

Cascadia Tsunamis: Segmented Earthquake Ruptures

Amir Salaree

GTS Seminar

January 17, 2020

Cascadia Tsunamis: Segmented Earthquake Ruptures

Amir Salaree

GTS Seminar

January 17, 2020

Introduction:

Tsunamis

How Tsunamis Work: General Perspective

How do we model tsunamis?

1) Earthquakes

- 2) Landslides
- 3) Volcanic Eruptions
- 4) Atmospheric Pressure Changes

How Tsunamis Work: General Perspective

How do we model tsunamis?

1) Earthquakes

- 2) Landslides
- 3) Volcanic Eruptions
- 4) Atmospheric Pressure Changes

Source & Propagation

How Tsunamis Work: Source

How Tsunamis Work: Propagation

Propagation: Gravity Waves

Navier-Stokes Equation

Typical Values:

How Tsunamis Work: Propagation

Tsunami Modeling

Data, Data, Data!

Point Source:

Finite Source:

Realistic Rupture & Real Bathymetry

Maximum Slip Field for Each Magnitude Pool

Realistic Rupture & Real Bathymetry

Rupture Scenarios

<u>M=7.5</u>

M=8.0

<u>M=8.5</u>

M=9.0

M=9.1

Realistic Rupture & Real Bathymetry

Summary

- 1) General increase in coastal amplitudes *from South to North*.
- 2) Mid-latitude sites show anomalously large amplitudes.
- 3) There is a groups of outliers to this trend:

Fort Bragg, Eureka & Crescent City

TEST 1: Linear Rupture (flat ocean)

TEST 2: Convex Rupture (flat ocean)

M

TEST 3: Concave Rupture (flat ocean)

Summary

- O Worst-case tsunami scenario is **NOT** unique to the largest rupture especially in the south.
- OLarger slip in the north, coastal morphology, as well as the JdF-Pac plate boundary dominate the propagation of Cascadia tsunamis.
- O Tsunami hazard in southern Cascadia is mostly affected by southern segments (mostly irrelevant of the north).
- O Tsunami hazard at the southern coastlines does not vary much by increasing rupture size, with the exception of M>9.1 earthquakes.

On-going Work

Tsunami Source Resolution

How Much Resoltion Do We Really Need?

Can less be more?

- How would removing source details affect the tsunami?
- How would removing details from a picture affect our perception of what/who it is of?

Question:

Is there a "sufficiency" threshold?

Simple Experiment: Fourier Filtering

0.25

0.20

0.15

0.10

0.05

0.00

4.0

3.5

d(MT)/dî_{min}

 λ_{min} /Length Scale

Another Source of Complexity: *Surface Waves*

Question:

How much would synthetic Rayleigh waves perturb tsunami simulations?

Normal Modes of the Earth

Amplitude of ~6 cm over T~150 s

MUST BE CONSIDERED!

-30.0-1.8-1.6-1.4-1.2-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 30.0

On-going Work

DART SITE SELECTION

DART SITE SELECTION

Deep-ocean Assessment and Reporting of Tsunamis (DART)

DART SITE SELECTION

Can we avoid repeating ourselves?

