-- Do not delete this Movie Script! Nothing will work!!

-- Director for Windows EZ I/O script

-- ===

-- Copyright 1997, The Regents of the University of Michigan. All rights reserved.

-- Developed at the University of Michigan School of Art and Design

-- by Michael Rodemer and Ed Bennett

-- ===

-- ===

-- the following gets Director ready to do serial communication with the microcontroller

-- on the interface board. It MUST be called before any of the other scripts associated

-- with the board will work!

-- Also, you must have commport.dll in the same folder as your movie!

-- ===

on startMovie

 global port

 -- init comm port

 -- Reminder: you must have commport.dll in the same folder as your movie!

 openXlib "commport"

 if port=Void then

 put CommPort(mNew, "Com1", 32, 32) into port

 port(mSetUp, 57600, 10, 0)-- sets port to 57600 baud, 1.0 stop bits, no parity bit

 end if

end

-- ===

-- A2D will read a voltage and return its value,

-- expressed as a number between 0 and 255

on A2D lineNo --valid line numbers are 1-8

 global port

 port(mReadFlush) -- this clears out anything left in the receive buffer

 port(mWriteChar, 65) -- write a capital "A"

 port(mWriteChar, (lineNo-1)) -- write the line number

 -- internally, the chip starts numbering lines at 0

 port(mReadCount) -- this is apprently needed to slow down the port enough to prevent errors

 -- namely, the same result coming back twice in spite of changed lineNo or voltage value

 return port(mReadChar) -- reads result from board

end

-- ===

-- writePort will cause a pattern of ons and offs on digital output lines 1 through 8 on the board

-- depending on the value of the variable "state"

on writePort state -- valid values for state are 0-255

 global port

 port(mWriteChar, 87) -- write a capital "W"

 port(mWriteChar, state) -- write the state

end

-- ===

-- writeLine turns a single line on or off, "1" being "on," "0" being "off"

on writeLine lineNo, onOff -- valid line numbers are 1 through 10

 global port

 port(mWriteFlush) -- this clears out the transmit buffer

 port(mWriteChar, 119) -- write a small "w"

 port(mWriteChar, (lineNo-1)) -- write the line number

 -- internally, the chip starts numbering lines at 0

 port(mWriteChar, onOff) -- write zero or one

 checkErr()

end

-- ===

-- readLine returns a 0 or 1 to indicate the state of a single line,

-- with "1" being "high" and "0" being "low"

on readLine lineNo -- valid line numbers are 1 through 10

 global port

 port(mWriteFlush) -- this clears out the transmit buffer

 port(mReadFlush) -- this clears out anything left in the receive buffer

 port(mWriteChar, 114) -- write a small "r"

 port(mWriteChar, (lineNo-1)) -- write the line number

 port(mReadCount) -- this is apprently needed to slow down the port enough to prevent errors

 return port(mReadChar) -- return state

end

-- ===

-- readPort returns a value between 0 and 255 for the 8-line port

-- comprised of digital input lines 1 through 8 on the board

on readPort

 global port

 port(mWriteFlush) -- this clears out the transmit buffer

 port(mReadFlush) -- this clears out anything left in the receive buffer

 port(mWriteChar, 82)

 port(mReadCount) -- this is apprently needed to slow down the port enough to prevent errors

 return port(mReadChar) -- return state

end

-- ===

-- PWM turns a line on and off rapidly (more than 18,000 times a second),

-- varying the ratio of the time the line is off to the time it is on.

-- Valid input values are from 0 (always off) to 1023 (always on)

on PWM lineNo, onTime -- valid line numbers are 1 or 2

 global port

 -- the following code makes two 8-bit numbers

 -- out of the 10-bit number (0-1023) passed to PWM as an argument,

 -- passing two characters to the board one after the other

 port(mWriteFlush) -- this clears out the transmit buffer

 put 0 into temp

 if (onTime-512>=0) then

 put (temp+2) into temp

 put (onTime-512) into onTime

 end if

 if (onTime-256>=0) then

 put (temp+1) into temp

 put (onTime-256) into onTime

 end if

 put temp into hiBite

 put onTime into loBite

 port(mwriteChar, 80)

 port(mwriteChar, lineNo)

 port(mwriteChar, hiBite)

 port(mwriteChar, loBite)

end

-- ===

-- this frees up the serial link from the desktop computer before quitting Director

on shutDown

 global port

 port(mDispose)

end

