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through wireless communications, and thus the amount of unnecessary 
acceleration or deceleration for each vehicle is reduced (6).

Early attempts to implement the idea of automatic vehicle control 
by the Partners for Advanced Transportation Technology (PATH) 
program at the University of California, Berkeley, used the concept 
of vehicle-follower control (trying to maintain a certain spacing with 
other vehicles) rather than point-follower control (trying to follow 
markers along the road) to operate vehicles in close-formation platoons 
(7). A hierarchical control scheme was introduced to accommodate the 
nonlinear dynamics of vehicle mechanical systems (engine, transmis-
sion, and drive train). The study also conducted a thorough review of 
communications methods and channel capacity requirements.

A safe control system requires sophisticated methods to handle 
the latency or delays brought by both the vehicle’s mechanical sys-
tem and the communications systems. Besides mechanical latency, 
a challenge in developing a safe intelligent vehicle control system 
is to adequately handle information delay. The relatively narrow radio 
spectrum and competing nature of wireless communications limit the 
data rates on the wireless channel (8). Moreover, the channel may 
be noisy and unreliable because of the reflections and attenuation of 
the wireless signal being transmitted. These effects inevitably intro-
duce some random delay and packet losses (9). Experiments have 
for instance shown that latency is much higher on urban highways 
than in an open field (10) as a result of the signal distortions caused 
by buildings and highways.

A high number of vehicles using DSRC devices to exchange infor-
mation may also eventually cause channel congestion and thus higher 
packet loss ratios. According to the study by Huang et al., latency 
also depends on the protocols used to implement the wireless data 
transmissions (11). The study notably pointed out that a trade-off 
exists between message transmission rate and packet-loss ratio: 
if one tries to increase the transmission rate, channel congestion will 
more likely happen, thus increasing the packet-loss ratio, and vice 
versa. Therefore, a sophisticated wireless channel control is needed 
to maintain a desirable latency level.

Communications delay may have two negative impacts on the 
automatic vehicle control system: increased risk of collision and 
violation of string stability. It has been shown by Liu and Dion that 
information delay of more than 0.5 s would increase the probability 
of collision significantly (12).

Another issue in controlling a platoon of vehicles is string stability. 
String stability of a platoon refers to a property that guarantees that 
the spacing error does not amplify as it propagates along a string of 
vehicles (13). Control methods were proposed to handle constant 
information delays by using leading and preceding vehicle infor-
mation (14). However, as is shown by Liu et al., such systems do not  
necessarily create string-stable platoons when they only consider 
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Because of the ever-increasing transportation demand throughout 
the world, traffic congestion and safety have become more and more 
important. One way to reduce the impact of congestion and improve 
safety is to use intelligent transportation systems (1, 2). The idea is to 
increase the capacity of highways by automatically coordinating and 
controlling vehicles to form platoons in which vehicles are kept at a 
small distance from each other (3). To facilitate the exchange of con-
trol information, vehicles are equipped with wireless communications 
devices, also known as dedicated short-range communication (DSRC) 
devices. Protocols such as IEEE 802.11p have been developed to 
enable vehicle-to-vehicle or vehicle-to-infrastructure communication.

The benefit of using intelligent transportation systems includes 
increased highway capacity, improved safety, and increased fuel 
efficiency. It has been shown that by using accurate sensors and 
appropriate vehicle control algorithms, highway capacity can be 
significantly improved (4). Meanwhile, highway safety can also be 
improved by broadcasting emergency messages to the entire pla-
toon so that vehicles can brake in advance to avoid collisions (5). 
Intelligent transportation systems also have the potential to reduce 
fuel consumption because vehicle driving is better coordinated 
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information delay with the leading or preceding vehicle (9). Another 
method to control a platoon of vehicles is parallel estimation (15), in 
which each vehicle first estimates the state of the entire platoon and 
then updates its estimates by communicating with other vehicles. 
In this case, a special communications network topology is needed 
to achieve stability.

Goals and Assumptions

Goals

A higher-level longitudinal control algorithm is to be developed 
(details discussed in the next section) for a vehicle platoon that can 
work under an unreliable wireless communications environment 
and achieve the following goals:

1.	 Improve highway safety,
2.	 Increase highway capacity, and
3.	 Improve energy efficiency.

Hierarchy of Control

Two types of control are crucial to intelligent vehicles: longitudinal 
control (throttle and brake) and lateral control (steering). In this 
paper, it is assumed that lateral control can be readily established by 
a separate controller, and the focus is primarily on the longitudinal 
control aspect.

