Information-Theoretic Results on Communication Problems with Feed-forward and Feedback

Ramji Venkataramanan
Oral Defense

Dept. of EECS, University of Michigan

July 31, 2008
1 Source Coding with Feed-forward
 ▶ Point to Point Source Coding (Chap. 2)
 - Problem Statement
 - Rate-Distortion Function
 - Error Exponents
 ▶ Computation (Chap. 4)
 ▶ Multiple Descriptions (Chap. 5)

2 Channel Coding with Feedback (Chap. 3, 4)
Thesis Outline

1. Source Coding with Feed-forward
 - Point to Point Source Coding (Chap. 2)
 - Problem Statement
 - Rate-Distortion Function
 - Error Exponents
 - Computation (Chap. 4)
 - Multiple Descriptions (Chap. 5)

2. Channel Coding with Feedback (Chap. 3, 4)
Lossy Data Compression

Source X, reconstruction \hat{X}

Distortion measure $d(X, \hat{X})$

Rate-distortion function

Minimum rate R for distortion level D (Shannon '59)
Lossy Data Compression

- Source X, reconstruction \hat{X}
- Distortion measure $d(X, \hat{X})$

Rate-distortion function

Minimum rate R for distortion level D (Shannon '59)
Source Coding with Side-Information

- X, Y correlated random variables
- Example: Temperature at nearby cities
- Presence of $Y \Rightarrow$ lower rate for given distortion D

Rate-distortion function $R_{WZ}(D)$ [Wyner, Ziv '76]
Source Coding with Side-Information

- X, Y correlated random variables
- *Example*: Temperature at nearby cities
- Presence of $Y \Rightarrow$ lower rate for given distortion D

Rate-distortion function $R_{WZ}(D)$ [Wyner,Ziv ’76]
Source Coding with Side-Information

Example: Block length $N = 5$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
<td>X_{10}</td>
</tr>
<tr>
<td>Encoder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Side Info</td>
<td>Y_1</td>
<td>Y_2</td>
<td>Y_3</td>
<td>Y_4</td>
<td>Y_5</td>
<td>Y_6</td>
<td>Y_7</td>
<td>Y_8</td>
<td>Y_9</td>
<td>Y_{10}</td>
</tr>
<tr>
<td>Decoder</td>
<td>\hat{X}_1</td>
<td>\hat{X}_2</td>
<td>\hat{X}_3</td>
<td>\hat{X}_4</td>
<td>\hat{X}_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Source Coding with Side-Information

Example: Block length $N = 5$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
<td>X_{10}</td>
</tr>
<tr>
<td>Encoder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Side Info</td>
<td>Y_1</td>
<td>Y_2</td>
<td>Y_3</td>
<td>Y_4</td>
<td>Y_5</td>
<td>Y_6</td>
<td>Y_7</td>
<td>Y_8</td>
<td>Y_9</td>
<td>Y_{10}</td>
</tr>
<tr>
<td>Decoder</td>
<td>\hat{X}_1</td>
<td>\hat{X}_2</td>
<td>\hat{X}_3</td>
<td>\hat{X}_4</td>
<td>\hat{X}_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Source Coding with Side-Information

Example: Block length $N = 5$

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
<td>X_{10}</td>
</tr>
<tr>
<td>Encoder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Side Info</td>
<td>Y_1</td>
<td>Y_2</td>
<td>Y_3</td>
<td>Y_4</td>
<td>Y_5</td>
<td>Y_6</td>
<td>Y_7</td>
<td>Y_8</td>
<td>Y_9</td>
<td>Y_{10}</td>
</tr>
<tr>
<td>Decoder</td>
<td>\hat{X}_1</td>
<td>\hat{X}_2</td>
<td>\hat{X}_3</td>
<td>\hat{X}_4</td>
<td>\hat{X}_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Suppose there is a delay in the side info available at the decoder.

