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Chapter 10

Interpreting
Quantum Theories

Laura Ruetsche

Introduction: Interpretation

The toundational investigation of quantum theories is inevitably specialized, but
it ought not be exclusively so. Continuities of theme and approach should link it
to the foundational investigation of other physical theories, to the general philos-
ophy of science, to metaphysics and epistemology more broadly construed. The
interpretation of quantum theories is the turnace in which these links are torged.
To interpret a physical theory is to say what the world would be like, it the theory
were true. A realist about a theory believes that theory to be true. Interpretation
gives the realist’s belief content, tells the constructive empiricist what he does noz
believe, and makes available to all parties the understanding of a theory consti-
tuted by a grasp of its truth conditions. Interpretation can promote theory devel-
opment: Howard Stein offers the example of interpretive questions about the
ether’s state of motion in Maxwell theory, questions whose answers “revolution-
ized the theory and deepened our understanding of nature very considerably”
(Stein, 1972, p. 423).

Having 1ssued this apology for interpretation, this chapter survevs the inter-
pretation of quantum theories. It chronicles past highlights (pp. 200-9); covers
current work (pp. 209-17); and presents tuture direcnions (pp. 217-21). The
remainder of this section sets the stage.

The Heisenberg—Born-Jordan matrix mechanics and Schrodinger’s wave
mechanics were twin formulations of quantum theory so fraternal it took von
Neumann to pinpoint their relation. He called the structure they shared “Hilbert
Space.”! Pure quantum stares are normed Hilbert space vectors; quantum ohserv-
ables are selt-adjoint Hilbert space operators; once the Hamiltonian operator His
provided, Schrodinger’s equation determines dvnamical trajectories through state
space. Because classical observables are functions from state space clements to the
reals, a system’s classical state fixes the values of all classical observables pertain-
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ing to it. In quantum mechanics (QM) this is not so. A state Iy) does not in
general fix the value of an obscrvable A; rather ly), via the Born Rule, determines
a probability distribution over A’s possible values. In its standard Hilbert space
formulation, QM lacks what I’ll call a sesmantics, an account of which observables
have determinate values on a quantum system, and of what those values are of
might be.

The quartet {statc space, observables, dynamics, semantics} characterizes what
is or can be true for a theory over time, and so constitutes an interpretation of 5
theory. Correlatively, degrees of freedom available to those engaged in interpre-
tive projects include freedoms to propose and modify members of the quartet,
One way to sce the venerable debate about the nature of space(time) is as a
debate about how best to tune classical theory’s state space, observable set, and
dynamics to one another. But interpretations can be — many interpretations of
QM are — efforts in creative physics.

Bohr and Complementarity

Interpretive efforts can also retard creative physics, as Einstein feared Bohr’s phi-
losophy of complementarity would. The doctrine is too intricate to explicate in a
short space, so I will settle for listing a few of its kev elements, some of which
persist in influence, by seeming to those working at present cither to deserve expli-
cation, or to constitute exculpation.

Bohr denies that position and momentum can be simultaneously determinate
on a quantum system. Position and momentum arc what he stvles complementary
modes of description, “complementary in the sense that any given application of
classical concepts precludes the simultaneous use of other classical concepts which
in a different guise are equally necessary for the clucidation of the phenomenon”
(1934, p. 10). For Bohr, it is as though realitv were a stercoscopic image we were
constrained to view one eye at a time. The doctrine originates in an insistence on
the use of classical concepts, which Bohr couples to an operationalism governing
their use. He observes that the experimental circumstances warranting the use of
the momentum concept are incompatible with those warranting the use of the
position concept. The upshot 1s the complementarity of position and momentum
concepts, representatives of the complementary classes of kinematic (that is, spatio-
temporal) and dynamic (that is, subject to conservation laws) concepts. Bohr takes
the position-momentum uncertainty relations to express = and be explained by -~
this deeper principle of complementarity (1934, p. 57); see also Murdoch (1987,
ch. 3).2

Bohr repeatedly emphasizes that the quantum ofaction is central to the doctrine.
But the quantum of action seems to have gone missing from the foregoing recon-
struction. One place it might lurk is a loophole through which a sort of counter-
tactual discourse might sneak. Having bolted our diaphragm to the table, we may
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with Bohr’s blessing speak of the position of an electron passing through our experi-
mental arrangement. Could we also, and in defiance of complementarity, speak of
its momentum, by appeal to experimental results we would have obtained, had we
instead dangled our diaphragm from a spring balance? Not if the wncontrellzble
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exchange of the quantum of action blocks such extrapolation. A disturbance theory
of measurement fertilizes yet another root of complementarity.

Consider how Bohr’s philosophy could interact with living physics. A physics
community embracing the philosophy of complementarity would thereby abandon
the project, declared inconceivable by the doctrine of complementarity, of
“completing” QM by developing a theory which described the simultancously
determinate positions and momenta of systems. Einstein (Fine, 1986, p. 18) feared
that “the Heisenberg-Bohr tranquilizing philosophy ~ or is it religion? — is so del-
icately contrived that, for the time being, it provides a gentle pillow for the true
believer from which he cannot very casily be aroused.” In 1935, with Podolsky
and Rosen, he issued a wakeup call.

The Einstein-Podolsky-Rosen (EPR) Argument

Bohr denies that complementary magnitudes are simultaneously determinate.
Einstein, Podolsky and Rosen (1935) arguc that quantum statistics themselves
imply that Bohr is wrong. Crucial to their argument is the “criterion of reality”:
If without in any way disturbing a system we can predict with certainty . . . the value
of a physical quantity, then there exists an element of physical reality corresponding
to this physical quantity (Einstein et al., 1935, p. 777).
(I take the consequent to be equivalent to “this physical quantity has a determi-
nate value.™) They argue that there are circumstances in which complementary
observables satisty the reality criterion. Their kev move is to consider quantum
states of composite systems instituting corvelations between observables pertaining
to component subsystems. Bohm (1951) reformulates the argument for a pair of
electrons in the spin singlet state:

1
Yoo = —— - 10.1
| >\|l\3.,h NE) (=) l=)u le=) s [=)) (10.1)
Although (10.1) expresses W singiee 1N terms ot cigenstates —) and 1<) of the x-

component of spin G,, g assunies biorthogonal form for, and institutes
perfect correlations between, 6, cigenstates of the two systems tor all s Thus,
N assigns Born rule probability 1 to the experimental resule thar the out

comes of 6, measurements on systems | and II disagree. EPR consider a pair of
electrons prepared in Winae and sent to laboratories remote from one another.
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Measuring &, on system I aftords the prediction, with certainty, that an &, mea-
surement performed on system 11 will vield the opposite result. The remoteness

of the laboratorics cnsures that a measurement on system I cannot in any way

disturb system II — provided the universe is “local™ in a wav that renders distance

an assurance of isolation. By the reality criterion, then, 6, on system ILis an element

of reality. EPR could well have stopped here (Fine, 1986, ch. 3) musters evidence

that Einstein wishes they had). They have shown that, for those who would with-

hold determinateness from the quantum realm, it is as though the spin measure-

ment in first laboratory, instantaneously and at a distance, brings into being an

clement of reality in the second laboratory.

