Lecture 2. Upper and lower bounds for subgaussian matrices

1. The ε-net method refined

2. Random processes. Multiscale ε-net method: Dudley’s inequality
Upper and lower bounds

- Our goal: upper and lower bounds on random matrices.
 - In Lecture 1, we proved an upper bound for $N \times n$ subgaussian matrices A:
 \[
 \lambda_{\text{max}}(A) = \max_{x \in S^{n-1}} \|Ax\| \leq C(\sqrt{N} + \sqrt{n})
 \]
 with exponentially large probability.
 - How to prove a lower bound for
 \[
 \lambda_{\text{min}}(A) = \min_{x \in S^{n-1}} \|Ax\|?
 \]
 - Will try to prove both upper and lower at once:
 tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.
Upper and lower bounds

- Our goal: upper and lower bounds on random matrices.
- In Lecture 1, we proved an upper bound for $N \times n$ subgaussian matrices A:

$$\lambda_{\text{max}}(A) = \max_{x \in S^{n-1}} \|Ax\| \leq C(\sqrt{N} + \sqrt{n})$$

with exponentially large probability.

- How to prove a lower bound for

$$\lambda_{\text{min}}(A) = \min_{x \in S^{n-1}} \|Ax\|?$$

- Will try to prove both upper and lower at once: tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.
Upper and lower bounds

- Our goal: upper and lower bounds on random matrices.
- In Lecture 1, we proved an upper bound for $N \times n$ subgaussian matrices A:

$$\lambda_{\text{max}}(A) = \max_{x \in S^{n-1}} \|Ax\| \leq C(\sqrt{N} + \sqrt{n})$$

with exponentially large probability.

- How to prove a lower bound for

$$\lambda_{\text{min}}(A) = \min_{x \in S^{n-1}} \|Ax\| ?$$

- Will try to prove both upper and lower at once: tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.
Upper and lower bounds

- Our goal: upper and lower bounds on random matrices.
- In Lecture 1, we proved an upper bound for $N \times n$ subgaussian matrices A:

$$\lambda_{\text{max}}(A) = \max_{x \in S^{n-1}} \|Ax\| \leq C(\sqrt{N} + \sqrt{n})$$

with exponentially large probability.

- How to prove a lower bound for

$$\lambda_{\text{min}}(A) = \min_{x \in S^{n-1}} \|Ax\|?$$

- Will try to prove both upper and lower at once: tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.
The ε-net method

- We need to tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.

 Discretization: replace the sphere S^{n-1} by a small ε-net \mathcal{N};
 Concentration: for every $x \in \mathcal{N}$, the random variable $\|Ax\|$ is close its mean M with high probability (CLT);
 Union bound over all $x \in \mathcal{N}$ ⇒ with high probability, $\|Ax\|$ is close to M for all x.

- Q.E.D.
The \(\varepsilon \)-net method

- We need to tightly bound \(\|Ax\| \) above and below for all \(x \in S^{n-1} \).
 - **Discretization:** replace the sphere \(S^{n-1} \) by a small \(\varepsilon \)-net \(\mathcal{N} \);
 - **Concentration:** for every \(x \in \mathcal{N} \), the random variable \(\|Ax\| \) is close its mean \(M \) with high probability (CLT);
 - **Union bound** over all \(x \in \mathcal{N} \) ⇒
 with high probability, \(\|Ax\| \) is close to \(M \) for all \(x \).

- Q.E.D.
The ε-net method

- We need to tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.

 Discretization: replace the sphere S^{n-1} by a small ε-net \mathcal{N};

 Concentration: for every $x \in \mathcal{N}$, the random variable $\|Ax\|$ is close its mean M with high probability (CLT);

 Union bound over all $x \in \mathcal{N}$ ⇒

 with high probability, $\|Ax\|$ is close to M for all x.

- Q.E.D.
The \(\varepsilon \)-net method

- We need to tightly bound \(\|Ax\| \) above and below for all \(x \in S^{n-1} \).

 Discretization: replace the sphere \(S^{n-1} \) by a small \(\varepsilon \)-net \(\mathcal{N} \);

 Concentration: for every \(x \in \mathcal{N} \), the random variable \(\|Ax\| \) is close its mean \(M \) with high probability (CLT);

 Union bound over all \(x \in \mathcal{N} \) ⇒

 with high probability, \(\|Ax\| \) is close to \(M \) for all \(x \).

Q.E.D.
The ε-net method

- We need to tightly bound $\|Ax\|$ above and below for all $x \in S^{n-1}$.
 - **Discretization**: replace the sphere S^{n-1} by a small ε-net \mathcal{N};
 - **Concentration**: for every $x \in \mathcal{N}$, the random variable $\|Ax\|$ is close its mean M with high probability (CLT);
 - **Union bound** over all $x \in \mathcal{N}$ ⇒ with high probability, $\|Ax\|$ is close to M for all x.

- Q.E.D.
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|^2 = \sum_{k=1}^{n} \langle A_k, x \rangle^2.$$

- A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.
- But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

 $$X$$ is subgaussian $\Leftrightarrow X^2$$ is subexponential.

 X is subexponential iff

 $$\mathbb{P}(\|X\| > t) \leq 2 \exp(-Ct)$$ for every $t > 0$.

- We have a sum of subexponential i.i.d. r.v.’s.
 Central Limit Theorem should be of help:
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|_2^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

- A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.
- But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:
 - X is subgaussian \Leftrightarrow X^2 is subexponential.
 - X is subexponential iff
 $$\Pr(|X| > t) \leq 2 \exp(-Ct) \quad \text{for every } t > 0.$$

- We have a sum of subexponential i.i.d. r.v.’s.
 Central Limit Theorem should be of help:
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|_2^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.

But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

X is subgaussian $\Leftrightarrow X^2$ is subexponential.

X is subexponential iff

$$\mathbb{P}(|X| > t) \leq 2 \exp(-Ct) \quad \text{for every } t > 0.$$

- We have a sum of subexponential i.i.d. r.v.’s.
 Central Limit Theorem should be of help:
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|_2^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

- A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.
- But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

 X is subgaussian \Leftrightarrow X^2 is subexponential.

 X is subexponential iff

 $$P(|X| > t) \leq 2 \exp(-Ct) \quad \text{for every } t > 0.$$

- We have a sum of subexponential i.i.d. r.v.’s.
 Central Limit Theorem should be of help:
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|_2^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

- A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.
- But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

 - X is subgaussian $\iff X^2$ is subexponential.

 - X is subexponential iff

 $$\mathbb{P}(|X| > t) \leq 2 \exp(-Ct) \quad \text{for every } t > 0.$$

- We have a sum of subexponential i.i.d. r.v.’s.
 Central Limit Theorem should be of help:
Subexponential random variables

• What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
• Let A_k denote the rows of A. Then

$$\|Ax\|_2^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.
• But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

X is subgaussian $\Leftrightarrow X^2$ is subexponential.

X is subexponential iff

$$\mathbb{P}(|X| > t) \leq 2 \exp(-Ct) \quad \text{for every } t > 0.$$

• We have a sum of subexponential i.i.d. r.v.’s.
Central Limit Theorem should be of help:
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.