When longitudinal control decisions are made, use of a hierarchi-
cal control system implementing an upper and lower control level 
similar to the one described by Rajamani et al. is also assumed (16). 
At each time step, it is assumed that the upper-level controller deter-
mines the desired acceleration for each vehicle based on the following 
two objectives:

1.	 To maintain appropriate spacing between vehicles and
2.	 To ensure string stability of the platoon.

The acceleration decision is made on the basis of the perceived 
state of other vehicles. Because of communications latency, outdated 
information regarding the position and velocity of surrounding vehi-
cles may be used in the decision. Once determined, the acceleration 
or deceleration decision is passed to the lower-level controller to 
be executed.

The lower-level controller is responsible for applying the throttle 
and brake actuator to ensure that the desired acceleration is achieved. 
The design of the lower-level controller is a complex problem because 
it is necessary to understand not only the mechanical system of engine 
transmission and drive train but also the effect on tire and road 
condition. It is also necessary to consider the mechanical latency 
between the upper- and lower-level controllers. Analysis of lower-
level controllers (16) has been extensively considered in the literature. 
Since the project described in this paper mainly focuses on the upper-
level control, it will be assumed that a lower-level controller is readily 
built and usable with constant mechanical latency.

Assumptions

To solve the vehicle platoon control problem, the following assump-
tions are made.

Full Automation

In terms of level of automation, there are three major types of systems:

1.	 Emergency warning systems that alert the driver when 
upstream incidents occur,

2.	 Semiautomatic cruise control systems that can take over parts 
or all of vehicle control but do not coordinate with other vehicles, and

3.	 Fully automatic control systems that can completely control 
the vehicle when on the highway and that will coordinate with other 
vehicles to maintain a safe distance and provide steering control to 
stay within a lane.

It was argued by Varaiya that although a partially automated system 
may improve safety, only full automation can achieve significant 
capacity increases (3). Therefore, it is assumed that all vehicles are 
fully controlled by computers.

Identical Vehicles

To simplify the model description, it is assumed that all vehicles 
within a platoon are identical. However, as is shown in the following 
section, this assumption can be relaxed by simply replacing a con-
straint (Equation 7) in the optimization problem to allow the modeling 
of different types of vehicles in the platoon.

Decentralized Control

Each vehicle has its own controller. In each time step, each vehicle 
makes its own decision on acceleration and steering control. There 
is no central controller for each vehicle. However, although it is 
making individual decisions, each vehicle needs to coordinate its 
actions with neighboring vehicles.

The benefit of decentralized control is twofold: first it requires 
less communication capacity than centralized control, thus reduc-
ing the likelihood of channel congestion. Second, the decentralized 
system is more robust because the overall safety of a platoon is not 
compromised if one or more controllers fail.

Vehicle Spacing Policy

Each vehicle is required to keep a safe distance from its preceding 
vehicle. There are many spacing policies to choose from (17). Among 
them the constant spacing and constant time headway spacing are 
frequently used for platoon control. Constant spacing refers to the 
policy of keeping a constant distance between consecutive vehicles 
no matter how fast they are traveling. Although this policy can 
achieve very great highway capacity, it may also lead to higher risks 
of collision when emergency braking occurs.

The spacing policy used in this project is the constant time headway 
policy, which tries to keep the ratio of vehicle spacing and velocity a 
constant. This policy has been shown to provide a high level of 
safety (12).

Leading Vehicle Control

The platoon control scheme does not include leading vehicle control. 
It was assumed that the motion of the leading vehicle is exogenous 
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to the model, controlled either by a human driver or by an automatic 
guidance system.

Wireless Communications

Each vehicle is equipped with an IEEE 802.11p (DSRC) transceiver 
and sends out a message containing its position, speed, and accelera-
tion (often known as the “Here I am” message). The following further 
assumptions were made for the communication system:

1.	 For each vehicle, messages are sent every Ks time steps from 
time 0.

2.	 After each message is sent, it takes τ0 seconds for encoding 
and decoding the message.

3.	 When one message is sent, it is received by each vehicle 
independently with probability 1 − ρ, where ρ is the message loss 
rate. This rate ρ was assumed to be a constant for all sender–receiver 
pairs and for all time.