But EPR continue. We might rather have measured 6, on system L 1y, q anti-
corrclates G, eigenstates just as well as it anticorrelates &, cigenstates. By parity of
reasoning, in this counterfactual situation, 6, on system IT would be an element
of reality. EPR again appeal to locality to conclude from this that 6, on system 11
isan clémcnt of reality — otherwise “the reality of [6.] and [6,] depend on the
process of measurement carried out on the first system, which doces not disturb
the sccond system in any way. No reasonable definition of reality could be expected
to permit this” (Einstein et al., 1935, p. 780). (Bohr’s reply to EPR is to permit
what they deem impermissible: the nonlocal dependence of system II’s matters of
fact on system I manipulations. There is “no question of a mechanical distur-
bance,” Bohr writes, but there is “the question of an influence on the very con-
ditions which define the possible tvpes of predictions regarding the future behavior
of the system” (Bohr, 1935, p. 699).) Because the correlations W), Nstitutes
are tllofOUgthing, if the EPR argument works, it works for every spin observ-
able. Those convinced by the argument should undertake the project of “com-
pleting” QM, for instance, by devising a theory which artributes a determinate
value to every clement of reality established by the EPR gambit, a theory which
moreover rcsbccts a “locality” requirement of the sort EPR exploit. (Those con-
vinced ab initio that the project of completing QM is worth undertaking needn’t
he constrained by locality, or by reconstituting reality. EPR clement by EPR
clement.) One ()f']()hn Bell’s groundbreaking contributions to the toundations of
QM was to bring “local” hidden variable theories (HVTs) in contact with empir-

ical dara.

Bell’s Theorem and Other No-Go Results

Bell’s theorem shows that Tocal HVTs are committed to scts of statistical predic-
tions known as Bell Incqualities. Insofar as there exist quantum states predicting
the violation of the Inequalitics, Bell’s theorem sets up a crucial test of local HVTs
vs. standard QM. Experiment upholds QM. violates the Incqualitics, and falsifies
local HVTs. The field is set for the game of experimental metaphysics. To play,
show how to derive Bell Inequalities from a set of premiscs bearing philosophically
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fraught names (“determinism,” “completeness,” “locality”). Observe that the
expcrimcntal violation of the Inequalities reveals at least one of these premiscs to
be false. Invoking priors of various sorts, single out leading suspects. The litera-
ture is vast; see Cushing and McMullin (1989) for a sample. In this section, Tl
review a few of its defining moments, express a concern that locality is a red
herring, and touch upon questions the violation of the Bell Inequalitics raises
about the nature of explanation.

The Bell inequalities

Like the EPR argument, Bell’s (1964 ) theorem concerns distant correlations estab-
lished by W)uue- In Bell’s version of the experimental setup, the distant devices
need not measure the same component of spin. Thus the generic outcome of a
Bell correlation measurement is (x,Ma,b) where x, v € {+,~] are the outcomes of
measurements of spin components 6,,6, on particles I and II respectively. The
Born rule probability ). assigns (x,314,6) is Yosin*0ab/2 | where 0, is the angle
between orientations # and &. Consider how a HVT might handle such probabil-
ities. Let A denote a complete set of parameters by which such a theory charac-
terizes the state of a physical system; let A denote the full set of such states. Let
Pr; (x,Ma.b) be the probability the hidden state A assigns the experimental result
(xyla,b). So-called deterministic HV'I's countenance only probabilities of 1 or 0;
stochastic HVTs countenance non-trivial probabilities. A quantum system has a
hidden state A € A, we know not which; a normalized probability density p(i)
over A encodes our ignorance. To obtain the empirical probability for a Bell-type
measurement outcome, a HVT integrates, over the set A, the probabilitics cach A
assigns this outcome, weighted by the density p(A):

Pr(x, yla, ) = j Pr, (v, v, B)p(h)dA (10.2)
To derive the Bell Inequalities, one imposes additional constraints on the
HVT’s probability assignment. Appealing broadly to intuitions about locality, Bell
required the joint probability to factorize into probabilities for outcomes on cach
wing, which probabilitics conditionalize only on scttings proper to that wing;:

Pry (v, Ma, b) = Pr, {xa) x Pry (4|b) (10.3)

HV'I's obedient to the factorization condition (3} obev the Inequality?

1 Pr(, +Ha, 0) 4+ Pr(s, Ha, b7y + Pely il 07) - Pris, +a’, 0)
SPr(sla) Pr(Hh) < 0 (10.4)

This is a Bell Inequality. There are quadruples of orentations (a.a’.b.¥) — for
nstance (1/3.1,0,2n/3) - tor which standard QM predicts its violation. Uphold-
ing standard QM, experiment falsifies local HVTs,
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For the purposes of probing locality, the factorization condition is blunt. In hig
1983 dissertation — Jarrett (1986) provides a précis — John Jarrett sharpened it,
by demonstrating its equivalence to the pair of conditions:

Pry, (xlz, &) = Py (xla) (Jarrett Locality)

Pry (xla, b, y) = Pry (xla, &) (Jarrett Completeness)

The first expresses the desideratum that the outcome of a particle I measurement
be independent of detector II’s setting (ergo Shimony’s (1984b) label: “parame-
ter independence”). Jarrett equates it to a prohibition on superluminal signaling,
which prohibition he supposes the special theory of relativity (STR) to issue. If
Jarrett Locality fails, by changing the setting of her detector, a physicist in labo-
ratory I can send instantaneously to laboratory IT a signal in the form of altered
measurement statistics (Shimony calls this “controllable non-locality” or action-
at-a-distance). Jarrett Completeness expresses the desideratum that the outcome
of a particle I measurement be independent of the outcome of a particle II mea-
surement (ergo Shimony’s label: “outcome independence”). Because the labora-
tory I physicist has no control over laboratory IT outcomes, she can not exploit
breakdowns in Jarrett locality to signal (Shimony call this “uncontrollable non-
locality” or “passion-at-a-distance™).

The violation of the Bell Inequalities implies that one of the assumpfions gen-
erating them must be false. Having turnished his factorization ot (10.3), and sup-
posing our commitment to the special theory of relativity theory to commit us,
at least morally, to Jarrett Locality, Jarrett fingers Completeness as the culprit
(1986, p. 27). Setting A = ly), standard quantum mechanics itself can be cast as
a stochastic hidden variable theory violating completeness: ly),, .. makes particle
[ probabilities sensitive to particle II outcomes. It appears that the quantum
domain is ruled by passion-at-a-distance. Enlisting a Lewis-style counterfactual
analysis of causation, Butterfield (1992) has argued that this violation of Jarrett
completeness signals a causal connection between distant wings of the aparatus.
Much care has been lavished on articulating relativistic locality constraints suited
to this stochastic setting, so that the question of whether QM and the STR can
“peacefully coexist” (Redhead, 1983) might be sertled once and for all.

No-Go results without locality

I would advocate postponing the question. STR does not issue bans on superlu-
minal causation. It does not address causation at all. It rather requires of that class
of space~time theories tformulated in Minkowski space—time that they be Torentz-
covariant.* Non-relativistic QM, which is not a space-time theory, is not subject
to STR’s requirements. So the guestion of whether STR and QM can peacefully
coexist is ill-posed. Another question — can there be Lorentz-covariant quantum
theories? — is well-posed. Quantum field theory (QFT) associates observables
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A(D) with regions of space~time D. The inhomogeneous Lorentz group® A
is represented on the Hilbert space which is the common domain of these
observables by a group of unitary operators U(A). QFT so formulated is Lorentz

. 7 E 3 " A +r tremenobmeens ATY L o D
covariant iff rhe observables aseociated with the Lorentz transform

D is the corresponding unitary transform of the observables associated with D:

AAD) =U(A)A(D) (LC-QFT)
That there are QFTs satisfying (LC-QFT) should settle the peaceful coexistence
question. In the QFT context, bans on superluminal signal propagation are
expressed by the microcausality requirement that operators associated with space-
like separated regions commute (intuitively, it does not matter what order they act
in). That this microcausality requirement is independent of the requirement of
Lorentz covariance suggests that the folkloric connection between STR and the
prohibition on superluminal signal propagation is only that.

Bell’s theorem may be profitably analyzed without recourse to locality notions
tenuously linked to STR. Fine (1982a,b) showed the (Clauser—Horne form of)
the Bell Inequalities to be equivalent to

1 the existence of a deterministic HVT
2 the existence of joint distributions for all pairs and triples of obscrvables
3 the cxistence of a stochastic HVT satisfving (10.3).