But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

X is subgaussian \iff X^2 is subexponential.

X is subexponential iff

$$\mathbb{P}(|X| > t) \leq 2 \exp(-Ct)$$

for every $t > 0$.

- We have a sum of subexponential i.i.d. r.v.'s.

Central Limit Theorem should be of help:
Subexponential random variables

- What is the distribution of the r.v. $\|Ax\|$ for a fixed $x \in S^{n-1}$?
- Let A_k denote the rows of A. Then

$$\|Ax\|_2^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2.$$

- A is subgaussian \Rightarrow each $\langle A_k, x \rangle$ is subgaussian.
- But we sum the squares $\langle A_k, x \rangle^2$. These are subexponential:

 - X is subgaussian \Leftrightarrow X^2 is subexponential.

 $$\mathbb{P}(|X| > t) \leq 2 \exp(-Ct) \quad \text{for every } t > 0.$$

- We have a sum of subexponential i.i.d. r.v.'s.

Central Limit Theorem should be of help:
Concentration

Theorem (Bernstein’s inequality)

Let Z_1, \ldots, Z_N be independent subexponential centered r.v.’s. Then

$$
P \left(\left| \frac{1}{\sqrt{N}} \sum_{k=1}^{N} Z_k \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}.
$$

- The subgaussian tail says: CLT is valid in the range $t \leq \sqrt{N}$.

- For subgaussian random variables, works for all t.
- The range of CLT propagates as $N \to \infty$.
Concentration

Theorem (Bernstein’s inequality)

Let Z_1, \ldots, Z_N be independent subexponential centered r.v.’s. Then

$$\mathbb{P} \left(\left| \frac{1}{\sqrt{N}} \sum_{k=1}^{N} Z_k \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. $$

- The subgaussian tail says: CLT is valid in the range $t \leq \sqrt{N}$.
- For subgaussian random variables, works for all t.
- The range of CLT propagates as $N \to \infty$.
Concentration

Theorem (Bernstein’s inequality)

Let Z_1, \ldots, Z_N be independent subexponential centered r.v.’s. Then

$$
\mathbb{P}
\left(
\frac{1}{\sqrt{N}} \left| \sum_{k=1}^{N} Z_k \right| > t
\right)
\leq \exp(-ct^2)
\quad \text{for } t \leq \sqrt{N}.
$$

- The subgaussian tail says: CLT is valid in the range $t \leq \sqrt{N}$.

- For subgaussian random variables, works for all t.

- The range of CLT propagates as $N \to \infty$.

\[\text{Diagram showing concentration around } \pm \sqrt{N} \text{ with tails cut off at } \pm \sqrt{N}. \]
Concentration

Theorem (Bernstein’s inequality)

Let Z_1, \ldots, Z_N be independent subexponential centered r.v.’s. Then

$$
P\left(\left| \frac{1}{\sqrt{N}} \sum_{k=1}^{N} Z_k \right| > t \right) \leq \exp\left(-ct^2 \right) \quad \text{for } t \leq \sqrt{N}.
$$

- The subgaussian tail says: CLT is valid in the range $t \leq \sqrt{N}$.
- For subgaussian random variables, works for all t.
- The range of CLT propagates as $N \to \infty$.
Concentration

- Apply CLT to the sum of independent subgaussian random variables

\[\|Ax\|^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2. \]

- First compute the mean. Since the entries of \(A \) have variance 1, we have \(\mathbb{E}\langle A_k, x \rangle^2 = 1. \)

- Want to bound the deviation from the mean

\[\|Ax\|^2 - N = \sum_{k=1}^{N} \langle A_k, x \rangle^2 - 1, \]

which is a sum of independent subgaussian centered r.v.'s.

- CLT applies:

\[\mathbb{P}\left(\frac{1}{\sqrt{N}} \|Ax\|^2 - N > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]
Concentration

Apply CLT to the sum of independent subgaussian random variables

\[\|Ax\|^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2. \]

First compute the mean. Since the entries of \(A \) have variance 1, we have \(\mathbb{E} \langle A_k, x \rangle^2 = 1. \)

Want to bound the deviation from the mean

\[\|Ax\|^2 - N = \sum_{k=1}^{N} \langle A_k, x \rangle^2 - 1, \]

which is a sum of independent subgaussian centered r.v.’s.

CLT applies:

\[\mathbb{P} \left(\frac{1}{\sqrt{N}} |\|Ax\|^2 - N| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]
Concentration

- Apply CLT to the sum of independent subgaussian random variables

\[\|Ax\|^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2. \]

- First compute the mean. Since the entries of \(A \) have variance 1, we have \(\mathbb{E} \langle A_k, x \rangle^2 = 1. \)

- Want to bound the deviation from the mean

\[\|Ax\|^2 - N = \sum_{k=1}^{N} \langle A_k, x \rangle^2 - 1, \]

which is a sum of independent subgaussian centered r.v.’s.

- CLT applies:

\[\mathbb{P} \left(\frac{1}{\sqrt{N}} \|Ax\|^2 - N > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]
Concentration

- Apply CLT to the sum of independent subgaussian random variables

\[\|Ax\|^2 = \sum_{k=1}^{N} \langle A_k, x \rangle^2. \]

- First compute the mean. Since the entries of \(A \) have variance 1, we have \(\mathbb{E} \langle A_k, x \rangle^2 = 1. \)

- Want to bound the deviation from the mean

\[\|Ax\|^2 - N = \sum_{k=1}^{N} \langle A_k, x \rangle^2 - 1, \]

which is a sum of independent subgaussian centered r.v.'s.

- CLT applies:

\[\mathbb{P}\left(\frac{1}{\sqrt{N}} \left| \|Ax\|^2 - N \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]
Concentration

We proved the concentration bound

\[\mathbb{P}\left(\frac{1}{\sqrt{N}} \|Ax\|^2 - N > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]

Normalize by dividing by \(\sqrt{N} \):

\[\mathbb{P}\left(\|\bar{A}x\|^2 - 1 > s \right) \leq \exp(-cs^2N) \quad \text{for } s \leq 1. \]

and can drop the square using the inequality \(|a - 1| \leq |a^2 - 1| \).

We thus tightly control \(\|\bar{A}x\| \) near mean 1 for every fixed vector \(x \).

Now we need to unfix \(x \), so that our concentration bound holds w.h.p. for all \(x \in S^{n-1} \).
Concentration

- We proved the concentration bound

\[
P\left(\frac{1}{\sqrt{N}} \left| \|Ax\|^2 - N \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}.
\]

- Normalize by dividing by \(\sqrt{N} \):

\[
P\left(\left| \|\bar{A}x\|^2 - 1 \right| > s \right) \leq \exp(-cs^2N) \quad \text{for } s \leq 1.
\]

- and can drop the square using the inequality \(|a - 1| \leq |a^2 - 1| \).

- We thus tightly control \(\|\bar{A}x\| \) near mean 1 for every fixed vector \(x \).