![Diagram showing the flow of information with delay]

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
<td>X_{10}</td>
</tr>
<tr>
<td>Encoder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Side Info</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y_1</td>
<td>Y_2</td>
<td>Y_3</td>
<td>Y_4</td>
<td>Y_5</td>
<td>Y_6</td>
<td>Y_7</td>
</tr>
<tr>
<td>Decoder</td>
<td>\hat{X}_1</td>
<td>\hat{X}_2</td>
<td>\hat{X}_3</td>
<td>\hat{X}_4</td>
<td>\hat{X}_5</td>
<td>\hat{X}_6</td>
<td>\hat{X}_7</td>
<td>\hat{X}_8</td>
<td>\hat{X}_9</td>
<td>\hat{X}_{10}</td>
</tr>
</tbody>
</table>
Suppose there is a delay in the side info available at the decoder.
Side-Information with Delay

Suppose there is a delay in the side info available at the decoder.

- **Time**: 1 2 3 4 5 6 7 8 9 10
- **Source**: $X_1 \ X_2 \ X_3 \ X_4 \ X_5 \ X_6 \ X_7 \ X_8 \ X_9 \ X_{10}$
- **Encoder**: - - - - - W - - - - - W
- **Side Info**: - - - - $Y_1 \ Y_2 \ Y_3 \ Y_4 \ Y_5 \ Y_6 \ Y_7$
- **Decoder**: $\hat{X}_1 \ \hat{X}_2 \ \hat{X}_3 \ \hat{X}_4 \ \hat{X}_5$
Suppose there is a delay in the side info available at the decoder.

![Diagram showing side-information with delay](image)

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>X_1</td>
<td>X_2</td>
<td>X_3</td>
<td>X_4</td>
<td>X_5</td>
<td>X_6</td>
<td>X_7</td>
<td>X_8</td>
<td>X_9</td>
<td>X_{10}</td>
</tr>
<tr>
<td>Encoder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Side Info</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Y_1</td>
<td>Y_2</td>
<td>Y_3</td>
<td>Y_4</td>
<td>Y_5</td>
<td>Y_6</td>
<td>Y_7</td>
</tr>
<tr>
<td>Decoder</td>
<td>\hat{X}_1</td>
<td>\hat{X}_2</td>
<td>\hat{X}_3</td>
<td>\hat{X}_4</td>
<td>\hat{X}_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is feed-forward?

The source field itself available with delay at decoder.

```
<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>X₁</td>
<td>X₂</td>
<td>X₃</td>
<td>X₄</td>
<td>X₅</td>
<td>X₆</td>
<td>X₇</td>
<td>X₈</td>
<td>X₉</td>
<td>X₁₀</td>
</tr>
<tr>
<td>Encoder</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>W</td>
</tr>
<tr>
<td>Extra info</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X₁</td>
<td>X₂</td>
<td>X₃</td>
</tr>
<tr>
<td>Decoder</td>
<td>̂X₁</td>
<td>̂X₂</td>
<td>̂X₃</td>
<td>̂X₄</td>
<td>̂X₅</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
```

Here, block length = 5, delay = 6 time units.
What is feed-forward?

The source field itself available with delay at decoder.

![Diagram of encoder and decoder with time and source information]

Here, block length = 5, delay = 6 time units.
What is feed-forward?

The source field itself available with delay at decoder.

![Diagram showing encoder and decoder with source and extra information over time.]

Here, block length = 5, delay = 6 time units.
What is feed-forward?

The source field itself available with delay at decoder.

Here, block length = 5, delay = 6 time units.
Feed-forward ⇒ Decoder knows some of the past source samples.

FF with delay k, block length N.