Intuitions about locality might motivate (3), but they are not directly implicated
in either (1) or (2), which simply offer ambitious patterns of determinate value
assignment. Indced, a family ot arguments originating with Bell (1966 — which he
wrote before the 1964 Bell Inequalities paper) but refined by Kochen and Specker
reveals that the project of assigning determinate values to sufficiently rich sets of
observables is untenable, if the value assignment 1s subject to prima facie reason-
able constraints.

Here’s an informal sketch ot Bell’s version of the No-Go result; see Redhead
(1987, ¢h. 5) tor more details and reterences. Consider a project of determinate
value assignment satistving

{Spectrum) (s determinate value [()] is one of its eigenvalucs
and
(FUNC) It A = fiB), then | A = £ B])

In a Hilbert space of dimension three, any trio (£} of mutually orthogonal pro-
jection operators furnishes a resolution of the dentity operator [-

[=P+D+ P (10.5)
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By the Spectrum rule [[]= 1 and [B] € {0,1}. The {P} commute pairwise; there
is theretore an operator of which each of them is a function. So the FUNC ryle
requires

[1]=[B]+[2]+[ ]

Equations (10.5) and (10.6) together imply that for any trio of mutually orthog-
onal projectors, one ot them will be assigned the value 1 while the other two will
be assigned the value 0. This assignment induces a lincar, normalized map from
the set of projection operators on Hilbert space to the interval [0,1] - indeed to
the set {0,1} containing only the endpoints of that interval. This map is also a
probability measure over the closed subspaces of Hilbert space. According to
Gleason’s theorem, for Hilbert spaces of dimension three or greater, all such prob-
ability measures are continuous. But the map induced by the project of complete

(10.6)

determinate value assignment is discontinuous — intuitively, as it sweeps through
the set of projectors, it is going to have to leap from a projector it maps to 0 to
a projector it maps to 1, without assigning intermediate projectors intermediate
values. A HV'T inducing such a map from Hilbert space operators to their deter-
minate values is therefore inconsistent.

Bell needs infinitely many observables — the full set of projection operators on
a three-dimensional Hilbert space — to generate the contradiction. Kochenand
Specker showed that 117 projectors on a tour-dimensional Hilbert spacé could
not without contradiction be assigned determinate values obedient to the FUNC
and Spectrum rules; Bell-Kochen—Specker type contradictions for ever smaller sets
of observables have been emerging ever since.” Mermin’s excellent presentation
of Bell-Kochen-Specker results (1993) situates one version of the Bell Inequali-
tics among them. The No-Go argument just sketched artributes Py the same
determinate value whether it’s considered an element of the orthogonal triple
T= {P,BP} or an clement of the defferent orthogonal triple 77 = {13, )E,PQ} It
assigns a non-maximal observable a non-contextual value. that is, one not rela-
tivized to a particular eigenbasis of the observable. (The question of contextual-
izing does not arise for maximal observables, whose cigenbases are unique.)
Contextualizing determinate value assignments, one can avert No-Go results, by
without contradiction assigning P, in the context of the basis 7 a value different
trom the one it's assigned in the context of the basis 17,

While such a move might seem shametully ad boe, itis precisely the move Bell
makes atter presenting his version of the No-Go result. The argument, he writes,
“racitly assumed rhat the measurement of an observable must vield the same value
independentdy of what other measurements must be made simultancously™ (Bell,
1966, p 4511 To see what this vaguely Bohrian pronouncement has to do with
contextualism, and to anticipate its connection with the Bell inequalities, consider
the dramatically non-maximal composite svstem observable 7 ox1 6. One way to
select an cigenbasis trom the myriad available for this observable is to specify a
spin obscrvable tor particle one: tor instance 6, () 6, has a unique cigenbasis which
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is also an eigenbasis for I® 6.. To artribute I® 6, a non-contextual value admit-
ting faithful measurement is to assume that a I® 6, measurement has the same
outcome regardless of which particle I measurement is made. Seeing no reason to
SUPPOse that measurement outcomes are in general incensitive to measuring envi-
ronments, Bell rejects the non-contextuality requirement.

Whether this “judo-like maneuver” (Shimony, 1984a) of invoking Bohr to
protect ambitious plans of value assignment succeeds or not, it suggests a
connection between Bell-Kochen-Specker arguments and the Bell Inequalitics.
The locality assumptions invoked in deriving the Inequalities are a species of
a non-contextuality requirement. Mermin (1993) shows how to use locality-as-
non-contextuality to convert an cight-dimensional Bell-Kochen—Specker result
into one version of the Bell Inequalities. (What is lost in the translation is the state
independence of the Bell-Kochen-Specker result; contradiction censues in the
converted case only for certain states.) I would regard this conversion as further
evidence that to focus on locality is to distort the discussion. What precipitates
No-Go results are overambitious plans of non-contextual determinate value assign-
ment, whether the systems at issue are composite and spatially separated, or simple.
Others (including Bell!) would say that it is only in the cases where locality
motivates the requisitc non-contextuality that the No-Go results have any bite.

Correlation and explanation

In articulating his principle of the common cause, Hans Reichenbach heeded
rwenticth-century revolutions in physics. Taking quantum mechanics to preclude
deterministic causes and relativity to preclude non-local ones, he offered common
causes as causes which act both locally and stochasticallv. Roughly, where A and
B arc cvents correlated in the sense that

Pr{A&B) # Pr(A) x Pr(B)

their common cause Cis an event in the overlap of their backwards lightcones
rendering A and B probabilistically independent in the sense that

Pr(A&B|C) = Pr( AJC) x Pr(B

)

The principle ot the common cause frames an influential and intuitively attractive
account of explanation. Corrclations ~ for instance, the correlations eftected by
| N

‘W/\m.u,h'l

common cause tor the correlated events. Straighttorwardly applied to quantum

ar¢ what require explanation; explanation proceeds by speditying

corrclations, the principle comes to griet. Articulated to regulate demands for
cxplanation in the context of saristical theories. the principle, applied to the
pertect (anti)correlations established by W), 1S satistied only by deterministic
common causes, that is, (s such that Pr( AIC), Pr(BIC) € {0,1} (van Fraassen,
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1989). What’s more, the assumption that there arc common causes for correla-
tions observed in the Bell experiments implies the Bell Inequalities (van Fraassen,
1989). Thus any theory satistying Reichenbachian demands for explanation wilj
be empirically false. )

Explanatory activity adheres to standards: not all demands for explanation are
legitimate; not all putative explanansare satistactory. Philosophers of science would
like to tell the difference. One way to tell the difference is, as it were, ahead of
time, by articulating a template to which scientific explanations always and every-
where conform. Taking the common causal account of explanation as just such a
template, Fine (1989) and van Fraassen (1989) present its quantum travails as evi-
dence that essentialism about explanation is misplaced, that explanatory strategies
arise within the various sciences variously. But for many, the feeling persists that
QM’s capacity to predict correlations falls dramatically short of a capacity to
explain those correlations.

The Measurement Problem

These No-Go results can be read as fables whose moral is that we ought not be
too ambitious in ascribing quantum obscrvables determinate values. One way to
moderate our ambition is to adopt the semantics tvpically announced by textbooks:

[1]t is strictly legitimate to say that O has a value in a state ly) if and only if a mea-
surement ot O on this state is certain o vield a definite result - i.c. if and only if hy)
coincides with an cigenvector of O (Gillespie, 1973, p. 61).

Although this cigenstate/cigenvalue link averts No-Go results, there is another
debacle in store for it. A measurement is an interaction berween an object system
Sand an apparatus R prepared in its ready state 1), ideallv one that establishes a
pertect correlation between eigenstates of the object observable O and pointer
observable P If measurement is a quantum mechanical process, this correlation-
establishing evolution should be Schrodinger evolution, and so implemented by a
unitary operator L‘/‘,:

Usillo)lpoy) =10l p.) (10.7)

The right-hand side of (10.7) is the post-measurement state, a state in which both
the object and pointer observables have determinate values, according to rextbook
semantics; a state in which the pointer value reflects the value of the object observ-
able. This consolidates the status of evolution driven by Uy, as measuvement
cvolution. But consider what happens when an object system initially in a
superposition E¢,lo)) of O eigenstates is subject to a measurcment of the sort just
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described. To obtain the post-measurement state of the composite system, apply
U, to the premeasurement state.