Description of Control Method

Problem Analysis

Centralized Control with No Latency

If there is a platoon of N vehicles and a centralized controller that 
has perfect real-time information about every vehicle, the following 
is the basic state-space model for (global) control:

�X AX BU= +

where

	 X	=	� [x1, . . . , xN, x.1, . . . , x
.
N]T, where T = transposition of the 

matrix;
	 U	=	 [x

..
1, . . . , x

..
N]T;

	 xi	=	position of ith vehicle; and
	A and B	=	matrix of appropriate size.

This model will work if it is assumed that every vehicle can send its 
information (position, velocity, etc.) to the central controller with-
out delay. However, in a real-world scenario, there is a delay in 
sending and receiving messages through a wireless channel. Usually 
the delay is a random variable. Liu et al. showed that if the delay is not 
a constant, the system is not guaranteed to be stable (9). Moreover, 
as is discussed in the previous section, the centralized control is vul-
nerable to disruption of wireless communications or failure of the 
central controller. A decentralized control model is now established 
to handle these issues.

Decentralized Controller with Latency

It is assumed that every vehicle in the platoon has its own controller. To 
make a control decision, each vehicle’s controller needs to know how 
other vehicles are moving. So it is assumed every vehicle broadcasts 
its information to all other vehicles (thus every vehicle also receives 
information from all other vehicles).

Because of the communications latency, each vehicle may not 
have current information about other vehicles but most likely has 
the information sent by other vehicles a fraction of a second before. 

In order to properly handle this outdated information, a prediction 
model is used together with an optimization algorithm, also known 
as the model-predictive control (MPC) method, discussed in the 
next subsection. Figure 1 shows an overview of the communications 
and control scheme of a three-vehicle platoon.

MPC Method

The MPC method is used to control vehicles in the platoon. MPC has 
been applied in the processing industry and many other control appli-
cations (18, 19) and was implemented to control the lane allocation 
of intelligent vehicles (20).

MPC is based on a prediction model and an online optimization to 
obtain optimal control actions for the system. First the time horizon is 
discretized and the sampling period is set to T. At each time step k,  
the controller measures the current state of the system and uses a 
predictive model to predict the future states of the system, that is, from 
time step k + 1 to k + Kp, where Kp is the prediction horizon. Then 
the predicted future states are used as parameters of an optimization 
problem that minimizes some objective function J(k) over the control 
variables u(k), . . . , u(k + Kp). The general process of the MPC method 
is shown in Figure 2 [also in the work by Baskar et al. (20)].

In the following subsections, the components of the MPC method 
are discussed in detail.

Discretization of Time

Usually platoon-controlling models are continuous in time (16). How-
ever, the discretized-time model was chosen over the continuous-time 
model for the following reasons: (a) the discretized model is easier to 
fit in the prediction and optimization algorithm and (b) it coincides 
with the discretized nature of computerized automated control.

The time horizon is discretized into time intervals of length T s 
(i.e., the sampling period is T) and the control action u(k) is applied 
when time t = kT, k = 0, 1, . . . , and holds constant within time 
period [k, k + 1) (lower part of Figure 2). Similarly, it is assumed 
that messages are sent and received only at time t = kT, k = 0, 1, . . . . 
This assumption holds true in practical applications: normally com-
munications devices have buffers that can hold messages sent or 
received during time ((k − 1)T, kT) and deliver them to the sender 
or receiver at time kT.

Sampling period T can be adjusted according to the needs of 
different applications. For instance, in the simulation experiments 
in the following sections, T = 0.05 was chosen after the trade-off 
between accuracy and simulation speed was considered.
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Controller
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Controller
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FIGURE 1    Communications and control scheme.
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Prediction Model to Handle Latency

A set of variables is defined that describes the car movement in 
discrete time: let xi(k), vi(k), and ai(k) be the position, speed, and 
acceleration of the ith vehicle at time kT, respectively. As discussed 
earlier, each car i at time kT sends xi(k), vi(k), and ai(k) to all the 
other cars in the platoon. But because of the stochastic nature of 
communications latency, this information arrives at destination 
car j at time kT with delay τi,j(k) time steps, where j = 1, . . . , N. 
Therefore, at any given time kT, car j has information with different 

“ages” from different cars. Figure 3 demonstrates this asynchronous 
information transmission: white boxes represent information that is 
received by Car 2, whereas grey boxes represent information not 
known to Car 2. In this case, τ1,2(k) = 3, τ3,2(k) = 2, and τ4,2(k) = 3.