To produce \hat{X}_n, the decoder knows index W and (X_1, \ldots, X_{n-k}).
Stock Market Example
- Behavior of a particular stock over an N-day period.
- Stock price modeled as a $k + 1$-state Markov chain.
- Value of stock: Markov source $\{X_n\}$

```
0 1 Ki
p_i q_i
1-p_i -q_i
```
Insider Investor

- Insider - *a priori* knowledge about behavior of stock
- Investor has stock for N days, needs to know when value drops.
- Insider: gives information to investor at rate R.
Reconstruction

- Decision of investor on day n: \hat{X}_n
 - $\hat{X}_n = 1 \Rightarrow$ price drop from day $n - 1$ to n
 - Otherwise $\hat{X}_n = 0$
 - Distortion $= 1$ if \hat{X}_n is wrong
Reconstruction

- Decision of investor on day n: \hat{X}_n
- $\hat{X}_n = 1 \Rightarrow$ price drop from day $n - 1$ to n
- Otherwise $\hat{X}_n = 0$
- Distortion = 1 if \hat{X}_n is wrong
Feed-forward!

- Before day n, investor knows previous stock values X^{n-1}, makes decision \hat{X}_n
- Minimum info (in bits/sample) needed to predict drops with distortion D?
Feed-Forward: A Formal Definition

Previous: [Weissman et al 03], [Pradhan 04], [Martinian et al 04]

- **Source** X: Alphabet \mathcal{X}, reconstruction alphabet $\hat{\mathcal{X}}$
- **Encoder**: Rate R, $e : \mathcal{X}^N \rightarrow \{1, \ldots, 2^{NR}\}$
- **Decoder**: knows all the past $(n - k)$ source samples to reconstruct nth sample.

$$g_n : \{1, \ldots, 2^{NR}\} \times \mathcal{X}^{n-k} \rightarrow \hat{\mathcal{X}}, \quad n = 1, \ldots, N.$$
Distortion measure $d_N(X^N, \hat{X}^N)$.

GOAL

Given any source X, find the least R such that

$$E[d_N(x^N, \hat{x}^N)] \leq D.$$
Directed Information

- Inspired by [Marko ’73]: work on bidirectional communication
- [Massey ’90] The directed information flowing from A^N to B^N

$$I(A^N \rightarrow B^N) = \sum_{n=1}^{N} I(A^n; B_n|B^{n-1}).$$

- Interestingly:

$$I(A^N \rightarrow B^N) = I(A^N; B^N) - \sum_{n=2}^{N} I(B^{n-1}; A_n|A^{n-1})$$

$$I(A^N \rightarrow B^N) = I(A^N; B^N) - I(0B^{N-1} \rightarrow A^N)$$
Directed Information

- Inspired by [Marko ’73]: work on *bidirectional communication*
- [Massey ’90] The directed information flowing from A^N to B^N

\[I(A^N \rightarrow B^N) = \sum_{n=1}^{N} I(A^n; B_n | B^{n-1}). \]

- Interestingly:

\[I(A^N \rightarrow B^N) = I(A^N; B^N) - \sum_{n=2}^{N} I(B^{n-1}; A_n | A^{n-1}) \]

\[I(A^N \rightarrow B^N) = I(A^N; B^N) - I(0B^{N-1} \rightarrow A^N) \]
Causality in Information Flow

\[I(A^N; B^N) = I(A^N \rightarrow B^N) + I(0B^{N-1} \rightarrow A^N) \]

- \(I(A^N \rightarrow B^N) \): How causal knowledge of \(A_n \)'s reduces the uncertainty in \(B_n \)
- Example: GNP vs Money Supply [Geweke '82]
Without FF, need $I(\hat{X}^N; X^N)$ bits to represent X^N with \hat{X}^N.

- With feed-forward, to produce \hat{X}_n, the decoder knows X^{n-1}.
- Number of bits required is reduced by $I(\hat{X}_n; X^{n-1} | \hat{X}^{n-1})$.
Without FF, need $I(\hat{X}^N; X^N)$ bits to represent X^N with \hat{X}^N.

With feed-forward, to produce \hat{X}_n, the decoder knows X^{n-1}.

Number of bits required is reduced by $I(\hat{X}_n; X^{n-1}\mid \hat{X}^{n-1})$.
With delay 1 feed-forward, we need

\[I(\hat{X}^N; X^N) - \sum_{n=2}^{N} I(\hat{X}_n; X^{n-1}|\hat{X}^{n-1}) \] bits.

