed as command line arguments.

ARGIND - Argument Index (GAWK only)

The ARGIND specifies the current index into the ARGV array, and therefore ARGV[ARGIND] is
always the current filename. Therefore

FILENAME == ARGV[ARGIND]

is always true. It can be modified, allowing you to skip over files, etc.

FNR (NAWK/GAWK)

The FNR variable contains the number of lines read, but is reset for each file read. The NR variable
accumulates for all files read. Therefore if you execute an awk script with two files as arguments, with
each containing 10 lines:

nawk '{print NR}' file file2
nawk '{print FNR}' file file2

the first program would print the numbers 1 through 20, while the second would print the numbers 1
through 10 twice, once for each file.

OFMT (NAWK/GAWK)

The OFMT variable Specifies the default format for numbers. The default value is "%.6g."

RSTART, RLENGTH and match
(NAWK/GAWK)

64

I've already mentioned the RSTART and RLENGTH variables. After the match() function is called,
these variables contain the location in the string of the search pattern. RLENGTH contains the length
of this match.

SUBSEP - Multi-dimensional array separator
(NAWK/GAWK)

Earlier I described how you can construct multi-dimensional arrays in AWK. These are constructed by
concatenating two indexes together with a special character between them. If I use an ampersand as the
special character, I can access the value at location X, Y by the reference

array[X "&" Y]

NAWK (and GAWK) has this feature built in. That is, you can specify the array element

array[X,Y]

It automatically constructs the string, placing a special character between the indexes. This character is
the non-printing character "034." You can control the value of this character, to make sure your strings
do not contain the same character.

ENVIRON - environment variables (GAWK
only)

The ENVIRON array contains the environment variables the current process. You can print your
current search path using

print ENVIRON["PATH"]

IGNORECASE (GAWK only)

The IGNORECASE variable is normally zero. If you set it to non-zero, then all pattern matches ignore
case. Therefore the following is equivalent to "grep -i match:"

BEGIN {IGNORECASE=1;}

65

/match/ {print}

CONVFMT - conversion format (GAWK only)

The CONVFMT variable is used to specify the format when converting a number to a string. The
default value is "%.6g." One way to truncate integers is to convert an integer to a string, and convert
the string to an integer - modifying the actions with CONVFMT:

a = 12;
b = a "";
CONVFMT = "%2.2f";
c = a "";

Variables b and c are both strings, but the first one will have the value "12.00" while the second will
have the value "12."

ERRNO - system errors (GAWK only)

The ERRNO variable describes the error, as a string, after a call to the getline command fails.

FIELDWIDTHS - fixed width fields (GAWK
only)

The FIELDWIDTHS variable is used when processing fixed width input. If you wanted to read a file
that had 3 columns of data; the first one is 5 characters wide, the second 4, and the third 7, you could
use substr to split the line apart. The technique, using FIELDWIDTHS, would be:

BEGIN {FIELDWIDTHS="5 4 7";}
{ printf("The three fields are %s %s %s\n", $1, $2, $3);}

66

AWK, NAWK, GAWK, or PERL

This concludes my series of tutorials on AWK and the NAWK and GAWK variants. I originally
intended to avoid extensive coverage of NAWK and GAWK. I am a PERL user myself, and still
believe PERL is worth learning, yet I don't intend to cover this very complex language. Understanding
AWK is very useful when you start to learn PERL, and a part of me felt that teaching you extensive
NAWK and GAWK features might encourage you to bypass PERL.

I found myself going into more depth than I planned, and I hope you found this useful. I found out a lot
myself, especially when I discussed topics not covered in other books. Which reminds me of some
closing advice: if you don't understand how something works, experiment and see what you can
discover. Good luck, and happy AWKing...

67

REFERENCES & RECOMMENDATIONS:

Some other Unix shell tutorials can be found at:

http://www.grymoire.com/Unix

Other shell tutorials can be found at

http://www.shelldorado.com/links/index.html#tutorials

http://cfaj.freeshell.org/shell/

From:

http://www.grymoire.com/Unix/Awk.html

68

	A Self-Tutorial
	on
	AWK
	COMPILED BY:
	Table of Contents

	Why learn AWK?
	Basic Structure
	Executing an AWK script
	Which shell to use with AWK?
	Dynamic Variables
	The Essential Syntax of AWK
	Arithmetic Expressions
	Unary arithmetic operators
	The Autoincrement and Autodecrement Operators
	Assignment Operators
	Conditional expressions
	Regular Expressions
	And/Or/Not
	Commands
	AWK Built-in Variables
	FS - The Input Field Separator Variable
	OFS - The Output Field Separator Variable
	NF - The Number of Fields Variable
	NR - The Number of Records Variable
	RS - The Record Separator Variable
	ORS - The Output Record Separator Variable
	FILENAME - The Current Filename Variable
	Associative Arrays
	Multi-dimensional Arrays
	Example of using AWK's Associative Arrays
	Output of the script
	Picture Perfect PRINTF Output
	PRINTF - formatting output
	Escape Sequences
	Format Specifiers
	Width - specifying minimum field size
	Left Justification
	The Field Precision Value
	Explicit File output
	AWK Numerical Functions
	Trigonometric Functions
	Exponents, logs and square roots
	Truncating Integers
	Random Numbers
	The Lotto script
	String Functions
	The Length function
	The Index Function
	The Substr function
	GAWK's Tolower and Toupper function
	The Split function
	NAWK's string functions
	The Match function
	The System function
	The Getline function
	The systime function
	The Strftime function
	User Defined Functions
	AWK patterns
	Formatting AWK programs
	Environment Variables
	ARGC - Number or arguments (NAWK/GAWK)
	ARGV - Array of arguments (NAWK/GAWK)
	ARGIND - Argument Index (GAWK only)
	FNR (NAWK/GAWK)
	OFMT (NAWK/GAWK)
	RSTART, RLENGTH and match (NAWK/GAWK)
	SUBSEP - Multi-dimensional array separator (NAWK/GAWK)
	ENVIRON - environment variables (GAWK only)
	IGNORECASE (GAWK only)
	CONVFMT - conversion format (GAWK only)
	ERRNO - system errors (GAWK only)
	FIELDWIDTHS - fixed width fields (GAWK only)
	AWK, NAWK, GAWK, or PERL

