3.4 Independent Events.

- Intuitive def. of independence of E, F:
 \[P(E|F) = P(E), \quad P(F|E) = P(F) \]
 \[(*) \]
 i.e. F does not affect the likelihood of E, and vice versa.

Ex: Flip coin 10 times.
 \[P\{10'th\; flip=H \mid \text{first 9 flips=H}\} = \frac{1}{2} \]
 because E, F independent.

- The identities in $(*)$ can be written as:
 \[\frac{P(E \cap F)}{P(F)} = P(E), \quad \frac{P(F \cap E)}{P(E)} = P(F). \]

 \[\text{SAME!} \]

Def Events E, F are independent if \[P(E \cap F) = P(E) \cdot P(F) \]

- Independence implies $(*)$

- Warning: independent \neq mutually exclusive

Def Events E_1, E_2, \ldots are independent if

\[(*) \quad P(E_i \cap E_j) = P(E_i) \cdot P(E_j) \quad \text{for all pairs } \{i, j\}, \text{of distinct integers } i, j; \]

\[P(E_i \cap E_j \cap E_k) = P(E_i) \cdot P(E_j) \cdot P(E_k) \quad \text{for all triples } \{i, j, k\}, \ldots \]

\[\text{etc. . . .} \]

- Note: pairwise independence (identities $(*)$ only)
does not imply independence

Example: roll 3 dice

$E =$ \{first die = 3\}, $F =$ \{second die = 4\}, $G =$ \{sum of all three = 7\}.

Check that E, F are indep, F, G indep,
but E, F, G are not indep.
Ex: A plane has 4 engines. It can fly if 2 or more engines are functioning.

Each engine fails independently with probability p.

P {plane flies} $=$?

$E_i = \{\text{engine } i \text{ functions}\}$.

P {plane flies} $= 1 - P$ {most one engine functions}.

$= 1 - P$ {no engine functions} $- P$ {one functions}.

$= 1 - (1-p)^4 - \frac{4p(1-p^3)}{4}$

Choosing the functioning engine.

Computing probabilities by conditioning.

Ex: (Networks). Consider the network:

Each link fails with prob. p independently.

Find the prob. that A and B are connected.

Condition on the state of the vertical link; $V = \{\text{vertical link works}\}$.

$P(C) = P(C|V)P(V) + P(C|V^c)P(V^c)$.

1) $P(C|V) = ?$. If V occurs, the network can only fail if A is not connected to the vert link, or B is not connected to vert. link, or both.

$P(C|V) = P + P^2 - P^4$. (by inclusion-excl.)

2) $P(C|V^c) = ?$. If V^c occurs, the network looks like this:

Network works if either both top links work, or both bottom links work, or both.

$P(C|V^c) = (1-p)^3 + (1-p)^2 - (1-p)^4$.

Hence:

$P(C) = (1-2p^2+p^3)(1-p) + \left(2(1-p)^2-(1-p)^4\right)p = 1-2p^2-2p^3+5p^4-2p^5$.
Example (Simple random walk)

A particle is placed at \(k \).

Each second, the particle moves 1 step to the left or to the right independently with prob \(\frac{1}{2} \) each.

What is the probability that the particle reaches \(n \) before reaching \(0 \)? \(E_k \) \(\downarrow \)

Condition on the first step, \(L \) or \(R \).

\[
P(E_k) = P(E_k|L)P(L) + P(E_k|R)P(R) = P(E_{k+1}) + \frac{1}{2} + P(E_{k+1}) - \frac{1}{2} = \frac{P(E_{k+1})}{2}
\]

(Conditioned on \(L \), the game "resets" with particle at \(k+1 \) instead of \(k \))

Denoting \(P_k = P(E_k) \), we obtain

\[
\begin{cases}
P_k = \frac{1}{2}(P_{k-1} + P_{k+1}), & k = 1, ..., n-1 \\
P_0 = 0, P_n = 1
\end{cases}
\]

\(n+1 \) linear equations with \(n+1 \) unknowns. Solving (do this!) gets us

\[
P_k = \frac{k}{n}
\]

- Interpretations:

(a) Finance: \(0 = \) bankruptcy, \(n = \) payoff, \(k = \) initial capital

\[
P(\text{payoff before bankruptcy}) = ?
\]

For this example, a biased random walk is more relevant, where \(P(R) = p, P(L) = 1 - p \) for some \(0 < p < 1 \) (See Ross Ex 4E).

(b) Recurrence: for \(n \to \infty \), \(P_k \to 0 \) (with \(k \) fixed).

\(P_k \) with prob \(\frac{1}{2} \) ("almost surely"), the particle will visit any given site (or this case)

(If last, will return home by random walk).

26