Directed information from \(\hat{X}^N \) to \(X^N \)!
Delay k feed-forward

With delay k feed-forward, to produce \hat{X}_n, the decoder knows X^{n-k}.

No. of bits: $I(\hat{X}^N; X^N) - \sum_{n=k+1}^N I(\hat{X}_n; X^{n-k} | \hat{X}^{n-1})$

Not Directed Information- will denote it $I_k(\hat{X}^N \rightarrow X^N)$
- ‘k–directed information’.

Rate-distortion function

Optimize I_k over $P_{\hat{X}^N|X^N}$ that satisfy distortion

No savings for discrete memoryless source w/ single-letter distortion measure
With delay k feed-forward, to produce \hat{X}_n, the decoder knows X_{n-k}.

No. of bits: $I(\hat{X}^N; X^N) - \sum_{n=k+1}^{N} I(\hat{X}_n; X^{n-k} | \hat{X}^{n-1})$

Not Directed Information- will denote it $I_k(\hat{X}^N \rightarrow X^N)$
- ‘k–directed information’.

Rate-distortion function

- Optimize I_k over $P_{\hat{X}^N | X^N}$ that satisfy distortion
- No savings for discrete memoryless source w/ single-letter distortion measure
Even when source is stationary, ergodic:
- with feed-forward, optimal joint distribution may not be.

- Source could be non-stationary, non-ergodic
- Sequence of distortion functions $d_n(\cdot, \cdot)$

- Need information-spectrum methods [Han, Verdu ’93, ’95]
Even when source is stationary, ergodic:
- with feed-forward, optimal joint distribution may not be.

- Source could be non-stationary, non-ergodic
- Sequence of distortion functions $d_n(., .)$

- Need information-spectrum methods [Han, Verdu ’93, ’95]
Definitions

\(a_1, a_2, \ldots : \text{random sequence}\)

- \(\lim \sup_{\text{in prob}} a_n = \bar{a} : \text{Smallest number } \alpha \text{ such that}\)
 \[\lim_{n \to \infty} \Pr(a_n > \alpha) = 0.\]

- We will need
 \[
i_k(\hat{x}^n \to x^n) = \frac{1}{n} \log \frac{P(x^n, \hat{x}^n)}{P(x^n) \cdot \prod_{i=1}^{n} P(\hat{x}_i | \hat{x}^{i-1}, x^{i-k})}\]
Definitions

\(a_1, a_2, \ldots: \) random sequence

- \(\limsup_{\text{in prob}} a_n = \bar{a} \): Smallest number \(\alpha \) such that
 \[
 \lim_{n \to \infty} \Pr(a_n > \alpha) = 0.
 \]

We will need

\[
i_k(\hat{x}^n \to x^n) = \frac{1}{n} \log \frac{P(x^n, \hat{x}^n)}{P(x^n) \cdot \prod_{i=1}^n P(\hat{x}_i | \hat{x}^{i-1}, x^{i-k})}
\]
Theorem

For arbitrary source X with distribution P_X, the rate-distortion function with feed-forward delay k, the infimum of all achievable rates at probability-1 distortion D, is given by

$$R_{ff}(D) = \inf_{P_{\hat{X}|X}: \rho(P_{\hat{X}|X}) \leq D} \bar{I}_k(\hat{X} \rightarrow X),$$

where

$$\rho(P_{\hat{X}|X}) \triangleq \limsup \sup_{\text{inprob}} d_n(x^n, \hat{x}^n).$$
Rate-Distortion Theorem for a general source

\[P_X = \{ P_{X_1}, P_{X_2}, \ldots, P_{X_N}, \ldots \} \]

\[P_{\hat{X}|X} = \{ P_{\hat{X}_1|X_1}, P_{\hat{X}_2|X_2}, \ldots, P_{\hat{X}_N|X_N}, \ldots \} \]

Theorem

For arbitrary source \(X \) with distribution \(P_X \), the rate-distortion function with feed-forward delay \(k \), the infimum of all achievable rates at probability-1 distortion \(D \), is given by

\[R_{ff}(D) = \inf_{P_{\hat{X}|X}: \rho(P_{\hat{X}|X}) \leq D} \bar{I}_k(\hat{X} \rightarrow X), \]

where

\[\rho(P_{\hat{X}|X}) \triangleq \limsup_{inprob} d_n(x^n, \hat{x}^n) \]
The story so far . . .