To handle this asynchronous information transmission, it is assumed 
that every vehicle has a buffer that can hold information of up to 
τmax + 3 past time steps, where τmax is the maximum delay counted 
in time steps. With this buffer, this historic information about other 
cars and a statistical model can be used to fill in the gaps created by 
latency. An effective statistical prediction model is one that predicts 
how the other cars are moving (at the current time step) on the basis 
of the historical information stored in the buffer.

The statistical model used here to predict the movement of cars 
is the autoregressive and moving average with exogenous model, 
ARMAX(3,2,1) (21). The ARMAX model is a regression model that 
incorporates past observations of data as well as estimation errors to 
predict future data series. For example, if a vehicle j at time step k  
wants to know what vehicle i’s speed is at the current time step, but it 
only has the speed of car i from period k − τmax − 3 to period k − τi,j(k), 
the following equation can be used to estimate the speed of vehicle i 
during period [k − τi,j(k) + 1, k]:

ˆ ˆ ˆ ˆ
, , , ,v v v vi j i j i j i jκ φ κ φ κ φ κ( ) = −( ) + −( ) +1 2 31 2 −−( ) + ( )

− −( ) − −( ) + −

3

1 2 11 2 1

ε κ

θ ε κ θ ε κ η κ

i

i i i jâ , (( )
= − ( ) +κ τk k ki j, , . . . , ( )1 1

where

	 v̂i,j(κ)	=	� estimated speed of car i using car j’s information at 
time κ,

	 âi,j	=	estimated acceleration of car i at time κ,
	 εi(κ)	=	estimation error of car i at time κ, and
	ϕ, ε, η	=	� coefficients estimated from data in buffer: vi(k − τmax − 3), 

. . . , vi(k − τi,j(k)), using least-squares estimate.

With the estimated speed, the estimated positions of all the other 
cars can be obtained. These estimates are fed into the optimization 
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FIGURE 3    Decisions made by Car 2 at time step k (QP = quadratic programming).
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problem P( j, k) described next, which is then solved for optimal 
acceleration of car j at time step k.

Optimization Problem

Under the MPC framework, after the estimated speed and position 
of other cars have been determined, the controller of car j will con-
struct an optimization problem to compute the optimal actions for 
the next Kp time periods. The optimization problem consists of an 
objective function J(k) expressing the goal and a set of constraints 
that guarantee that the system is working in a specified manner and 
within certain conditions.

To achieve lower fuel consumption, one possible objective 
function is

J k a ki
k

K

i

N p

( ) = ( )( )
==

∑∑ 2

11

By minimizing this objective function, one minimizes the amount 
of acceleration (or deceleration) in the following Kp time steps. 
However, in order to maintain the cars with equal spacing in a 
platoon, the following objective function is proposed:

J k a k W x k x k Hvi
k

K

i

N

i i

p
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where H is the desired time headway (time used to travel the distance 
between two consecutive cars at current speed), and W is a constant 
that determines the penalty of deviating from the desired headway. 
The second term in the objective function penalizes actions that will 
bring two consecutive vehicles too close to or too far away from 
each other, and thus attempts to maintain a stable platoon system.

With the objective function (Equation 2), the optimization problem 
P(j, κ) for car j, j = 1, . . . , N at time step κ is defined as follows:

P j, : ( )κ( ) 3

minimize J k a k W

x k
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x k v k T x k i N ki i i+( ) = ( ) + ( ) = = +1 2for , . . . , ; , . . . ,κ κ KK p

( )5

v k a k T v k i N ki i i+( ) = ( ) + ( ) = = +1 2for , . . . , ; , . . . ,κ κ KK p

( )6

a a k a i N k Ki pmin max , . . . , ; , . . . , (≤ +( ) ≤ = = +1 2for κ κ 77)

Lv k x k Uv k i N ki i i( ) ≤ +( ) ≤ ( ) = =1 2for , . . . , ; , . . . ,κ κκ + K p
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where L and U are the lower and upper bound of time headway, 
respectively.

x k x k k K p1 1 9( ) = ( ) = +ˆ , . . . , ( )for κ κ

v k v k k K p1 1 10( ) = ( ) = +ˆ , . . . , ( )for κ κ

x x i Ni iκ κ( ) = ( ) =ˆ , . . . , ( )for 2 11

v v i Ni iκ κ( ) = ( ) =ˆ , . . . , ( )for 2 12

where amin and amax are the minimum and maximum accelerations, 
respectively. Constraint 7 guarantees that the maximum acceleration 
and deceleration will not exceed the car’s mechanical limits. For the 
convenience of demonstration, all cars are set to have the same maxi-
mum acceleration, but one can easily change the value of these two 
parameters to apply the model platoons with nonidentical vehicles.