- Now we need to unfix \(x \), so that our concentration bound holds w.h.p. for all \(x \in S^{n-1} \).
Concentration

- We proved the concentration bound

\[
P\left(\frac{1}{\sqrt{N}} \left| \|Ax\|^2 - N \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}.
\]

- Normalize by dividing by \(\sqrt{N}\):

\[
P\left(\|\bar{A}x\|^2 - 1 \right| > s \right) \leq \exp(-cs^2N) \quad \text{for } s \leq 1.
\]

- and can drop the square using the inequality \(|a - 1| \leq |a^2 - 1|\).

- We thus tightly control \(\|\bar{A}x\|\) near mean 1 for every fixed vector \(x\).

- Now we need to unfix \(x\), so that our concentration bound holds w.h.p. for all \(x \in S^{n-1}\).
Concentration

- We proved the concentration bound

\[\mathbb{P}\left(\frac{1}{\sqrt{N}} \left| \| Ax \|_2^2 - N \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]

- Normalize by dividing by \(\sqrt{N} \):

\[\mathbb{P}\left(\left| \| \bar{A}x \|_2^2 - 1 \right| > s \right) \leq \exp(-cs^2N) \quad \text{for } s \leq 1. \]

- and can drop the square using the inequality \(|a - 1| \leq |a^2 - 1| \).

- We thus tightly control \(\| \bar{A}x \| \) near mean 1 for every fixed vector \(x \).

- Now we need to unfix \(x \), so that our concentration bound holds w.h.p. for all \(x \in S^{n-1} \).
Concentration

- We proved the concentration bound

\[\mathbb{P}\left(\frac{1}{\sqrt{N}} \left| \|Ax\|^{2} - N \right| > t \right) \leq \exp(-ct^2) \quad \text{for } t \leq \sqrt{N}. \]

- Normalize by dividing by \(\sqrt{N} \):

\[\mathbb{P}\left(\left| \|\tilde{A}x\|^{2} - 1 \right| > s \right) \leq \exp(-cs^2N) \quad \text{for } s \leq 1. \]

- and can drop the square using the inequality \(|a - 1| \leq |a^2 - 1| \).

- We thus tightly control \(\|\tilde{A}x\| \) near mean 1 for every fixed vector \(x \).

- Now we need to unfix \(x \), so that our concentration bound holds w.h.p. for all \(x \in S^{n-1} \).
Discretization and union bound

- **Discretization**: approximate the sphere S^{n-1} by an ε-net \mathcal{N} of S^{n-1}. Can find with cardinality exponential in n: $|\mathcal{N}| \leq \left(\frac{3}{\varepsilon}\right)^n$.

- **Union bound**:
 \[\mathbb{P}(\exists x \in \mathcal{N} : \|\tilde{A}x\| - 1 > s) \leq |\mathcal{N}| \exp(-cs^2N), \]
 which we can make very small, say $\leq \varepsilon^n$, by choosing s appropriately large: $s \sim \sqrt{\frac{n}{N} \log \frac{1}{\varepsilon}} = \sqrt{y \log \frac{1}{\varepsilon}}$.

- Extend from \mathcal{N} to the whole sphere S^{n-1} by approximation:

 Every point $x \in S^{n-1}$ can be ε-approximated by $y \in \mathcal{N}$, thus
 \[\|\tilde{A}x\| - \|\tilde{A}y\| \leq \|\tilde{A}(x - y)\| \leq \varepsilon \|\tilde{A}\| \lesssim \varepsilon (1 + \sqrt{y}) \leq \varepsilon. \]
 (Here we used the upper bound from the last lecture).

- **Conclusion**: with high probability, for every $x \in S^{n-1}$,
 \[\|\tilde{A}x\| - 1 \leq s + \varepsilon \sim \sqrt{y \log \frac{1}{\varepsilon}} + \varepsilon. \]
 For $\varepsilon \leq y$, the first term dominates. We have thus proved:
Discretization and union bound

- **Discretization**: approximate the sphere S^{n-1} by an ε-net \mathcal{N} of. Can find with cardinality exponential in n: $|\mathcal{N}| \leq \left(\frac{3}{\varepsilon}\right)^n$.

- **Union bound**:

$$\mathbb{P}\left(\exists x \in \mathcal{N} : \|\bar{A}x\| - 1 > s\right) \leq |\mathcal{N}| \exp(-cs^2 N),$$

which we can make very small, say $\leq \varepsilon^n$, by choosing s appropriately large: $s \sim \sqrt{\frac{n}{N} \log \frac{1}{\varepsilon}} = \sqrt{y \log \frac{1}{\varepsilon}}$.

- Extend from \mathcal{N} to the whole sphere S^{n-1} by approximation:
- Every point $x \in S^{n-1}$ can be ε-approximated by $y \in \mathcal{N}$, thus

$$\|\bar{A}x\| - \|\bar{A}y\| \leq \|\bar{A}(x - y)\| \leq \varepsilon \|\bar{A}\| \preceq \varepsilon (1 + \sqrt{y}) \leq \varepsilon.$$

(Here we used the upper bound from the last lecture).

- Conclusion: with high probability, for every $x \in S^{n-1}$,

$$\|\bar{A}x\| - 1 \leq s + \varepsilon \sim \sqrt{y \log \frac{1}{\varepsilon}} + \varepsilon.$$

For $\varepsilon \leq y$, the first term dominates. We have thus proved:
Discretization and union bound

- **Discretization**: approximate the sphere S^{n-1} by an ε-net \mathcal{N} of. Can find with cardinality exponential in n: $|\mathcal{N}| \leq \left(\frac{3}{\varepsilon}\right)^n$.

- **Union bound**:
 $\mathbb{P}\left(\exists x \in \mathcal{N} : \left| \|\bar{A}x\| - 1 \right| > s \right) \leq |\mathcal{N}| \exp(-cs^2N)$, which we can make very small, say $\leq \varepsilon^n$, by choosing s appropriately large: $s \sim \sqrt{\frac{n}{N} \log \frac{1}{\varepsilon}} = \sqrt{y \log \frac{1}{\varepsilon}}$.

- Extend from \mathcal{N} to the whole sphere S^{n-1} by approximation:
 Every point $x \in S^{n-1}$ can be ε-approximated by $y \in \mathcal{N}$, thus
 $$\|\|\bar{A}x\| - \|\bar{A}y\|\| \leq \|\bar{A}(x - y)\| \leq \varepsilon \|\bar{A}\| \lesssim \varepsilon (1 + \sqrt{y}) \leq \varepsilon.$$ (Here we used the upper bound from the last lecture).

- Conclusion: with high probability, for every $x \in S^{n-1}$,
 $$\left| \|\bar{A}x\| - 1 \right| \leq s + \varepsilon \sim \sqrt{y \log \frac{1}{\varepsilon}} + \varepsilon.$$ For $\varepsilon \leq y$, the first term dominates. We have thus proved:
Discretization and union bound

- **Discretization**: approximate the sphere S^{n-1} by an ε-net \mathcal{N} of . Can find with cardinality exponential in n: $|\mathcal{N}| \leq \left(\frac{3}{\varepsilon}\right)^n$.