- What is feed-forward in source coding?
- Directed information and why it occurs
- Feed-forward rate-distortion result for general sources, distortions

Next . . .

How to compute the rate-distortion function?
The story so far . . .

- What is feed-forward in source coding?
- Directed information and why it occurs
- Feed-forward rate-distortion result for general sources, distortions

Next . . .

How to compute the rate-distortion function?
Source X with distribution P_X.

Find $P_{\hat{X}|X}$ to minimize $\bar{T}_k(\hat{X} \rightarrow X)$ s.t

$$\limsup \sup d_n(X^n, \hat{X}^n) \leq D$$

in prob

Multi-letter optimization- difficult!
Source X with distribution P_X.
Find $P_{\hat{X}|X}$ to minimize $\bar{I}_k(\hat{X} \rightarrow X)$ s.t

$$\limsup_{n \to \infty} d_n(X^n, \hat{X}^n) \leq D$$

in prob

- Multi-letter optimization- difficult!
Pick a conditional distribution $P_{\hat{X}|X} = \{P_{\hat{X}_n|X^n}\}$

For what sequence of distortion measures d_n does $P_{\hat{X}|X}$ achieve the infimum in the rate-distortion formula?

Approach- similar in spirit to [Csiszar and Korner]
Theorem

A stationary, ergodic source X characterized by $P_X = \{P_X^n\}_{n=1}^\infty$ with feed-forward delay k. $P_{\hat{X}|X} = \{P_{X^n|X^n}\}_{n=1}^\infty$ is a conditional distribution such that the joint distribution is stationary and ergodic. Then $P_{\hat{X}|X}$ achieves the rate-distortion function if for all sufficiently large n, the distortion measure satisfies

$$d_n(x^n, \hat{x}^n) = -c \cdot \frac{1}{n} \log \frac{P_{X^n,\hat{X}^n}(x^n, \hat{x}^n)}{\tilde{P}_k^{\hat{X}_n|X_n}(\hat{x}^n|x^n)} + d_0(x^n),$$

where

$$\tilde{P}_k^{\hat{X}_n|X_n}(\hat{x}^n|x^n) = \prod_{i=1}^n P_{\hat{X}_i|X^{i-k},\hat{X}^{i-1}}(\hat{x}_i|x^{i-k}, \hat{x}^{i-1})$$

and c is any positive number and $d_0(.)$ is an arbitrary function.
Stock example revisited

Value of the stock: Markov source \(\{ X_n \} \)

Decision of investor on day \(n \): \(\hat{X}_n \) (0 or 1)
Stock example revisited

Value of the stock: Markov source \(\{ X_n \} \)

Decision of investor on day \(n \): \(\hat{X}_n \) (0 or 1)
\[R_{ff} (D) \]: Minimum rate the investor needs to predict drops with distortion \(D \).

- Try first-order Markov joint distribution
- Distortion can be cast in the required form!
The minimum rate in (bits/sample) is

\[\sum_{i=1}^{k-1} \pi_i \left[h(p_i, q_i, 1 - p_i - q_i) - h(\epsilon, 1 - \epsilon) \right] + \pi_k \left(h(q_k, 1 - q_k) - h(\epsilon, 1 - \epsilon) \right) \]

where

- \(h() \) is the entropy function
- \([\pi_0, \pi_1, \cdots, \pi_k] \) is the stationary distribution of the stock
- \(\epsilon = \frac{D}{1 - \pi_0} \)
Computing Rate-distortion function with FF

1. ‘Predict’ a conditional distribution
2. Check if distortion function can be put into required form.