Constraints 5 and 6 describe the movement of every vehicle in time 
and space appropriately. Constraints 9 to 12 are the initial conditions 
of the model, the right-hand side of which comes from the prediction 
by the ARMAX model in the previous section.

Since this problem has linear constraints and a quadratic objective 
function, it is a quadratic programming (QP) problem, and thus can 
be efficiently solved with a QP solver.

Overview of Platoon Control with MPC

The overview of the control algorithm on Car 2 is shown in Figure 3. 
In the overview, it is assumed that the platoon has only four cars. 
Each box in the grid represents the state of one vehicle at a certain time 
step. The vehicle state contains the position, velocity, and acceleration. 
The white boxes represent information already known to Car 2, and 
the grey boxes represent information not known to Car 2 because of 
communications latency. As shown, Car 2 knows its every movement 
up to time step k, but only has information on Car 1 and Car 4 up to 
time k − 3. The black boxes represent predicted vehicle movement, 
which is generated by the ARMAX model. This predicted informa-
tion will be used as the parameters of the QP model P(j, κ) described 
earlier. Then the QP solver will give the optimal acceleration at time 
k + 1 for Car 2.

Analysis of Robustness and 
Computational Complexity

Because the ARMAX model is used to predict future states of 
vehicles, it will inevitably introduce prediction errors into the MPC 
model. To test whether the MPC method is reliable enough, one 
needs to test how the prediction error affects the subsequent solution 
obtained by the optimization problem solved in each vehicle. Sensi-
tivity analysis on the optimization problem P( j, κ) is used to inves-
tigate how the optimal solution changes as the prediction of speed 
and position changes. The goal of this analysis is twofold: (a) to test 
under what conditions the solutions can be used to maintain a stable 
system, and (b) how large an estimation error can be tolerated by the 
optimization problem without jeopardizing the safety of the platoon.

General Form of QP

To achieve these goals, a general QP problem is used to start. First, 
the variable y is denoted as follows:

y
T= ( )a v x, ,
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where

	a	=	 (a1(k), . . . , a1(k + Kp), . . . , aN(k), . . . , aN(k + Kp))T

	v	=	 (v1(k), . . . , v1(k + Kp), . . . , vN(k), . . . , vN(k + Kp))T

	x	=	 (x1(k), . . . , x1(k + Kp), . . . , xN(k), . . . , xN(k + Kp))T

The QP problem P(j, κ) defined in Equations 4 to 12, is restated as 
follows:

minimize y QyT ( )13

subject to

Ay b= ( )14

By c≤ ( )15

where Q is a positive semidefinite matrix and A and b are the 
coefficient matrix and right-hand side of Equality Constraints 6 
and 5 and 9 through 12, respectively. B and c are the coefficient matrix 
of the left-hand side and right-hand side of Inequality Constraints 7 
and 8, respectively.

Sensitivity Function

Then a small perturbation ε is applied to the right-hand side of the 
equalities constraints, and the sensitivity function y(ε) is defined as 
follows:

y y Qyy
Tε( ) = argmin ( )16

subject to

Ay b= + ε ( )17

By c≤ ( )18

Here b is the right-hand side of Constraints 9 through 12:

b
x x K v v Kp p

=
( ) +( ) ( ) +( )ˆ , . . . , ˆ , ˆ , . . . , ˆ

1 1 1 1κ κ κ κ ,,

ˆ , . . . , ˆ , ˆ , . . . , ˆx x v vN N2 2κ κ κ κ( ) ( ) ( ) ( )










TT

The estimation error ε is defined as the difference between the esti-
mated and the actual value of b. The goal is to derive the parametric 
function Δy(ε):

∆ ( ) = ( ) − ( )y y yε ε 0 19( )

Boundary-State Analysis

To facilitate this analysis, the following definition is given: The sys-
tem 6 through 12 at any given time k is defined as in a boundary state 
if there exist i ∈ {2, . . . , N} such that at least one of the following 
equalities is true:

a a kimin = ( )

a k ai ( ) = max

Lv k x ki i( ) = ( )

x k Uv ki i( ) = ( )

Then the following assumption is made: When the system is not in 
a boundary state, there exists a small enough perturbation ε such 
that the system at the next time step is still not in a boundary state.