- **Union bound**:
 \[
 \mathbb{P}\left(\exists x \in \mathcal{N} : \|\tilde{A}x\| - 1 > s \right) \leq |\mathcal{N}| \exp(-cs^2N),
 \]
 which we can make very small, say $\leq \varepsilon^n$, by choosing s appropriately large: $s \sim \sqrt{\frac{n}{N} \log \frac{1}{\varepsilon}} = \sqrt{y \log \frac{1}{\varepsilon}}$.

- Extend from \mathcal{N} to the whole sphere S^{n-1} by approximation:
 - Every point $x \in S^{n-1}$ can be ε-approximated by $y \in \mathcal{N}$, thus
 \[
 \|\tilde{A}x\| - \|\tilde{A}y\| \leq \|\tilde{A}(x - y)\| \leq \varepsilon \|\tilde{A}\| \lesssim \varepsilon (1 + \sqrt{y}) \leq \varepsilon.
 \]
 (Here we used the upper bound from the last lecture).

- **Conclusion**: with high probability, for every $x \in S^{n-1}$,
 \[
 \|\tilde{A}x\| - 1 \leq s + \varepsilon \sim \sqrt{y \log \frac{1}{\varepsilon}} + \varepsilon.
 \]
 For $\varepsilon \leq y$, the first term dominates. We have thus proved:
Discretization and union bound

- **Discretization**: approximate the sphere S^{n-1} by an ε-net \mathcal{N} of \mathbb{R}^n. Can find with cardinality exponential in n: $|\mathcal{N}| \leq \left(\frac{3}{\varepsilon}\right)^n$.

- **Union bound**:
 \[
 \mathbb{P} \left(\exists x \in \mathcal{N} : \|\bar{A}x\| - 1 > s \right) \leq |\mathcal{N}| \exp(-cs^2 N),
 \]
 which we can make very small, say $\leq \varepsilon^n$, by choosing s appropriately large: $s \sim \sqrt{\frac{n}{N} \log \frac{1}{\varepsilon}} = \sqrt{y \log \frac{1}{\varepsilon}}$.

- Extend from \mathcal{N} to the whole sphere S^{n-1} by approximation:
 - Every point $x \in S^{n-1}$ can be ε-approximated by $y \in \mathcal{N}$, thus
 \[
 \|\bar{A}x\| - \|\bar{A}y\| \leq \|\bar{A}(x - y)\| \leq \varepsilon \|\bar{A}\| \lesssim \varepsilon (1 + \sqrt{y}) \leq \varepsilon.
 \]
 (Here we used the upper bound from the last lecture).

- **Conclusion**: with high probability, for every $x \in S^{n-1}$,
 \[
 \|\bar{A}x\| - 1 \leq s + \varepsilon \sim \sqrt{y \log \frac{1}{\varepsilon}} + \varepsilon.
 \]
 For $\varepsilon \leq y$, the first term dominates. We have thus proved:
Discretization and union bound

- **Discretization**: approximate the sphere S^{n-1} by an ε-net \mathcal{N} of . Can find with cardinality exponential in n: $|\mathcal{N}| \leq \left(\frac{3}{\varepsilon}\right)^n$.

- **Union bound**:

$$\mathbb{P}\left(\exists x \in \mathcal{N} : |\|\bar{A}x\|-1| > s \right) \leq |\mathcal{N}| \exp(-cs^2N),$$

which we can make very small, say $\leq \varepsilon^n$, by choosing s appropriately large: $s \sim \sqrt{\frac{n}{N} \log \frac{1}{\varepsilon}} = \sqrt{y \log \frac{1}{\varepsilon}}$.

- Extend from \mathcal{N} to the whole sphere S^{n-1} by approximation:

Every point $x \in S^{n-1}$ can be ε-approximated by $y \in \mathcal{N}$, thus

$$|\|\bar{A}x\|-\|\bar{A}y\|| \leq \|\bar{A}(x-y)\| \leq \varepsilon \|\bar{A}\| \leq \varepsilon(1 + \sqrt{y}) \leq \varepsilon.$$

(Here we used the upper bound from the last lecture).

- **Conclusion**: with high probability, for every $x \in S^{n-1}$,

$$|\|\bar{A}x\|-1| \leq s + \varepsilon \sim \sqrt{y \log \frac{1}{\varepsilon}} + \varepsilon.$$

For $\varepsilon \leq y$, the first term dominates. We have thus proved:
Conclusion:

Theorem (Upper and lower bounds for subgaussian matrices)

Let A be a subgaussian $N \times n$ matrix with aspect ratio $y = n/N$, and let $0 < \varepsilon \leq y$. Then, with probability at least $1 - \varepsilon^n$,

$$1 - C \sqrt{y \log \frac{1}{\varepsilon}} \leq \lambda_{\text{min}}(\tilde{A}) \leq \lambda_{\text{max}}(\tilde{A}) \leq 1 + C \sqrt{y \log \frac{1}{\varepsilon}}.$$

- Not yet quite final. Asymptotic theory predicts $1 \pm \sqrt{y}$ w.h.p., while Theorem can only yield $1 \pm \sqrt{y \log \frac{1}{y}}$.
 Will fix this later: prove Theorem with ε of constant order.

- Even in its present form, yields that the subgaussian matrices are restricted isometries.

- Indeed, we apply the Theorem w.h.p. for each minor, then take the union bound over all minors.
Conclusion:

Theorem (Upper and lower bounds for subgaussian matrices)

Let A be a subgaussian $N \times n$ matrix with aspect ratio $y = n/N$, and let $0 < \varepsilon \leq y$. Then, with probability at least $1 - \varepsilon^n$,

$$1 - C \sqrt{y \log \frac{1}{\varepsilon}} \leq \lambda_{\min}(\tilde{A}) \leq \lambda_{\max}(\tilde{A}) \leq 1 + C \sqrt{y \log \frac{1}{\varepsilon}}.$$

- Not yet quite final. Asymptotic theory predicts $1 \pm \sqrt{y}$ w.h.p., while Theorem can only yield $1 \pm \sqrt{y \log \frac{1}{y}}$. Will fix this later: prove Theorem with ε of constant order.
- Even in its present form, yields that the subgaussian matrices are restricted isometries.
- Indeed, we apply the Theorem w.h.p. for each minor, then take the union bound over all minors.
Conclusion:

Theorem (Upper and lower bounds for subgaussian matrices)

Let A be a subgaussian $N \times n$ matrix with aspect ratio $y = n/N$, and let $0 < \varepsilon \leq y$. Then, with probability at least $1 - \varepsilon^n$,

$$1 - C \sqrt{y \log \frac{1}{\varepsilon}} \leq \lambda_{\text{min}}(\tilde{A}) \leq \lambda_{\text{max}}(\tilde{A}) \leq 1 + C \sqrt{y \log \frac{1}{\varepsilon}}.$$