Next... A multi-terminal problem
Computing Rate-distortion function with FF

1. ‘Predict’ a conditional distribution
2. Check if distortion function can be put into required form.

Next ... A multi-terminal problem
- Source X: compressed into packets
- Packets may be dropped
- Compress X into two different packets
Multiple Descriptions

- Source X: compressed into packets
- Packets may be dropped
- Compress X into two different packets
- Rate R_1 yields reconstruction \hat{X}_1 with distortion D_1
- Rate R_2 yields reconstruction \hat{X}_2 with distortion D_2

- Want better quality D_0 if both packets received
- \hat{X}_1 and \hat{X}_2 need to \textit{refine} each other!
Goal

Given i.i.d source P_X:

Find all achievable $(R_1, R_2, D_1, D_2, D_0)$

- Still an open problem
- Studied by [Cover, El Gamal], [Ahlswede], [Zhang, Berger], . . .
- Best known rate-region: [Zhang, Berger '87]
<table>
<thead>
<tr>
<th>Rate</th>
<th>Distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_1 bits/sample</td>
<td>D_1</td>
</tr>
<tr>
<td>R_2 bits/sample</td>
<td>D_2</td>
</tr>
<tr>
<td>$R_1 + R_2$ bits/sample</td>
<td>D_0</td>
</tr>
</tbody>
</table>

GOAL

Given i.i.d source P_X:

Find all achievable $(R_1, R_2, D_1, D_2, D_0)$

- Still an open problem
- Studied by [Cover, El Gamal], [Ahlswede], [Zhang, Berger], . . .
- Best known rate-region: [Zhang, Berger ’87]
Network example with feed-forward

- Source propagates to destination with delay
- To reconstruct \hat{X}_n, decoder has packet and X^{n-k}
Alice has an i.i.d binary source \sim Bernoulli(1/2)

Bob and Carol: distortion d using R_B, R_C bits/sample

Dave gets Bob’s bits and Carol’s bits- needs to reconstruct perfectly!

Characterize $r_{sum}(d) \triangleq$ Smallest sum-rate $R_B + R_C$ for distortion $(d, d, 0)$
Same model as before, one extra feature. . .

- After Carol reconstructs each sample, Alice reveals the value to her.

Feed-forward

- Before reconstructing each sample, Carol knows past source samples

Characterize with feed-forward

\[r_{\text{sum}}(d) \triangleq \text{Smallest sum-rate } R_B + R_C \text{ for } (d, d, 0) \]
Same model as before, one extra feature. . .

- After Carol reconstructs each sample, Alice reveals the value to her. *Feed-forward*
- Before reconstructing each sample, Carol knows *past* source samples

Characterize with feed-forward

\[r_{sum}(d) \triangleq \text{Smallest sum-rate } R_B + R_C \text{ for } (d, d, 0) \]
Encoder mappings: $e_m : \mathcal{X}^N \to \{1, \ldots, 2^{NR_m}\}$, $m = 1, 2$.

Mappings for decoders 1 and 0:

$g_1 : \{1, \ldots, 2^{NR_1}\} \to \hat{\mathcal{X}}_1^N$

$g_0 : \{1, \ldots, 2^{NR_1}\} \times \{1, \ldots, 2^{NR_2}\} \to \hat{\mathcal{X}}_0^N$

A sequence of mappings for decoder 2:

$g_{2n} : \{1, \ldots, 2^{NR_2}\} \times \mathcal{X}^{n-k} \to \hat{\mathcal{X}}_2$, $n = 1, \ldots, N$.