By making this assumption, it can be assumed that Inequalities 7 
and 8 are strict inequalities under small perturbation ε. Now the 
Karush–Kuhn–Tucker conditions are derived as the system of linear 
equations:

Q y y AT+ ∆( ) + + ∆( ) =µ µ 0

A y y b+ ∆( ) = + ε

where µ is the Lagrangian multiplier. Thus the relation of ε to Δy 
can be expressed as

Q A
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Because Q is a singular matrix, it is partitioned into four blocks:
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where QB is the columns and rows of Q that are not all zeros and ΔyB 
are corresponding rows in Δy. It can be shown that QB is a nonsingular 
matrix. Thus the following system of equations results:

Q y AB B B
T∆ + ∆ =µ 0

AN
T ∆ =µ 0

A y A yB B N N∆ + ∆ − =ε 0

Solving this system by substitution,

∆ = ( )( ) ( )− − −
− −

y A A Q A A A Q AN N
T

B B B
T

N B B B
T1 1 1

1 1
20ε ( ))

Thus Equation 20 reveals the linear relation between the error of 
estimation and deviation from optimal control actions. It indicates 
how control decision ai(k), i = 2, . . . , N is affected by the error of 
the ARMAX model. For any given time, if there are an upper bound 
and lower bound on estimation error ε, how large the control error 
can be in each time step can be numerically computed.

Computational Complexity of MPC

Since each vehicle solves the optimization problem in each time 
step, it is critical that the optimization problem be solved quickly, 
otherwise the decisions cannot be made online.
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Using the sensitivity analysis in the previous subsection, the follow-
ing method can be developed to greatly reduce the computational 
time. In each time step, the MPC controller of each vehicle

1.	 Checks whether the system is in a boundary state;
2.	 If it is in boundary state, calls the QP solver to solve the 

optimization problem; and
3.	 If it is not in a boundary state, lets ε be the difference between 

the new estimation value and the old estimation value and plugs into 
Equation 20 to calculate the change in acceleration.

Because Equation 20 is linear, various linear solvers can be used to 
efficiently compute the acceleration decisions, thus avoiding use of 
the potentially slower QP solver in each time step.

Simulation Test

In order to test whether this MPC method will work effectively 
under harsh communications conditions, a simulation platform was 
set up to test the performance of this algorithm under two scenarios. 
The platform and some implementation details are described first, and 
then the results of the two test scenarios are presented.

Simulation Setup

Data Structure

The simulation test bed and the control algorithm are implemented 
in MATLAB. Three vectors of size N are used to respectively repre
sent vehicle positions, velocities, and accelerations. These vectors  
combined can be considered as the global system state. Also, each 
vehicle is programmed as a separate object in the simulation. Each 
individual object has different perceptions of the system state 
because of different communications latency. As is described in the 
previous sections, each vehicle has a message buffer of size τmax + 3, 
storing the history of movement of other vehicles.

Generating Latency

Since it is assumed that each message sent has an independent loss 
ratio ρ, communications latency from vehicle i to j at time kT is 
generated in the following manner:

τ τi j s s
s

k nK k K
k

K, ( )( ) = + + − 









0 21

where n is the number of times a message is sent (or re-sent) and is 
a geometric distributed random variable with success rate (1 − ρ). 
Because every message is sent only at a time step that is a multiple of 
Ks, the term k − Ks⎣k/Ks⎦ indicates the periods since the last message 
was sent (or re-sent).

Simulation Initialization

At the beginning of the simulation, the program is initialized by setting 
the system at the stable state, in which every vehicle is driving at 
30 m/s (67 mph) and at a distance of 30 m (98 ft) apart. During the 

first τmax periods, no acceleration is applied to any vehicle, and thus 
vehicles run at a constant speed. The reason for this initialization is 
to fill up the message buffer before enabling the ARMAX prediction 
model to work. After τmax time steps, a series of acceleration and 
deceleration impulses is applied to the leading vehicle, and a record 
is made of how the other vehicles react.