- Not yet quite final. Asymptotic theory predicts $1 \pm \sqrt{y}$ w.h.p., while Theorem can only yield $1 \pm \sqrt{y \log \frac{1}{\varepsilon}}$. Will fix this later: prove Theorem with ε of constant order.
- Even in its present form, yields that the subgaussian matrices are restricted isometries.
- Indeed, we apply the Theorem w.h.p. for each minor, then take the union bound over all minors.
Conclusion:

Theorem (Upper and lower bounds for subgaussian matrices)

Let A be a subgaussian $N \times n$ matrix with aspect ratio $y = n/N$, and let $0 < \varepsilon \leq y$. Then, with probability at least $1 - \varepsilon^n$,

$$1 - C \sqrt{y \log \frac{1}{\varepsilon}} \leq \lambda_{\text{min}}(\bar{A}) \leq \lambda_{\text{max}}(\bar{A}) \leq 1 + C \sqrt{y \log \frac{1}{\varepsilon}}. $$

- Not yet quite final. Asymptotic theory predicts $1 \pm \sqrt{y}$ w.h.p., while Theorem can only yield $1 \pm \sqrt{y \log \frac{1}{\varepsilon}}$. Will fix this later: prove Theorem with ε of constant order.

- Even in its present form, yields that the subgaussian matrices are restricted isometries.

- Indeed, we apply the Theorem w.h.p. for each minor, then take the union bound over all minors.
Theorem (Reconstruction from subgaussian measurements)

With exponentially high probability, an $N \times d$ subgaussian matrix Φ is a restricted isometry (for sparsity level n), provided that

$$N \sim n \log \frac{d}{n}.$$

Consequently, by Candes-Tao Restricted Isometry Condition, one can reconstruct any n-sparse vector $x \in \mathbb{R}^d$ from its measurements $b = \Phi x$ using the convex program

$$\min \|x\|_1 \quad \text{subject to} \quad \Phi x = b.$$
Sharper bounds for subgaussian matrices

- So far, we match the asymptotic theory up to a log factor:
 \[1 - C \sqrt{y \log \frac{1}{y}} \leq \lambda_{\text{min}}(\bar{A}) \leq \lambda_{\text{max}}(\bar{A}) \leq 1 + C \sqrt{y \log \frac{1}{y}}. \]

- Our goal: remove the log factor.
 Would match the asymptotic theory up to a constant \(C \).

Sharper bounds for subgaussian matrices

- So far, we match the asymptotic theory up to a log factor:
 \[1 - C \sqrt{y \log \frac{1}{y}} \leq \lambda_{\text{min}}(\bar{A}) \leq \lambda_{\text{max}}(\bar{A}) \leq 1 + C \sqrt{y \log \frac{1}{y}}. \]

- Our goal: remove the log factor.
 Would match the asymptotic theory up to a constant \(C \).

Sharper bounds for subgaussian matrices

So far, we match the asymptotic theory up to a log factor:

\[1 - C \sqrt{y \log \frac{1}{y}} \leq \lambda_{\text{min}}(\bar{A}) \leq \lambda_{\text{max}}(\bar{A}) \leq 1 + C \sqrt{y \log \frac{1}{y}}. \]

Our goal: remove the log factor.
Would match the asymptotic theory up to a constant \(C \).

From random matrices to random processes

- The desired bounds

 $$1 - C\sqrt{y} \leq \lambda_{\min}(\tilde{A}) \leq \lambda_{\max}(\tilde{A}) \leq 1 + C\sqrt{y}$$

 simply say that $\|\tilde{A}x\|^2$ is concentrated about its mean 1 for all vectors x on the sphere S^{n-1}:

 $$\max_{x \in S^{n-1}} \|\tilde{A}x\|^2 - 1 \lesssim \sqrt{y}.$$

- For each vector x,

 $$X_x := \|\tilde{A}x\|^2 - 1$$

 is a random variable.

 The collection $(X_x)_{x \in T}$, where $T = S^{n-1}$, is a random process.

- Our goal: bound the random process:

 $$\max_{x \in T} X_x \leq ? \quad \text{w.h.p.}$$
From random matrices to random processes

- The desired bounds
 \[1 - C \sqrt{\gamma} \leq \lambda_{\min}(\bar{A}) \leq \lambda_{\max}(\bar{A}) \leq 1 + C \sqrt{\gamma} \]
 simply say that $\|\bar{A}x\|^2$ is concentrated about its mean 1 for all vectors x on the sphere S^{n-1}:
 \[\max_{x \in S^{n-1}} \left| \|\bar{A}x\|^2 - 1 \right| \lesssim \sqrt{\gamma}. \]

- For each vector x, \[X_x := \left| \|\bar{A}x\|^2 - 1 \right| \]
 is a random variable. The collection $(X_x)_{x \in T}$, where $T = S^{n-1}$, is a random process.

- Our goal: bound the random process:
 \[\max_{x \in T} X_x \leq ? \quad \text{w.h.p.} \]
From random matrices to random processes

- The desired bounds
 \[1 - C\sqrt{y} \leq \lambda_{\text{min}}(\tilde{A}) \leq \lambda_{\text{max}}(\tilde{A}) \leq 1 + C\sqrt{y} \]
 simply say that \(\|\tilde{A}x\|^{2} \) is concentrated about its mean 1 for all vectors \(x \) on the sphere \(S^{n-1} \):
 \[\max_{x \in S^{n-1}} \left| \|\tilde{A}x\|^{2} - 1 \right| \lesssim \sqrt{y}. \]

- For each vector \(x \),
 \[X_{x} := \left| \|\tilde{A}x\|^{2} - 1 \right| \]
 is a random variable.
 The collection \((X_{x})_{x \in T} \), where \(T = S^{n-1} \), is a random process.

- Our goal: bound the random process:
 \[\max_{x \in T} X_{x} \leq? \quad \text{w.h.p.} \]
General random processes

- Bounding random processes is a big field in probability theory.
- Let $(X_t)_{t \in T}$ be a centered random process on a metric space T. Usually, t is time (thus $T \subset \mathbb{R}$). But not in our case ($T = S^{n-1}$).
- Our goal: bound $\sup_{t \in T} X_t$ w.h.p. in terms of the geometry of T.
- General assumption on the process: controlled “speed”. The size of the increments $X_t - X_s$ should be proportional to the “time” – the distance $d(t, s)$.
- An specific form of such assumption:

$$\frac{|X_t - X_s|}{d(t, s)}$$

is subgaussian for every $t, s \in T$.

Such processes are called subgaussian random processes. Examples: gaussian processes, e.g. Brownian motion.

- The size of T is measured using the covering numbers $N(T, \varepsilon)$ (the number of ε-balls needed to cover T).
General random processes

- Bounding random processes is a big field in probability theory.
- Let \((X_t)_{t \in T}\) be a centered random process on a metric space \(T\). Usually, \(t\) is time (thus \(T \subseteq \mathbb{R}\)). But not in our case (\(T = S^{n-1}\)).
- Our goal: bound \(\sup_{t \in T} X_t\) w.h.p. in terms of the geometry of \(T\).
- General assumption on the process: controlled “speed”.
 The size of the increments \(X_t - X_s\) should be proportional to the “time” – the distance \(d(t, s)\).
- An specific form of such assumption:
 \[
 \frac{|X_t - X_s|}{d(t, s)}
 \]
 is subgaussian for every \(t, s \in T\).