Delay
Encoder mappings: \(e_m : \mathcal{X}^N \rightarrow \{1, \ldots, 2^{NR_m}\}, \quad m = 1, 2. \)

Mappings for decoders 1 and 0:
\[
g_1 : \{1, \ldots, 2^{NR_1}\} \rightarrow \mathcal{\hat{X}}_1^N
\]
\[
g_0 : \{1, \ldots, 2^{NR_1}\} \times \{1, \ldots, 2^{NR_2}\} \rightarrow \mathcal{\hat{X}}_0^N
\]

A sequence of mappings for decoder 2:
\[
g_{2n} : \{1, \ldots, 2^{NR_2}\} \times \mathcal{X}^{n-k} \rightarrow \mathcal{\hat{X}}_2, \quad n = 1, \ldots, N.\]
Zhang-Berger '87

\(P_{U,\hat{X}_1,\hat{X}_2,\hat{X}_0|X} \) such that

\[
Ed_m(X; \hat{X}_m) \leq D_m, \quad m = 0, 1, 2
\]

\[
R_1 > I(X; \hat{X}_1 U) \quad R_2 > I(X; \hat{X}_2 U)
\]

\[
R_1 + R_2 > I(X; \hat{X}_1 U) + I(X; \hat{X}_2 U) + I(X; \hat{X}_0|\hat{X}_1 \hat{X}_2 U)
\]
Stringent Decoder 0 distortion \Rightarrow Need correlation in \hat{X}_1, \hat{X}_2

‘Cloud’ Center
- U: Cloud center of X sent to all decoders
- Rate $I(U; X)$ each for decoder 1 and 2

Penalty Term
- Can’t have $\hat{X}_1 \sim P(\hat{X}_1|XU)$ and $\hat{X}_2 \sim P(\hat{X}_2|XU)$ indep’y
- Need to be jointly distributed: $\sim P(\hat{X}_1, \hat{X}_2|XU)$
- $I(\hat{X}_1; \hat{X}_2|XU)$: Penalty in sum-rate

FF: decoder 2 knows past samples with some delay
- Can help build correlation!
Stringent Decoder 0 distortion ⇒ Need correlation in \hat{X}_1, \hat{X}_2

‘Cloud’ Center
- U: Cloud center of X sent to all decoders
- Rate $I(U; X)$ each for decoder 1 and 2

Penalty Term
- Can’t have $\hat{X}_1 \sim P(\hat{X}_1|XU)$ and $\hat{X}_2 \sim P(\hat{X}_2|XU)$ indep’ly
- Need to be *jointly* distributed: $\sim P(\hat{X}_1, \hat{X}_2|XU)$
- $I(\hat{X}_1; \hat{X}_2|XU)$: Penalty in sum-rate

- FF: decoder 2 knows past samples with some delay
- Can help build correlation!
Correlation in MD

Stringent Decoder 0 distortion ⇒ Need correlation in \hat{X}_1, \hat{X}_2

‘Cloud’ Center
- U: Cloud center of X sent to all decoders
- Rate $I(U; X)$ each for decoder 1 and 2

Penalty Term
- Can’t have $\hat{X}_1 \sim P(\hat{X}_1|XU)$ and $\hat{X}_2 \sim P(\hat{X}_2|XU)$ indep’ly
- Need to be jointly distributed: $\sim P(\hat{X}_1, \hat{X}_2|XU)$
- $I(\hat{X}_1; \hat{X}_2|XU)$: Penalty in sum-rate

FF: decoder 2 knows past samples with some delay
- Can help build correlation!
Coding Strategy

- Consider B long blocks of source samples

$$X_1 \ldots X_N \quad X_{N+1} \ldots X_{2N} \quad \ldots \ldots \quad X_{NB}$$

- While encoding one block, give 'preview' of next block

![Diagram showing the encoding strategy.](attachment:image.png)
After reconstructing block b:
- User 1 gets 'preview' of block $b+1$
- User 2 knows it too—due to FF!

Block-Markov, superposition; [Cover,Leung], [Willems] for MAC
Coding Strategy

Restricted encoding for user 1- within cell j

After reconstructing block b:
- User 1 gets 'preview' of block $b + 1$
- User 2 knows it too- due to FF!