In the following two sections, the MPC method is tested under 
two scenarios: first in a good and then in a harsh communications 
environment. In both cases, the same set of acceleration commands is 
used for the leading car. Table 1 gives a brief description of parameter 
settings and their meanings in the model.

Scenario 1. Low-Latency  
Wireless Communications

The first test scenario is to simulate vehicles driving at a normal 
state, with only a few disruptions in the wireless channel. Therefore 
Ks = 2, meaning that messages are sent every 0.1 s. The message 
loss rate is set at ρ = 0.1, which means that 10% of the messages are 
lost during one transmission. Figure 4a shows the acceleration of 
vehicles in the platoon. The acceleration of Car 1 is not controlled 
by the MPC controller but by a prespecified program input.

Figure 4c shows the average latency vehicles experienced along 
time. Although most of the time latency is at 0.1 s, it will occasion-
ally spike to 0.3 s. Despite the latency, the effect of sudden braking 
and accelerating of Car 1 is damped as its effect propagates toward 
the end of the platoon. Figure 4, b and d, also demonstrate the speed 
and spacing between vehicles.

Scenario 2. High-Latency  
Wireless Communications

The second scenario is to test how the MPC method withstands 
noisy wireless communications. Ks = 6 is set, meaning that messages 

TABLE 1    Parameter Values in Simulation

Parameter and Value Definition

T = 0.05 s Sampling interval (length of time step)

N = 4 Number of vehicles in one platoon

Kp = 10 Number of time steps considered when solving  
    QP problem

tmax = 50 Maximum delay in wireless communication

W = 200 Penalty coefficient

H = 1 s Desired time headway

L = 0.5 s Minimum time headway

U = 1.5 s Maximum time headway

D = 1 s Desired time headway

amin = −12m/s2 Minimum acceleration

amax = 8m/s2 Maximum acceleration

τ0 = 1 Message encoding and decoding delay counted  
    in time steps

Ks = 2 or 6 Message sent interval

ρ = 10% or 25% Probability that a message is lost during  
    transmission
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are sent every 0.3 s, and the message loss rate is set to ρ = 0.25, 
meaning that the probability that a message will be lost during trans-
mission is 0.25. Figure 5a shows the acceleration of vehicles in the 
platoon. Acceleration of Car 1 is not controlled by the MPC controller 
but by a program input.

Figure 5c shows the average latency that vehicles experienced 
along time. In this case, communications latency is significantly 
higher than in the first case: most of the latency numbers are between 
0.1 to 0.3 s, and at times they become more than 0.9. Although 
this case is very unlikely to happen in a real-world application, as 
is shown in experiments by Bai and Krishnan (10), it does provide 
a worst-case scenario to test the robustness of the MPC method.

The results indicate that large latency does affect the quality of 
control decisions of Car 2 and there are some jiggles in the accelera-
tion of Cars 2 and 3. However, even in these extreme high levels of 
latency, the MPC algorithm still works properly and operates every 
vehicle safely.

Conclusion and Future Work

A decentralized control method for controlling a platoon of vehicles 
under a high-latency communications environment is proposed. The 
MPC approach is used that combines a statistical prediction model 
with an optimization algorithm and gives optimal control action at 
each time step. The robustness of this method is also analyzed by using 
sensitivity analysis methods. Simulation experiments are performed to 
test the effectiveness and safety of this control method. It is shown 
that the MPC controller can react quickly to sudden braking or accel-
erating of the leading car and damps the effect of these actions as 
they propagate along the platoon. The simulation also demonstrates 
the potential of this method to operate vehicles safely in a severe 
communications environment.

Future research will include more extensive case studies to test con-
troller performance under different parameter settings. Quantitative 
measurement of the performance of the control method (i.e., fuel effi-

FIGURE 4    Scenario 1, low latency: (a) acceleration profile (L = 0.50, U = 1.50, D = 1.00, W = 200.000), (b) speed profile  
(L = 0.50, U = 1.50, D = 1.00, W = 200.000), (c) latency profile (T = 0.05, Ks = 2.0, t0 = 1.0, r = 0.10), and (d) spacing profile  
(L = 0.50, U = 1.50, D = 1.00, W = 200.000).

(a) (b)

(c) (d)
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ciency, safety, ride quality) is needed to compare this model with other 
existing platoon control schemes. Another research topic is to reduce 
the size and complexity of the optimization problem so that it can be 
computed efficiently in inexpensive onboard computers.
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