Such processes are called subgaussian random processes. Examples: gaussian processes, e.g. Brownian motion.
- The size of \(T\) is measured using the covering numbers \(N(T, \varepsilon)\) (the number of \(\varepsilon\)-balls needed to cover \(T\)).
General random processes

- Bounding random processes is a big field in probability theory.
- Let \((X_t)_{t \in T}\) be a centered random process on a metric space \(T\). Usually, \(t\) is time (thus \(T \subset \mathbb{R}\)). But not in our case \((T = S^{n-1})\).
- Our goal: bound \(\sup_{t \in T} X_t\) w.h.p. in terms of the geometry of \(T\).
- General assumption on the process: controlled "speed". The size of the increments \(X_t - X_s\) should be proportional to the "time" – the distance \(d(t, s)\).
- An specific form of such assumption:

\[
\frac{|X_t - X_s|}{d(t, s)}
\]

is subgaussian for every \(t, s \in T\).

Such processes are called subgaussian random processes. Examples: gaussian processes, e.g. Brownian motion.

- The size of \(T\) is measured using the covering numbers \(N(T, \varepsilon)\) (the number of \(\varepsilon\)-balls needed to cover \(T\)).
General random processes

- Bounding random processes is a big field in probability theory.
- Let \((X_t)_{t \in T}\) be a centered random process on a metric space \(T\). Usually, \(t\) is time (thus \(T \subset \mathbb{R}\)). But not in our case \((T = S^{n-1})\).
- Our goal: bound \(\sup_{t \in T} X_t\) w.h.p. in terms of the geometry of \(T\).
- General assumption on the process: controlled “speed”.
 The size of the increments \(X_t - X_s\) should be proportional to the “time” – the distance \(d(t, s)\).
- An specific form of such assumption:

\[
\frac{|X_t - X_s|}{d(t, s)}
\]

is subgaussian for every \(t, s \in T\).

Such processes are called subgaussian random processes. Examples: gaussian processes, e.g. Brownian motion.

- The size of \(T\) is measured using the covering numbers \(N(T, \varepsilon)\) (the number of \(\varepsilon\)-balls needed to cover \(T\)).
General random processes

- Bounding random processes is a big field in probability theory.
- Let \((X_t)_{t \in T}\) be a centered random process on a metric space \(T\). Usually, \(t\) is time (thus \(T \subset \mathbb{R}\)). But not in our case \((T = S^{n-1})\).
- Our goal: bound \(\sup_{t \in T} X_t\) w.h.p. in terms of the geometry of \(T\).
- General assumption on the process: controlled “speed”.
 The size of the increments \(X_t - X_s\) should be proportional to the “time” – the distance \(d(t, s)\).
- An specific form of such assumption:

\[
\frac{|X_t - X_s|}{d(t, s)} \quad \text{is subgaussian for every } t, s \in T.
\]

Such processes are called subgaussian random processes. Examples: gaussian processes, e.g. Brownian motion.

- The size of \(T\) is measured using the covering numbers \(N(T, \varepsilon)\) (the number of \(\varepsilon\)-balls needed to cover \(T\)).
General random processes

- Bounding random processes is a big field in probability theory.
- Let \((X_t)_{t \in T}\) be a centered random process on a metric space \(T\). Usually, \(t\) is time (thus \(T \subset \mathbb{R}\)). But not in our case \((T = S^{n-1})\).
- Our goal: bound \(\sup_{t \in T} X_t\) w.h.p. in terms of the geometry of \(T\).
- General assumption on the process: controlled “speed”. The size of the increments \(X_t - X_s\) should be proportional to the “time” — the distance \(d(t, s)\).
- An specific form of such assumption:

\[
\frac{|X_t - X_s|}{d(t, s)} \text{ is subgaussian for every } t, s \in T.
\]

Such processes are called subgaussian random processes. Examples: gaussian processes, e.g. Brownian motion.

- The size of \(T\) is measured using the covering numbers \(N(T, \varepsilon)\) (the number of \(\varepsilon\)-balls needed to cover \(T\)).
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process \((X_t)_{t \in T}\), one has

\[
\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \, d\varepsilon.
\]

- LHS probabilistic. RHS geometric.
- Multiscale \(\varepsilon\)-net method: uses covering numbers for all scales \(\varepsilon\).
- \(\infty\) can clearly be replaced by diam\((T)\). Singularity at 0.
- “With high probability” version: \(\frac{\sup_{t \in T} X_t}{\text{RHS}}\) is subgaussian.
- \(\sqrt{\log u}\) is simply the inverse of \(\exp(u^2)\) (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process $(X_t)_{t \in T}$, one has

$$
\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \, d\varepsilon.
$$

- LHS probabilistic. RHS geometric.
- Multiscale ε-net method: uses covering numbers for all scales ε.
- ∞ can clearly be replaced by $\text{diam}(T)$. Singularity at 0.
- “With high probability” version: $\frac{\sup_{t \in T} X_t}{\text{RHS}}$ is subgaussian.
- $\sqrt{\log u}$ is simply the inverse of $\exp(u^2)$ (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process \((X_t)_{t \in T}\), one has

\[
\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \, d\varepsilon.
\]

- LHS probabilistic. RHS geometric.
- Multiscale \(\varepsilon\)-net method: uses covering numbers for all scales \(\varepsilon\).
- \(\infty\) can clearly be replaced by \(\text{diam}(T)\). Singularity at 0.
- “With high probability” version: \(\frac{\sup_{t \in T} X_t}{\text{RHS}}\) is subgaussian.
- \(\sqrt{\log u}\) is simply the inverse of \(\exp(u^2)\) (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process \((X_t)_{t \in T}\), one has

\[
\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \epsilon)} \, d\epsilon.
\]

- LHS probabilistic. RHS geometric.
- Multiscale \(\epsilon \)-net method: uses covering numbers for all scales \(\epsilon \).
- \(\infty \) can clearly be replaced by \(\text{diam}(T) \). Singularity at 0.
- “With high probability” version: \(\frac{\sup_{t \in T} X_t}{\text{RHS}} \) is subgaussian.
- \(\sqrt{\log u} \) is simply the inverse of \(\exp(u^2) \) (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process \((X_t)_{t \in T}\), one has

\[
\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \, d\varepsilon.
\]

- LHS probabilistic. RHS geometric.
- Multiscale \(\varepsilon\)-net method: uses covering numbers for all scales \(\varepsilon\).
- \(\infty\) can clearly be replaced by \(\text{diam}(T)\). Singularity at 0.
- “With high probability” version: \(\frac{\sup_{t \in T} X_t}{\text{RHS}}\) is subgaussian.
- \(\sqrt{\log u}\) is simply the inverse of \(\exp(u^2)\) (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process \((X_t)_{t \in T} \), one has

\[
E \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \, d\varepsilon.
\]