[
-
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(Use Uy's lincarity to move from the first expression to the second, and (10.7)
to move from the second to the third.) Unitary measurement leaves the object +
apparatus system in the f:ntangled state Ziglolp) which is mot an eigenstate of
the pointer obscrvable P. According to textbook semantics, then, the pointer
observable has no determinate value, and the measurement has no outcome. (One
version) of the measuvement problem is that if measurement processes obey the laws
of quantum dynamics, then measurements rarely have outcomes. Cautious ecnough
to avoid No-Go results, textbook semantics arce too cautious to accommodate the
manifest and empirically central fact that experiments happen. If QM as interpreted
by textbook semantics were true, we’d be unable to confirm it!

Recognizing this problem, von Neumann (1955 [1932]) responded by invok-
ing the deus ex machina of measurement collapse, a sudden, irreversible, discon-
tinuous change of the state of the measured system to an eigenstate of the
observable measured. According to this (quite orthodox — many texts accord this
“Collapse Postulate” axiomatic status) way of thinking, reconciling textbook
semantics with the datum that there are empirical data requires suspending unitary
dynamics in measurement contexts, and interpreting Born Rule probabilities as
probabilities for collapse. Collapse is a Humean miracle, a violation of the law of
nature expressed by the Schrodinger equation. It collapse and unitary evolution
are to coexist in a single, consistent theory, situations subject to unitary evolution
must be sharply and unambiguously distinguished from situations subject to col-
fapse. And despite evocative appeals to guch factors as the intrusion of conscious-
ness or the necessarily macroscopic nature ot the measuring apparatus, no one has
managed to distinguish these situations clearly.

Contemporary Work

I now have on hand material sufficient to frame much recent philosophical work
on QM. The challenge is to ofter an interpretation of the theory which makes
sense of measurement outcomes without running afoul ot NoGo results. Such an
interpretation will have to revise one or more of the following naive identifica-
tions, the set ot which precipitates the measurement problem:

Quantum states arc normed vectors ly) on a Hilbert space H.
Quantum observables are selt adjoint operators on H.

Quantum dyuamaics 1s unitary Schrodinger dvnamics.

Quantum semantics are given by the eigenstate /eigenvalue link.
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The revisions that require the least new physics, are semantic revisions; revisions
which retain the standard state space but reconfigure its dynamical trajectories are
more radical; most radical of all are revisions to the fundamental state space and
observable set of QM. A recurrent feature of interpretations of QM is that their
conservative exteriors hide radical hearts.

Changing the dynamics: The GRW model

The GRW model of quantum processes (Ghirardi, Rimini and Weber, 1986) - see
also Pearle (1989) ~ would avoid having to reconcile Schrodinger and non-
Schrodinger evolution by dispensing with Schrodinger evolution. GRW offers in
its stead a more general form of state evolution, to which Schrédinger evolution
is nearly approximate. The GRW equation of motion for an isolated quantum
svstem supplements the usual unitary term with a non-unitary term. The effect of
this extra term is, rarely and at random, but with a uniform probability per second
(107"), to multiply the system’s configuration space statc hy(x) > by a Gaussian
(bell curve) of width 107 meters, then normalize. The result of a hit by a Gauss-
ian centered at x = g is a wave function ly,(x) > localized about 4. Given that a
particle in the state Iy(x) > is hit by a Gaussian, the GRW dynamics set the prob-
ability that it’s hit by a Gaussian centered at & = g equal to the Born Rule prob-
ability ly(g)I* that a position measurement performed on a svstem in the state
hy(x) > has the outcome 4.

Generally, when systems interact, their composite state becomes entangled. For
instance, a purely unitary 6, measurement coupling a pointer system containing
N particles to an electron in initial state ¢,] —> +c.| > generates the post mea-
surcment stare

el >@P (W), +o @y (), (10.9)

where Iy.(x) > £ represents the 7 particle in a pointer localized about x = L. As
the number of particles in the pointer grows, so too docs the probability that
one of them experiences a GRW collapse. The entanglement of (10.9) ensures
that multiplying the state of anv particle in the pointer by a Gaussian centered at
+L renders the second term on the right-hand side negligible, and so leaves the
composite system localized about +L. Because our measuring apparatuses (gener-
ally) couple a macroscopic number of systems together, such a reduction is over-
whelmingly likely 10 occur practically immediately upon the completion of
measurement,

Thus, the GRW dvnamics imply that the quantum states of individual systems
will almost alwavs Schrodinger evolve, while the quantum states of macroscopic
measuring apparatuses are almost alwavs highly localized. But this does not render
GRW an unqualified success. It accounts only for measurement outcomes recorded
in positions. However, it may not be that all measurement outcomes are so
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recorded (Albert (1992, ch. 5) presents one which, prima facie, is not). And in
addition to modifying the dynamics of the naive interpretation, GRW must modify
its semantics, and perhaps even its observable set. For GRW reductions are not
reductions to strictly localized states (that is, states 1@(x)) such that for some finite
interval A, J,@*(x)@(x)dx =1 — recall that there are no point-valued position cigen-
states). Rather, they are reductions to states with infinite tails in configuration
space. The problem of tails is that adhering strictly to the orthodox semantics moti-
vating their pursuit of reduction, GRW cannot attribute even interval-valued deter-
minate positions to even systems in post-reduction states such as ly,(x) >. Relieving
us of peculiar measurement dynamics, GRW does not supply our pointers with
determinate positions.

A possible recourse is to liberalize eigenstate /cigenvalue semantics so that
“System S in ly(x)) is localized in the interval A” is true iff

[owwlode > 1-¢

where 0 < € < (Albert and Loewer, 1996). Setting € = 0 reinstitutes the cigen-
state/cigenvaluc link; setting € = 1 allows incompatible propositions (for instance,
those associated with the projectors P, and I~ P,) to be true at once. Setting €
somewhere in between implies that a system in the state IW(x)) can be localized
im A while a svstem in the state /(&) is localized in A', where A and A’ are dis-
joint, even though ly(x)) and ly'(x)) are not orthogonal. If so, GRW’s localized
observable is not a standard quantum mechanical one. For quantum observables,
selt-adjoint operators, are projection-valued measures which associate distinct
cigenvalues of the observable with orthogonal subspaces of Hilbert space. Though
Aand A" are distnct values of GRW?s localiszed observable, ly(x)) and y'(x)) are
not orthogonal, and localized is not a sclt-adjoint operator. By liberalizing text-
book semantics, GRW makes the more radical interpretive move of revising QM’s
observable set.”

Changing the state space: The Bobm theory

On Bohm’s causal interpretation — originating in Bohm (1952); see Cushing ct al.
(19906) tor subscquent developments - all particles have determinate positions.
Thus Bohm attributes a svstem oft N particles of mass a7 moving, in three dimen
sions a determinate configuration Q € R ina configuration space of their pos-
sible joint positions. The quantum wave ftunction Wiay, . .. x4 for the system can
be expressed as a function over this configuration space. Manipulating the
Schrodinger equation, and reasoning by analogy with other bits of physics, Bohm
ofters a set of velocity functions
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which make each component of each particle’s velocity depend both on the
quantum state and on the configuration of the composite systcin.® Dossessing ar ail
times “precisely definable and continuously varying values of position and momen-
tum” (Bohm, 1952, p. 373), a Bohmian particle follows a deterministic trajectory.’

