Big Ideas – Time Series Plots

- Look at when data is collected over time
- Overall stability = stable mean + stable variance
- Be careful with your language:
 - There is evidence of increasing mean
 - NOT: The mean is increasing
- If there appears to be a pattern over time, it may not be appropriate to treat the data as a random sample

Big Ideas – QQ-Plots

- Departure from straight line = non-normal data
 - Just need to see a departure, don’t need to say what type
- Make both a histogram and a QQ-plot:
 - Histogram gives general shape of distribution (bell-shaped; skewed; etc.)
 - QQ-plot gives normality of distribution

Big Ideas – Sampling Distribution for the Proportion (See page 74 of notes for details)

- Theory relies on idea of repeated sampling
 - Take all possible random samples of size \(n \) and compute the sample proportion for each sample
 - For a LARGE sample size \(n \), the distribution of the sample proportion will be APPROXIMATELY a NORMAL distribution with a mean of \(p \) and a standard deviation of \(\sqrt{p(1-p)/n} \)
 - Notation:
 \[
 \hat{p} \sim N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)
 \]

Big Ideas – Sampling Distribution for the Mean

- Theory relies on idea of repeated sampling
 - Take all possible random samples of size \(n \) and compute the sample mean for each sample
 - If the parent population is a normal distribution with mean \(\mu \) and standard deviation \(\sigma \), then for any sample size (small or large), the sample mean will have a NORMAL distribution with a mean of \(\mu \) and a standard deviation of \(\sigma/\sqrt{n} \)
 - Notation:
 \[
 \overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
 \]

Big Ideas - CLT

- Theory relies on idea of repeated sampling
 - Take all possible random samples of size \(n \) and compute the sample mean for each sample
 - If the parent population is NOT a normal distribution but with mean \(\mu \) and standard deviation \(\sigma \), then for a large sample size, the sample mean will have approximately a NORMAL distribution with a mean of \(\mu \) and a standard deviation of \(\sigma/\sqrt{n} \)
 - Notation:
 \[
 \overline{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)
 \]

Big Ideas – Confidence Intervals

- Principles for using Confidence Intervals to Guide Decision Making:
 - Principle 1: A value not in a CI can be rejected as possible value of the population parameter.
 - Principle 2: When the CIs for parameters for two different populations do not overlap, it is reasonable to conclude that the parameters for the two populations are different.
Big Ideas – Confidence Intervals

- The probability that the true parameter lies in a computed CI is either 0 or 1.
- A 95% Confidence Interval: We are 95% confident that the true parameter value lies inside the CI. OR: The interval provides a range of reasonable values for the population parameter.
- The 95% Confidence Level: If the procedure were repeated many times, we would expect 95% of the resulting CIs to contain the true population parameter.

Big Ideas – Hypothesis Testing

- Basic 5 steps to hypothesis testing are the same no matter what the scenario
- Parameters, assumptions, and test statistic change depending on the scenario
 - Result of differences in structure of data

5 Inference Scenarios

1. 1-sample inference for pop. proportion \(p \)
2. 1-sample inference for pop. mean \(\mu \)
3. Paired samples inference for a population mean difference \(\mu_0 \)
4. 2 indep. samples inference for the difference between 2 pop. means \(\mu_1 - \mu_2 \)
5. 2 indep. samples inference for the difference between 2 pop. prop. \(p_1 - p_2 \)

5 Steps in Hypothesis Testing

1. State \(H_0 \) and \(H_a \)
2. Check assumptions and calculate test statistic
3. Find \(p \)-value
4. Make decision
5. State conclusion

Step 1 – Basic Truths

- Use the same population parameter in both \(H_0 \) and \(H_a \)
- Use the same null value in both \(H_0 \) and \(H_a \)
 - The number the researchers want to investigate, or 0 if the parameter involves a difference
- ALWAYS have equality in \(H_0 \) and NEVER have equality in \(H_a \)
 - Sign used in \(H_a \) depends on what the researchers want to investigate
Step 1 – Determining the Scenario

- Good questions to ask yourself:
 - Mean (quantitative data) or proportion (categorical data)?
 - One group or two?
 - If means, two groups: paired or independent?

Step 2 - Assumptions

1. \(p \): The data are a random sample and the sample size is large (\(np \geq 10, n(1-p) \geq 10 \); for large sample z-test)
2. \(\mu \): The data are a random sample from a normal population
3. \(\mu_D \): The differences are a random sample from a normal population of differences
4. \(\mu_1 - \mu_2 \): Each sample is a random sample from a normal population, the 2 samples are independent, and the pop. standard deviations are equal (for pooled version)
5. \(p_1 - p_2 \): Each sample is a random sample and each sample size is large

Example: z-test for \(p \)

1. Ho: \(p = p_0 \) vs. Ha: \(p \neq p_0 \)
 or Ha: \(p > p_0 \)
 or Ha: \(p < p_0 \)
2. Verify assumptions
 - Random sample
 - Large sample: \(np_0 \geq 10 \) and \(n(1-p_0) \geq 10 \)
 and calculate z-statistic

3. Find p-value
 - Assuming Ho is true, the p-value is the probability of observing a z-statistic as extreme or more extreme than what we actually saw
 - Ha: \(p \neq p_0 \) \(\Rightarrow P(Z \leq -z) + P(Z \geq z) \)
 - Ha: \(p > p_0 \) \(\Rightarrow P(Z \geq z) \)
 - Ha: \(p < p_0 \) \(\Rightarrow P(Z \leq z) \)

Example: z-test for \(p \)

4. Decision
 - p-value \(\leq \alpha \) \(\Rightarrow \) Reject Ho
 - p-value > \(\alpha \) \(\Rightarrow \) Fail to Reject Ho

5. Conclusion
 - Reject Ho \(\Rightarrow \) "There is sufficient evidence that Ha is true."
 - Fail to Reject Ho \(\Rightarrow \) "There is insufficient evidence that Ha is true."