- LHS probabilistic. RHS geometric.
- Multiscale \(\varepsilon \)-net method: uses covering numbers for all scales \(\varepsilon \).
- \(\infty \) can clearly be replaced by \(\text{diam}(T) \). Singularity at 0.
- “With high probability” version: \(\frac{\sup_{t \in T} X_t}{\text{RHS}} \) is subgaussian.
- \(\sqrt{\log u} \) is simply the inverse of \(\exp(u^2) \) (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
Dudley’s Inequality

Theorem (Dudley’s Inequality)

For a subgaussian process \((X_t)_{t \in T}\), one has

\[
\mathbb{E} \sup_{t \in T} X_t \leq C \int_0^\infty \sqrt{\log N(T, \varepsilon)} \, d\varepsilon.
\]

- LHS probabilistic. RHS geometric.
- Multiscale \(\varepsilon\)-net method: uses covering numbers for all scales \(\varepsilon\).
- \(\infty\) can clearly be replaced by diam\((T)\). Singularity at 0.
- “With high probability” version: \(\frac{\sup_{t \in T} X_t}{\text{RHS}}\) is subgaussian.
- \(\sqrt{\log u}\) is simply the inverse of \(\exp(u^2)\) (the subgaussian tail).
- Holds for almost any other tail (e.g. subexponential), with corresponding inverse function in RHS.
The random matrix process

- Recall: for upper/lower bounds for subgaussian matrices, we need to bound the maximum of the random process \((X_x)_{x \in T}\) on the unit sphere \(T = S^{n-1}\), where

\[
X_x := \|\bar{A}x\|^2 - 1.
\]

- To apply Dudley’s inequality, we need first to check the “speed” of the process – the tail decay of the increments:

\[
I_{x,y} := \frac{X_x - X_y}{\|x - y\|}.
\]

- As before, we write \(\|\bar{A}x\|^2 = \sum_{k=1}^{N} \langle \bar{A}_k, x \rangle^2\), where \(\bar{A}_k\) are the rows of \(\bar{A}\). The sum of independent subexponential random variables.

- Use CLT (Bernstein’s inequality) … and get

\[
P(|I_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0.
\]

Mixture of subgaussian (in the range of CLT) and subexponential.
The random matrix process

- Recall: for upper/lower bounds for subgaussian matrices, we need to bound the maximum of the random process \((X_x)_{x \in T} \) on the unit sphere \(T = S^{n-1} \), where

\[
X_x := \|\bar{A}x\|^2 - 1.
\]

- To apply Dudley’s inequality, we need first to check the “speed” of the process – the tail decay of the increments:

\[
I_{x,y} := \frac{X_x - X_y}{\|x - y\|}.
\]

- As before, we write \(\|\bar{A}x\|^2 = \sum_{k=1}^{N} \langle \bar{A}_k, x \rangle^2 \), where \(\bar{A}_k \) are the rows of \(\bar{A} \). The sum of independent subexponential random variables.

- Use CLT (Bernstein’s inequality) … and get

\[
P(|I_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0.
\]

Mixture of subgaussian (in the range of CLT) and subexponential.
The random matrix process

- Recall: for upper/lower bounds for subgaussian matrices, we need to bound the maximum of the random process \((X_x)_{x \in T}\) on the unit sphere \(T = S^{n-1}\), where

\[
X_x := \left| \| \bar{A}x \|_2^2 - 1 \right|.
\]

- To apply Dudley’s inequality, we need first to check the “speed” of the process – the tail decay of the increments:

\[
l_{x,y} := \frac{X_x - X_y}{\|x - y\|}.
\]

- As before, we write \(\| \bar{A}x \|_2^2 = \sum_{k=1}^{N} \langle \bar{A}_k, x \rangle^2\), where \(\bar{A}_k\) are the rows of \(\bar{A}\). The sum of independent subexponential random variables.

- Use CLT (Bernstein’s inequality) . . . and get

\[
\mathbb{P}(\|l_{x,y}\| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0.
\]

Mixture of subgaussian (in the range of CLT) and subexponential.
The random matrix process

- Recall: for upper/lower bounds for subgaussian matrices, we need to bound the maximum of the random process \((X_x)_{x \in T}\) on the unit sphere \(T = S^{n-1}\), where

\[
X_x := \|\bar{A}x\|^2 - 1.
\]

- To apply Dudley’s inequality, we need first to check the “speed” of the process – the tail decay of the increments:

\[
l_{x,y} := \frac{X_x - X_y}{\|x - y\|}.
\]

- As before, we write \(\|\bar{A}x\|^2 = \sum_{k=1}^N \langle \bar{A}_k, x \rangle^2\), where \(\bar{A}_k\) are the rows of \(\bar{A}\). The sum of independent subexponential random variables.

- Use CLT (Bernstein’s inequality) . . . and get

\[
\mathbb{P}(|l_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0.
\]

Mixture of subgaussian (in the range of CLT) and subexponential.
Applying Dudley’s Inequality

- So, we know the “speed” of our random process
 \[P(|l_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0. \]

- To apply Dudley’s inequality, we compute the inverse function of RHS as \(\max\left(\log u N, \sqrt{\log u N}\right) \); we can bound the max by the sum.

- Then Dudley’s inequality gives
 \[\mathbb{E} \sup_{x \in \mathcal{T}} X_x \lesssim \int_0^{1 = \text{diam}(\mathcal{T})} \left(\frac{\log N(\mathcal{T}, \varepsilon)}{N} + \sqrt{\frac{\log N(\mathcal{T}, \varepsilon)}{N}} \right) d\varepsilon. \]

- Recall: the covering number is exponential in the dimension:
 \[N(\mathcal{T}, \varepsilon) \leq (\frac{3}{\varepsilon})^n. \] Thus \(\frac{\log N(\mathcal{T}, \varepsilon)}{N} \leq \frac{n}{N} \log(\frac{3}{\varepsilon}) = y \log(\frac{3}{\varepsilon}). \)

- \(\log(\frac{3}{\varepsilon}) \) is integrable, as well as its square root. Thus
 \[\mathbb{E} \sup_{x \in \mathbb{S}^{n-1}} X_x \lesssim y + \sqrt{y} \lesssim \sqrt{y}. \]

- Recalling that \(X_x = |\|\bar{A}x\|^2 - 1| \), we get the desired concentration:
Applying Dudley’s Inequality

- So, we know the “speed” of our random process

\[P(|l_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0. \]

- To apply Dudley’s inequality, we compute the inverse function of RHS as \(\max \left(\frac{\log u}{N}, \sqrt{\frac{\log u}{N}} \right) \); we can bound the max by the sum.