Bobmian Mechanics is the guidance condition (the velocity functions x;) along
with the requirement that y(x;) evolve in accordance with the Schrédinger equa-
tion. Given the appropriate initial conditions, an ensemble of particles following
their Bohmian trajectories can reconstitute quantum statistics, If at some initial
time £, the distribution of determinate positions among particles in an ensemble
assigned W(x;,5) is described by the probability density Iy(x,,%)1%, then at all later
times, probability densities are well-behaved, and described by the appropriate
Schrodinger developments of W(x,%). Bohm’s distribution postulate is that ly(x,)I?
does give the probability density.'°

Bohm’s interpretation does not assign noncontextual determinate values to
observables other than position. Non-position observables it relegates to the realm
of dispositions manifested in the post-measurement positions of pointer systems.
These dispositions are contextual: whether a particle described by some superpo-
sition of spin eigenstates will wind up in a position indicating spin up or spin down
depends not only on the initial position of the particle but also on how the/mea-
suring device is configured; Albert (1992, ch. 7) gives a simple illustration. And
positions themselves are subject to manifestly non-local influences: the velocities
of individual particles are functions of the configurations of the composite systems
they comprise, so that (reverting to the EPR case) changes in particle II’s posi-
tion instantancously alter particle I's velocity, Bohmians deem this non-tocality
benign. Maintaining that we can not predict or control particle positions, they
argue that we can not harness the non-locality for signaling purposes.

Stingy, contextual, non local, the Bohm interpretation avoids No-Go results. Tt
accounts for measurement outcomes recorded in particle positions. And it scems

MW

to its adherents “the most obvious,” “most natural,” and “simplest™ (Diirr ¢t al.,
1996, pp. 21, 24) account of quantum phenomena — so much so that Cushing
(1994 has suggested that had Bohm beaten Bohr to prominence, standard physics
curricula would include Bohmian, rather than quantum, mechanics.

Pleas tor the naturalness of Bohmian mechanics sometimes derive illicit support
from glosses like the tollowing (which Bell supplied tor its ancestor, de Broglie’s
pilot wave theory):

D¢ Broglic showed in detail how the motion ot a particle passing through just one
of rwo holes ina sereen could be influenced by waves propagating through both
holes. And so influenced that the particle does not go to where the waves cancel out,
but is attracted to where they cooperate. This idea scems to me so natural and simple,
to resolve the wave-particle dilemma in such a clear and ordimary way, that it 1s a

great mystery to me thar it was so gencerally ignored. (Bell, 1987, p. 191
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On the picture enchanting Bell, the particle surfs the pilot wave through space. It
is a picture that results when the Bohm theory’s state space — the configuration
space R* on which the wave function of a single particle is defined - is identified
with physical space. Such an identification threatens to confuse the representa-
tional with the concrete, and is anyway foiled once the theory considers systems
composed of N> 1 particles, with wavefunctions f (1, . . ., x35). Then surf’s up
not in R* but in a 3 N-dimensional configuration space which it is not tempting
to identify with physical space.

Natural or not, the Bohm theory is significant. By refusing to constitute matters
of fact from determinate quantum observables, Bohm not only circumvents the
usual No-Go results, but shows how they stack the deck against the non-quantum
physicist by foisting upon her a quantum-theoretic space of possibilitics.

Changing the semantics: Modal interpretations

Modal interpretations — sec Kochen (1985), Healey (1989), Dicks (1989), van
Fraassen (1991) and, for more recent work, Dieks and Vermaas (1998) — would
resolve the Measurement Problem by maintaining the universality of Schrodinger
evolution while revising the eigenvector/cigenvalue link. A stock example of a
modal interpretation exploits the biorthogonal decomposition theorem, accord-
ing to which anv vector ly)*® in the tensor product space H, ® H, admits a
decomposition of the tform

[@ys" =Z£,|a, >lb, >

where |} are complex coefficients, {la, >} and {14, >} are sets of orthogonal vectors
on Hand H, respectively, and the summation index 7 does not exceed the dimen-
sionality of the smaller factor space. It the set {lel*} is non-degenerate, then this
biorthogonal decomposition of ly)™ is unique. Modal interpretations replace the
orthodox cigenvector/eigenvalue link with the tollowing semantic rule:

IF Y =X ¢, ], > b, is the unique biorthogonal decomposition of the state of a
composite S + R system, then subsvstem S has a determinate value for cach 7.
obscrvable with cigenbasis {1, >4, and subsystem R has a determinate value for cach
H, observable with cigenbasis {14, >} 1o gives the probability that these obsery

ables™ actual vatues are the cigenvalues associated with la, > 16, >,

Consider the unitarily evolved post-measurement state
S RN L .
|lP “ZLLIUI/‘!/)I .

The cigenbasis of the pointer observable P conspires in its biorthogonal decom-

position. By modal scmantics, then, the pointer observable Pis determinate on
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the apparatus system after measurement. Morcover, the probability that P’s actual
value is p, is just the Born Rule probability. Thus would modal interpretations
explain what textbook interpretations can not: how measurement interactions obe-
dient to the laws of quantum dynamics issue determinate outcomes corroborat-
ing quantum statistical predictions.

Four problems for this stock modal interpretation are listed here:

(i) What to say when the biorthogonal deccomposition is degenerate
In the extreme case where H, and Hy are each of dimension N> 2 and

[y :Z%ﬁlai >4 >

the eigenbasis of every observable on the component systems conspires in
some  biorthogonal decomposition, and Kochen—Specker contradictions
threaten.

(ii)  What to say about the dynamics of posscssed values
A viable option, one preserving the status of the modal interpretation as an
interpretation that succeeds not by developing new physics but by adjusting
semantics to existing physics is: nothing. Dickson (1998a) describes modal
dynamics which are dramatically underdetermined by the requirement that
they return single time probabilitics conforming to the Born Rule, and dis-
cusses that underdetermination.

(i) What to say about state preparation, the laboratory processes wherebv we
ASSIGN STAtes O quantum systems
Modal interpretations cannot avail themselves of the standard account that
measurement collapse leaves the prepared system in the cigenstate of the
measured obscrvable corresponding to the cigenvalue obrained. Perhaps
modal interpretations can account for preparation by appeal to conditional
probabilitics: the “prepared™ state is the one mimicking the post-preparation
composite state’s predictions for the prepared system, conditional on the
“outcome™ of the preparation — Wessels (1997) treats preparation along these
lines. Adopting standard quantum expressions for conditional probabilities,
modal interpretations can take this way with preparation at the cost, in certain
settings, ot violating the Markov consistency requirement that

Prinlh) = Z Priale,) x Pric,16)

where {o] s an exhanstive set of mutually exclusive cevents intermediate
herween gand /- Using non-standard conditional probabilities, modal inter-
pretations embark on value state dvnamics, with the class ot candidate
dvnamics narrowed to those that make sense of preparation.

fivy - What to make of non-ideal measurements {Albert, 1992, appendix)
These are measurements which fail o correlate cigenstares of the designated

pointer observable with orthogonal states of the object svstem, so that the
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pointer eigenbasis fails to furnish a biorthogonal decomposition of the post-
measurement composite state. By the biorthogonal decomposition theorem,
some apparatus eigenbasis will furnish a biorthogonal decomposition, and
obscrvables with this eigenbasis, not the pointer observable, arc determinate
after measurement, according to modal semantics. Perfectly crror-free mea-
surcments confront modal intepretations with this problem, and there is a
class of observables whose only error-free measurements are of this sort
(Ruetsche, 1995).

Responses to (iv) (and also (1) and (iil)) appeal to decoberence processes —
interactions between the pointer and its environment that tend to correlate
distinct pointer eigenstates with nearly orthogonal states of the environment."
The suggestion is that decoherence carries post non-ideal measurement systems
into states biorthogonally decomposed by apparatus observables close enough to
the designated pointer observables that one needn’t fret (Bacciagaluppi and
Hemmo, 1996). Because decoherence is not perfect, this response leaves the
modal interpretation with its own version ot the problem of tails, a problem whose
resolution might lic in the now-familiar maneuver of constituting matters ot fact
from something other than determinate quantum observables.