Block-Markov, superposition; [Cover,Leung], [Willems] for MAC
Theorem

\(P_{U, \hat{X}_1, \hat{X}_2, \hat{X}_0 | X} \) such that

\[
Ed_m(X; \hat{X}_m) \leq D_m, \quad m = 0, 1, 2
\]

\[
R_1 > I(X; \hat{X}_1 | U)
\]

\[
R_2 > I(X; \hat{X}_2 | U) + \max\{0, R_1 - I(X \hat{X}_2; \hat{X}_1 | U)\}
\]

\[
R_1 + R_2 > I(X; \hat{X}_1 | U) + I(X; \hat{X}_2 | U) + I(X; \hat{X}_0 | \hat{X}_1 \hat{X}_2 | U) + I(\hat{X}_1; \hat{X}_2 | XU) + \max\{0, R_1 - I(X \hat{X}_2; \hat{X}_1 | U)\}
\]
Fix \(R_1 = I(X; \hat{X}_1 U) + \epsilon \)

If \(\max\{0, R_1 - I(X \hat{X}_2; \hat{X}_1 | U)\} = 0 \):
- Savings in \(R_2 = I(U; X) \) bits/sample
- FF conveys ‘cloud center’ \(U \) for free

If \(\max\{0, R_1 - I(X \hat{X}_2; \hat{X}_1 | U)\} \neq 0 \):
- Savings in \(R_2 = I(\hat{X}_1; \hat{X}_2 | XU) \) bits/sample
- FF eliminates penalty term
Improvement over [Zhang-Berger]

- Fix $R_1 = I(X; \hat{X}_1 U) + \epsilon$
- If $\max\{0, R_1 - I(X\hat{X}_2; \hat{X}_1 | U)\} = 0$:
 - Savings in $R_2 = I(U; X)$ bits/sample
 - FF conveys ‘cloud center’ U for free
- If $\max\{0, R_1 - I(X\hat{X}_2; \hat{X}_1 | U)\} \neq 0$:
 - Savings in $R_2 = I(\hat{X}_1; \hat{X}_2 | XU)$ bits/sample
 - FF eliminates penalty term
Example: No feed-forward

Without FF [Zhang Berger ’87]

\[r_{sum}(d) \geq 2 - h \left(\frac{4d + 1 - \sqrt{12d^2 - 4d + 1}}{2} \right) \]
\((a): \) Lower bound without feed-forward [Zhang, Berger ’87]

\((b): \) Achievable sum-rate with FF- better than optimal w/o FF

\((c): \) Rate-dist lower bound with FF- \(R_B + R_C > 2(1 - h(d)) \)
• (a): Lower bound without feed-forward [Zhang, Berger ’87]
• (b): Achievable sum-rate with FF- better than optimal w/o FF
• (c): Rate-dist lower bound with FF- $R_B + R_C > 2(1 - h(d))$
(a): Lower bound without feed-forward [Zhang, Berger ’87]
(b): Achievable sum-rate with FF- better than optimal w/o FF
(c): Rate-dist lower bound with FF- $R_B + R_C > 2(1 - h(d))$
Summary

- Feed-forward: helps build correlation
- Single-letter achievable region for MD with FF
- FF helps even for an i.i.d source

- How to use feed-forward to all decoders?
- FF for Gaussian multiple descriptions [Pradhan IT ’07]
Summary

- Source Coding with feed-forward
 - Directed Information
 - Rate-Distortion Function
 - How to evaluate optimization
 - Multiple Descriptions with FF

- Channel Coding with feedback

Some questions...

- Feedback/FF in multi-terminal setting
- Noisy feedback/FF
- Applications of directed-info like quantities
Summary

- Source Coding with feed-forward
 - Directed Information
 - Rate-Distortion Function
 - How to evaluate optimization
 - Multiple Descriptions with FF

- Channel Coding with feedback

Some questions...

- Feedback/FF in multi-terminal setting
- Noisy feedback/FF
- Applications of directed-info like quantities