- Then Dudley’s inequality gives

\[\mathbb{E}\sup_{x \in T} X_x \lesssim \int_0^{1 = \text{diam}(T)} \left(\frac{\log N(T, \varepsilon)}{N} + \sqrt{\frac{\log N(T, \varepsilon)}{N}} \right) \, d\varepsilon. \]

- Recall: the covering number is exponential in the dimension:

\[N(T, \varepsilon) \leq \left(\frac{3}{\varepsilon} \right)^n. \] Thus \(\frac{\log N(T, \varepsilon)}{N} \leq \frac{n}{N} \log \left(\frac{3}{\varepsilon} \right) = y \log \left(\frac{3}{\varepsilon} \right). \)

- \(\log \left(\frac{3}{\varepsilon} \right) \) is integrable, as well as its square root. Thus

\[\mathbb{E}\sup_{x \in S^{n-1}} X_x \lesssim y + \sqrt{y} \lesssim \sqrt{y}. \]

- Recalling that \(X_x = \|\|\bar{A}x\|^2 - 1\| \), we get the desired concentration:
Applying Dudley’s Inequality

- So, we know the “speed” of our random process

\[\mathbb{P}(|I_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0. \]

- To apply Dudley’s inequality, we compute the inverse function of RHS as \(\max \left(\frac{\log u}{N}, \sqrt{\frac{\log u}{N}} \right) \); we can bound the max by the sum.

- Then Dudley’s inequality gives

\[\mathbb{E} \sup_{x \in T} X_x \lesssim \int_0^{\text{diam}(T)} \left(\frac{\log N(T, \varepsilon)}{N} + \sqrt{\frac{\log N(T, \varepsilon)}{N}} \right) \, d\varepsilon. \]

- Recall: the covering number is exponential in the dimension:

\[N(T, \varepsilon) \leq \left(\frac{3}{\varepsilon} \right)^n. \] Thus \(\frac{\log N(T, \varepsilon)}{N} \leq \frac{n}{N} \log \left(\frac{3}{\varepsilon} \right) = y \log \left(\frac{3}{\varepsilon} \right). \)

- \(\log \left(\frac{3}{\varepsilon} \right) \) is integrable, as well as its square root. Thus

\[\mathbb{E} \sup_{x \in S^{n-1}} X_x \lesssim y + \sqrt{y} \lesssim \sqrt{y}. \]

- Recalling that \(X_x = \| \tilde{A}x \|^2 - 1 \), we get the desired concentration:
Applying Dudley’s Inequality

- So, we know the “speed” of our random process

\[\mathbb{P}(|l_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \text{ for all } u > 0. \]

- To apply Dudley’s inequality, we compute the inverse function of RHS as \(\max\left(\frac{\log u}{N}, \sqrt{\frac{\log u}{N}}\right) \); we can bound the max by the sum.

- Then Dudley’s inequality gives

\[\mathbb{E} \sup_{x \in T} X_x \lesssim \int_0^{1 = \text{diam}(T)} \left(\frac{\log N(T,\varepsilon)}{N} + \sqrt{\frac{\log N(T,\varepsilon)}{N}}\right) d\varepsilon. \]

- Recall: the covering number is exponential in the dimension: \(N(T, \varepsilon) \leq (\frac{3}{\varepsilon})^n \). Thus \(\frac{\log N(T,\varepsilon)}{N} \leq \frac{n}{N} \log(\frac{3}{\varepsilon}) = y \log(\frac{3}{\varepsilon}). \)

- \(\log(\frac{3}{\varepsilon}) \) is integrable, as well as its square root. Thus

\[\mathbb{E} \sup_{x \in S^{n-1}} X_x \lesssim y + \sqrt{y} \lesssim \sqrt{y}. \]

- Recalling that \(X_x = \|\|\bar{A}x\|^2 - 1\| \), we get the desired concentration:
Applying Dudley’s Inequality

- So, we know the “speed” of our random process
 \[\mathbb{P}(|l_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0. \]

- To apply Dudley’s inequality, we compute the inverse function of RHS as \(\max \left(\frac{\log u}{N}, \sqrt{\frac{\log u}{N}} \right) \); we can bound the max by the sum.

- Then Dudley’s inequality gives
 \[\mathbb{E} \sup_{x \in T} X_x \lesssim \int_{0}^{1=\text{diam}(T)} \left(\frac{\log N(T, \varepsilon)}{N} + \sqrt{\frac{\log N(T, \varepsilon)}{N}} \right) d\varepsilon. \]

- Recall: the covering number is exponential in the dimension:
 \(N(T, \varepsilon) \leq \left(\frac{3}{\varepsilon} \right)^n \). Thus \(\frac{\log N(T, \varepsilon)}{N} \leq \frac{n}{N} \log \left(\frac{3}{\varepsilon} \right) = y \log \left(\frac{3}{\varepsilon} \right). \)

- \(\log \left(\frac{3}{\varepsilon} \right) \) is integrable, as well as its square root. Thus
 \[\mathbb{E} \sup_{x \in S^{n-1}} X_x \lesssim y + \sqrt{y} \lesssim \sqrt{y}. \]

- Recalling that \(X_x = |\|\bar{A}x\|^2 - 1| \), we get the desired concentration:
Applying Dudley’s Inequality

- So, we know the “speed” of our random process
 \[
P(|l_{x,y}| > u) \leq 2 \exp(-cN \cdot \min(u, u^2)) \quad \text{for all } u > 0.
 \]

- To apply Dudley’s inequality, we compute the inverse function of RHS as \(\max\left(\frac{\log u}{N}, \sqrt{\frac{\log u}{N}}\right)\); we can bound the max by the sum.

- Then Dudley’s inequality gives
 \[
 \mathbb{E} \sup_{x \in T} X_x \lesssim \int_{0}^{1=\text{diam}(T)} \left(\frac{\log N(T,\varepsilon)}{N} + \sqrt{\frac{\log N(T,\varepsilon)}{N}}\right) d\varepsilon.
 \]

- Recall: the covering number is exponential in the dimension: \(N(T, \varepsilon) \leq (\frac{3}{\varepsilon})^n\). Thus \(\frac{\log N(T,\varepsilon)}{N} \leq \frac{n}{N} \log(\frac{3}{\varepsilon}) = y \log(\frac{3}{\varepsilon})\).

- \(\log(\frac{3}{\varepsilon})\) is integrable, as well as its square root. Thus
 \[
 \mathbb{E} \sup_{x \in S^{n-1}} X_x \lesssim y + \sqrt{y} \lesssim \sqrt{y}.
 \]

- Recalling that \(X_x = \|\tilde{A}x\|^2 - 1\), we get the desired concentration:
Theorem (Sharp bounds for subgaussian matrices)

Let A be a subgaussian $N \times n$ matrix with aspect ratio $y = n/N$, then, with high probability,
\[
1 - C\sqrt{y} \leq \lambda_{\min}(\tilde{A}) \leq \lambda_{\max}(\tilde{A}) \leq 1 + C\sqrt{y}.
\]

- High probability $=$ exponential in n.
Theorem (Sharp bounds for subgaussian matrices)

Let A be a subgaussian $N \times n$ matrix with aspect ratio $y = n/N$, then, with high probability,

$$1 - C \sqrt{y} \leq \lambda_{min}(\bar{A}) \leq \lambda_{max}(\bar{A}) \leq 1 + C \sqrt{y}.$$

- High probability = exponential in n.