Relative state formulations

“Postulat{ing] that a wave function that obeys a linear wave equation evervwhere
and art all times supplies a complete mathematical model for every isolated physi-
cal system without exception™ (Everett, 1983 [1957], p. 316), Hugh Everett’s
Relative State Formulation promises an interpretation according to which the
quantum state description is complete and the quantum dynamics are universal,

Although the entangled post-measurement state

¥ >*"‘:Zg|n, >|p, >

!

associates no O (P) cigenstates with the object (apparatus) simpliciter, it correlates
O and P cigenstates with one another. This illustrates Everert’s moral that “the
state of one subsvstem does not have an independent existence, but s fixed only
by the state of the remaining subsyvstem™ (1983 [ 1957}, p. 316), so that “it is
meaningless 1o ask the absolute state of a subsystem - one can only ask the state
relative to a given state of the remainder of the svstem™ (1983 [19571, p. 317)
(Relatively speaking) when svstem S has determinate O value 0,. svstem R has
determinate Pvalue 2., and “this corrclation is what allows one to maintain the
interpretation that a measurcment has been performed™ (1983 [19571, p. 320).

W >\41(

Thus Everett purports to reconcile the uncollapsed composite state with

determinate measurement outcomes.

[0S)
—
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But the terms of reconciliation are notoriously unclear. An option proposed by
physicists but embraced by the science fiction community is that “the universe is
constantly splitting into a stupendous number of branches, all resulting from the
mcasurement-like interactions between its myriads of components” ( DeWitt,
1970, p. 161); within each branch, the relative state of the pointer registers a
determinate outcome. Criticisms of this version of Everett (Albert and Loewer,
1988) include that its profligate creation of new universes violates the conserva-
tion of mass/cnergy required by unitary evolution, and that it makes hash of
quantum probabilities by rendering every outcome certain to occur along some
branch. What’s more, to disambiguate this version of Everctt, its proponents must
furnish an account of when splitting occurs, and into what branches. Such an
account would serve also on the von Neumann collapse interpretation to distin-
guish systems subject to collapse from systems evolving unitarily, rendering that
interpretation consistent, unambiguous, and free of suspect metaphysics.

More recent Everett-style interpretations have responded to the disambigua-
tion problem in one of two broad ways. The more fanciful notes that it is, after
all, only our determinate experiences which must be reconciled with universal
unitary evolution, and so postulates “eigenstates of mentality” — brain states to
which correspond mental states whose contents are determinate beliefs — as a
preferred basis of relative states. Perhaps the most astonishing variation of this
approach is the Many Minds interpretation, a radical dualism which Invités us to

Suppose that every sentient physical system there is is associated not with a single
mind but rather with a continuons infiniry of minds; and suppose (this is part of
the proposal too) that the measure of the infinite subset of those minds which
happen to be in some particular mental state ar any particular time is cqual to the
square of the absolute value of the coefficient of the brain state associated with that

mental state, in the wave function of the world at that particular time. (Albert, 1992,
p. 130)

A more prosaic response { Grittiths, 1993; Hartle, 1990) to the disambiguation
problem otters consistent (or decoberent) histories as the prefered basis of relative
states. A time-indexed set of determinate observables generates a tamilv ot histo-
ries for a system; an individual history in the tamily assigns observables in the time-
indexed set determinate values. Given the initial state ot the system and the unitary
operator governing its evolution, a generalized Born Rule assigns probabilitics to
such histories. A family of histories is said to be consistent if the probabilitics so
assigned do not “interfere™ ~ roughly, they are Markov consistent. Thus histories
in a consistent family admit multi-time probability assignments that constitute a
tractable dynamics.

The rub is that while the initial state and the svstem Hamiltonian constrain
which families of histories are consistent, theyv don’t determine a unique familv of
consistent historics. So, while there mav be a consistent tamily ot histories declar-
ing the pointer observable determinate at measurement’s completion, there will
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also be other consistent familics which do not. What assgres_that a consistent fanr;ﬂ};
containing the pointer observable, and n.ot one @'(cludx‘ng 1t,_ corresp?ond‘s.‘to v;/l . ?\h
actually occurs in the laboratory? Branding #amlhcs of conswtf:I.]t hljforlcslw ic —
foil merger into a family satisfving the non-interference condmgn comp (cime:g\‘
tary,” Griffiths rejects this yen for reassurance on broac%ly Bohr.lan grounfs. A
question of the form, ‘Which of these rc:flll_v took place?’ asked in terms o‘ ;o -
paring two mutually incompatible histories, makes no sense quantum mechani
cally” (Griffiths 1993, p. 2204). . |
Like the perspectival metaphysics of the many worlds approach, this response
is philosophically suspect. Yet Everett-style apprf)achcs are the.pr‘e‘fcrrc.d qulantlt\lllnl
framework for many working physicists. Rovelli (1997) sees in relational Q ;
the seeds of a solution to the problem of time in quantum gravity; Hartlc (199. )
puts the consistent histories approach, and the tractable (if perépect1v§l) dynamics
it underwrites, to cosmological use. Meanwhile, integ)ri:tanons of QM mor;
philosophically respectable languish relatively unloved. faunders offers a st;r
diagnosis: “The disturbing feature of both the Bohm ar?d SRW approach;; (135 that
they seem to require that we redo high energy physics (Saul?ders, 1 ,11 ppt
125-6). Requiring a preferred time foliation, both approa‘chcs fundamen‘tia y.(rl
not phenomenologically) violate Lorentz and. general covariance, and thulil c;;lmc
physicists of a powerful criterion for winnowing d‘Ol\Vl? thc set of acceptable t 'eo:
rics. This should remind us at least that non-relativistic QM is not the only game
in town — a lesson those working on the foundations of quantum theories

have increasingly taken to heart.

Future Directions: Interpreting QFT

With apologics to those who have been working in the field for years for a very
recent review, sce Huggett (2000) - T offer QFI' = and quantum gravity, a theory
about whose eventual shape QFT on curved spactimes might hold a‘cluc —as one
tuture direction for the philosophy of quantum theories. Moving trom the least
to the most exotic space—time settings, this section sketches some issues that are
kicked up by the pursuit of quantum theories in such settings.

Minkowski space—time

The proper setling for questions about “locality,” Qli'l' is also a pr()\'()c;?ri\'c ();IC.
A striking example is the Rech=Schlicder theorem, which states that where {A( ) }‘
is the sct of observables the theory associates with an open b()un'dcd region ot
space—time O and 10) is the Minkowski vacuum state, {A(()) 10)) s dcmc.m rhj
theory’s state space — that is, any state the theory recognizes can be appr(n‘umaw{
arbitrarily closely by acting on the vacuum by polynomial combinations ot
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observables in {A(O)}. It it were appropriate to model events in the region O as
applications of elements of {A(O)) to the global vacuum state, this would mean
that machinations in local regions could produce arbitrary approximations of
arbitrary global states! The model is not apt, but its whiff of non-locality is. The
Reeh-Schleider theorem implies that 10) is an eigenstate of no observable asso-
ciated with a finite space-time region, which in turn implies that the vacuum
spreads correlations far and wide. Redhead (1995) illuminates the Reeh—Schleider
theorem by explicating analogics between how the vacuum stands to local
algebras of observables and how the spin-singlet state stands to algebras of spin
observables pertaining to the component systems. Clifton ct al. (1998) show that
states with 10)’s feature that given any pair of space-time regions, any obscrvable
from one is correlated with some observable from the other, are dense: Butter-
field (1994) discusses the capacity of such correlations to violate Bell-tvpe incqual-
itics (they can, even maximally). The nature and extent of such non-local features
of QFT, as well as the theory’s hospitability to causal talk, are topics of ongoing
rescarch.

To see how questions about the ontology of QFT, as well as its statc space,
arise, we need to go into a bit more detail. The canonical approach to quantiza-
tion casts a classical theory in Hamiltonian form, then promotes its canonical
observables g,,p, to symmetric operators 4,0, obeving canonical commutation rela-
tions arising trom the Poisson brackets of the classical theory. A classical field fheory
assigns a field configuration @(x) and a conjugate momentum density T[('X) EJ/BL/(’);Z}
(where L is the theory’s Lagrangian density) to every point x of space-time; its
quantization proceeds by finding operators ¢(x) and t(x) obeving the relevant
canonical commutation relations.'* I will refer in what follows to a mathematically
well-behaved exponential form of these commutation relations known as the Weyl
relations, and call sets of operators satistving them represenzations of the Wc;'l
relations. '

A simple classical ficld is the Klein-Gordon field @(x), which satistics
(g"V'V, —m )plx) =0

Its solutions can be Fourier-decomposed into uncoupled normal modes with
angular frequency @y, and so the classical field can be modeled as an infinite
collection of independent oscillators. The textbook route to quantization exploits
this analogy by introducing creation and annihilation operators 4] and 4. for field
modes obeving

(a,a, 1=0=[alal | [a,.a]]=8,.1 10.10)
Formal expressions tor operators ¢(x) and fiv) satisfving the canonical commuta-
tion relations can be constructed from these. The resulting quantization is the free
boson ficld; imposing anti-commutation relations in licu of (10.10) vields the tree
fermion ficld. '
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The state 10 > such that 4,/0 > =0 for all ks the lowest energy cigenstate of the
quantum Hamiltonian for the free boson field. The state (4})” 10 > is an eigenstate of
the Hamiltonian with the same energy a system of # particles cach with energy hw,
would have — provided the momenta and rest masses of these particles are given by

WU

standard relativistic expressions. Thus, the theory tempts a particle interpretation:

e the vacuum state 10 > is the no particle state
e the state 4110 > describes one particle of energy hw,. . . .
o N, = dld, is the number operator for particles of type &

~

e N

I

Zﬂtﬂ/ is the total number operator
J

and so on. Countering this temptation in the first instance are some distinctly
unparticulate teatures of the theory so interpreted (Teller, 1995, ¢h. 2). For one
thing, the theory hosts states with indeterminate particle numbers. For another,
even states which are eigenstates of the total number operator are constrained by
(10.10) to be symmetric — that is to be unchanged under permutations of par-
ticle labels. Whether this, and their cnsuing obedience to Bose-Einstein statistics,
deprives bosons of the genidentity one might expect from particles has been a
topic of lively debate, well-represented in Castellani (1998).

A prior challenge to the viability of particle interpretations has excited some-
what less interest among philosophers. Consider two quantum  theories, cach
taking the torm of a Hilbert space H, and a collection of operators {O,}). When
are these theories physically equivalent? A natural criterion of equivalence is that
the theories recognize the same set of states, that is, probability distributions over
cigenprojections of their observables. And a sufficient condition for this is that the
theories be unitariy equivalenr in the sense that there exists a unitary map U H
S H st U '()’,U: (), for all values ot 7, in which case the expectation values
assigned observables 1O,) by anv state ) in the first theory are duplicated by those
assighed [(Y} by the state Uhyy in the second. It the observable set is rich enough,
unitary equivalence is necessary as well. It physical cquivalence is unitary equiva-
lence, the quantization of a classical theory yields a unique quantum theory it and
only if all representations of the relevant Weyl relations are unitarily equivalent.
The Stone=Von Neumann theorem ensures that representations of Wevl relations
expressing the quantization of a classical theory with a finite dimensional state
space are unique upto unitary equivalence. But classical ficlds have infinitely many
degrees of treedom. The Stone=Von Neumann theorem does not apply. Indeed,
the Wevl relations encapsulating the quantization of classical Kicin-Gordon theory
adit continuoush nany ineguisalent representations.

Lot ta, alt be one quantization of some chssical field theory.and {a’alty be
another, unitarily incquivalent to the first. In general, the primed vacuum state
will nor be a state i the unprimed representation, nor will the primed  total
number operator be an operator there, and mutatis mutands. One might sav that
associated with the unitarilv inequivalent quantizations arc incommensurable
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particle notions. Even granting that it is appropriate to run a particle interpreta-
tion of a quantization {d,, 4}}, one cannot run a sensible particle interpretation of
QFT unless one can privilege as physical a unitary equivalence class of representa-
tions admitting particle interpretations — as Saunders (1988) discusses. not all do.

The default setting for a QFT is Minkowski space-time. And this furnishes a
de facto criterion of privilege: physical representations respect the symmetrics of
the space—time, in the sense that their vacua are invariant under its full isometry
group. Coupled with the requirement that physical representations admit only
states of non-negative energy, this singles out a unitary cquivalence class of rep-
resentations. But this strategy for privilege breaks down in generic curved
space—time settings, which do not supply the symmetries it requires.'*

The algebraic approach to quantum theories grounds an entirely different
response to unitarily inequivalent representations. The algebraic approach articu-
lates the physical content of a theory in terms of an abstract algebra A. Observ-
ables are elements of A, and states are normed, positive linear functionals @: A
— C. The expectation valuc of an observable A € A in state o is simply w(A).
Abstract algebras can be realized in concrete Hilbert spaces. A map 7 from ele-
ments of the algebra to the set of bounded linear operators on a Hilbert space H
furnishes a Hilbert space representation of the algebra. In particular, all Hilbert
spaces carrying a representation of the Weyl relations are also representations of
the abstract Weyl algebra. For the algebraist, “[t]he important thing here i that
the observables form some algebra, and not the representation Hilbert space
on which they act” (Segal, 1967, p. 128). Incquivalent representations need
not puzzle him, for conceiving the state space of a quantum theory as the space
of algebraic states, he has rendered unitary equivalence an inappropriate criterion
of physical equivalence. (Early proponents of the algebraic approach concocted
baldly operationalist motivations for alternative glosses on physical equivalence;
sce Summers (1998) for a review.) Nor nced he trouble with particles, for
particle notions are (at least prima facic) the parochial residues of concrete
representations.

Standard quantum states are probability measures over closed subspaces of
Hilbert space. The class ot algebraic states is broader than the class of such probabil-
ity measures. There are, for instance, algebraic states which can accomplish what no
Hilbert space state can: the assignment of precise and punctal values to continuous
observables (Clifton, 1999). Some would advocate restricting admissable algebraic
states. A restriction that looks down the road to quantum gravity is the Hadamard
condition, which requires admissable state to be states for which a prescription
assigning, the stress-energy tensor an expectation value succeeds. (Provocatively, in
closed space=times such states form a wmitary equivalence class (Wald, 1994, V4.6).
Both mathematical and physical features of algebraic states merit, and are receiving,
further attention, attention which should inform discussion about the state space,
and maybe even the ontology, appropriate to QFT

———————— Interpreting Quantum Theorics

Curved space—time

Different notions of state demand different dynamical pictures. Hilbert space
dynamics are impicmented by unitary Hilbert space operators. Having jeiiisoned
I—iilbert spaces as essential to QFT, the algebraist has jettisoned as well this account
of the theory’s dynamics. In its stead, he implements quantum field dynamics
by means of automorphisms of the abstract algebra A of observables (that is,
st‘ructurc—prcscrving maps from A to itself). A question of equipollence arises: is
it the case that every dynamical evolution implementable by an automorphism on
the abstract algebra is also implementable as a unitary cevolution in some fixed
Hilbert space? Algebraic evolution between Cauchy slices rclated by isometries can
be implemented unitarily, but more general algebraic evolution can not be; see
Arageorgis et al. (2001) for details. One moral we may draw from these results is
that in exactly those space-times whose symmetries furnish principles by appeal to
which a unitary equivalence class of representations might be privileged, dynami-
cal automorphisms are unitarily implementable. In more general settings, the alge-
braic tormulation is better suited to capturing the theory’s dynamics.

Unitarity breaks down even more dramatically in the exotic space-time setting
of an evaporating black hole. Hawking has argued that a pure to mixed state tran-
sition — the sort of transition von Neumann’s collapse postulate asserts to happen
on measurement — occurs in the course of black hole evaporation. Not only uni-
tarity but also symmetries ot time and pre/retrodiction are lost if Hawking is right.
Bel(;t et al. (1999) review reactions to the Hawking Information Loss Paradox;
not the least of the many questions the Hawking paradox raises is how to pursue
QFT in non-globally hyperbolic spacc-times.

Quantum gravity

The QFTs discussed so far arc free field theories, whereas the QF1's brought into
collision with data from particle accelerators are interacting ficld theorics, whose
empirical quantitites are calculated by perturbative expansions of the free field.
The divergence of these expansions calls for the art and craft of renormalization,
chronicled in Teller (1995, ¢hs 6 and 7). Cushing (1988) argues that this (and
every other!) feature of QFT raises not “foundational™ but “methodological”
issucs. Insofar as methodological predilections are attected by foundational com-
mitments and affect the shape of future theories, the two domains might not be
so cleanly separable as Cushing suggests; ongoing work on Quantum Gravity is

one place to look for their entanglement.
Notes
I See Hughes (1989, pr Iy tor an introduction. As space limitations prohibit cven a

rudimentary review, I attempt in what follows to minimize technical apparatus.

2 Such cxplanation has its limits. Consider 6, and 6,, perpendicular components of
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intrinsic angular momentum or spin. They obey uncertainty relations, and their
measurement requires incompatible experimental apparatus. Yet spin is explicitly and
infamously a quantum phenomenon, and 6, and 6, are individually conserved. They
are not classical concepts precluding one another’s application, nor occupants differ-
ent sides ot the kinematic/dynamic divide.

For a derivation, which is simply a matter of bringing a home truth about sums of 1s and
—ls to bear upon probabilities the HVT assigns, scc Redhead (1987, pp. 97-8).
This form of Bell Inequality applics to both deterministic and stochastic HVTs. A par-
ticularly simple derivation of a Bell Inequality, duc to Wigner, applies to determinis-
tic HVTs requiring perfect (anti-) correlation; see Hughes (1989, pp. 170-2). One
can derive Bell-type inequalitics without the intermediary of hidden variables, pro-
vided onc assumes that joint probability distributions for non-commuting observables
are well-defined; sec Redhead (1987, pp. 81-3) for this Stapp-Eberhard form of the
inequalities.

Maudlin (1994) discusses STR’s real and imagined implications, and the constraints
they place on the interpretation of QM.

Conventionally denoted by the same letter as, bur not to be contused with, the space
of hidden variable states.

Bub (1997) gives a thorough review, and presents Bub and Clifton’s trend-bucking
“Go” theorem, which characterizes the largest sct of observables that can Wi?(oul con-
tradiction be attributed determinate values obedient to the Spectrum and FUNC rules.
So setting € also has the repercussions that our discourse about localization features
odditics reminiscent of discourse involving vague predicates. For instance, cach of a
pair of predicates (“is localized in A” and “is localized in A™) can be true of some
system & without their conjunction {*is localized in A N A™) being true of S, Whether
we can live with this is a topic of ongoing debate; see, for instance, Clifton and Monton
(1999).

The analogies plied in Bohm’s original presenration invoke a quantum potential with
disquicting features; Dirr eral. (1996) attempt to climinate this invocation by showing
how the velocity tunction is suggested (if not implied) by symmetry considerations
alone.

Vink (1993) extends Bohm’s approach to assign every observable a determinate value

talbeit a contextual one), and offer tor those possessed values o generalization of

Bohmian dynamics which is stochastic when the observables are discrete.

Valentini (1991) would like to unifiv the role of w(x,) in the Bohm theory by proving
a “quantum H-theorem™ according to which arbitrary initial distributions evolve under
the influence of the Bohmian equations of motion to the distribution y(x)1”. This
would render the distribution postulate otiose. Dickson (19980, pp. 123-5) ofters
criticisms of Valentini’s approach.

Zurek (1982) ofters toy models of decoherence processes, as well as the claim that
decoherence solves the measurement problem. An apparatus entangled not only with
the object system but also with ity environment is still entangled, and not 4 system o
which cigenstate /eigenvalue semantics attribute determinate values. ‘To respond to the
measurement problem, decoherence proposals need to be accompanicd by non
standard semantics. Modal semantics work admirably.

But see Huggett and Weingard 11994 tor Bohnuan approaches 1o QFls, and Pearle
11992} for Lorentz-invariant quantum ficld version of continuous spontancous

localization.
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13 Mathematical nicety demands that the quantum field be cast not (as the forcgoil']g
suggests) as a map from space-time points to operators, but as operator-valued d15:~
tributions over space—time regions. Wald (1994) is an excellent introduction to this
and other issues discussed in this section.

14 Notoriously, it even breaks down in a subset of Minkowski space—time. lositive energy
states correspond to solutions to the Klein—-Gordon equation that oscillate with pur‘cl_v
positive frequency. States in the standard Minkowski representation are positive f'rc«
quency with respect to time as measured by families of inertial observers. But. rcstrlct—‘
ing our attention to the right Rindler wedge of two-dimensional Minkowski
space-time setting ¢ = 1, this is the region where x is positive and Ial < ¢ — we can
quantize the Klein-Gordon field by admitting solutions that oscillate V\'itl.] positive tre-
quency with respect to time as mcasured by observers whose accelerations are con-
stant, for Lorentz boost isometries generate a global time function for the Rindler
wedge. The Rindler representation we thereby obtain has a natural particle interpre-
tation — but the Rindler representation is unitarily inequivalent to the Minkowski rep-
resentation! This is sometimes, and loosely, expressed as the Unruh effect: observers
accelerating through the Minkowski vacuum “see” a thermal flux of particles (Wald,
1994, ch. 5).
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Chapter 11

Evolution

Roberta L. Millstein

Introduction

It has become almost standard practice for philosophers of biology to bracket their
writings with a pair of manifestoes. The first manifesto proclaims that the p.hilosA
ophy of science is not just about physics anymore. This is usually accompamcd by\
an argument suggesting that a myopic focus on physics has led the phll_osophy of
science to misrepresent the true nature of science. As we face a new millennium,
the time has come to dispense with such proclamations. The philosophy of biology
has come into its own and no longer needs to justify its existence. One look at
the most recent Philosophy of Science Association conference should be enough
to convince anvone of that fact: approximately one fourth of the presentations are
in the philoso};hy of biology. The first manifesto has become manifest.

The second manifesto, on the other hand, often takes the form ot a “call to
arms™ for philosophers to venture into fields of biology outside of evolutionary
theorv, such as ecology and molecular biology. That this call to arms has been at
least partially successtul is reflected in the inclusion of an essay in this voluqlc on
Developmental and Molecutar Biology, distinct from the present essay on Evolu-
tion. Thus, I need not apologize, as many have done betore me, for focusing Cxclu--v
sively on cvolutionary theory. Yer, since many of the debates in the philosophy of
evolution overlap and intertwine with those in the philosophy of dcvclopmciltal
and molecular biology, it is not entircly possible to separate the issues. In tact,‘
philosophers scldom use the phrase “philosophy of evolution.” PhAil(?soPhy of
biology has often meant philosophy of evolution. However, perhaps it is time to
be more explicit.

The philosophy of evolution considers issues that are both cm‘n‘cp.mal ;.md
empirical, and, conscquently, it is practiced by philosophers and sucn‘tlsts ‘Jll-kC.
The tollowing discussion will reflect that diversity. Some philosophy of evolution
has looked to evolutionary theory to answer broader questions in the philosophy
of science. For example, a recent volume explores epistemological issues through
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