This seminar introduces students to the fundamental technical drivers of the digital revolution and the dramatic influence of these developments on the institutions, economics and policy of mass communication. Topics include: the role of the computer and the digital representation of sound, text, images and moving images; media ergonomics, digital networks, optical technologies, the use of the electromagnetic spectrum, recent changes in motion picture, publishing, telecommunications, radio, television and online industries. This course is one of a new five-course sequence that is being reviewed by Rackham as providing a special Certification in Digital Studies for graduate students in diverse professional and academic fields at Michigan.

The seminar presumes no mathematical or technical background on the part of students; it is an introduction. But the course does focus on the underlying physics and electronics of how things work. The reason for this perspective is straightforward. If as a researcher, media professional, or policymaker one wants to understand what the technology can and cannot do – how far you can push it, what can and cannot be regulated, why some elements are expensive and others cheap, what the media will look like in ten years – one has to understand some of what is going on under the hood.

There is a wonderful scene in the first Star Wars movie -- Obi-wan and Luke are watching the hologram of Princess Leia projected into the air. Sounds like just another new technology? Photons, however, don’t do that, and won’t do that in the future; they don’t float out into the air and then suddenly decide to turn around and come back (quantum physics aside.) Maybe there was supposed to be some reflective medium I didn’t notice in that scene. When you know a little more about how things work, you have a better basis for being enthusiastic about new developments when there is good reason and appropriately skeptical about phony photons and other forms of electronic snake oil.

The seminar covers three intertwined topics – 1) how humans respond to sound, light and mediated communication 2) the components of modern media systems such as information storage, computation, transmission and display and 3) network architectures with special attention to the mother of all networks, the Internet.

The course requirement is a term paper on a topic of the student’s choosing. It is presumed that students may well have quite different motivation for studying in this area – research, an interest in policy and regulation, the media business, legal issues, design and management of media systems. Accordingly, the termpaper assignment is to apply the seminar content to topic in their own field of interest such as information security, personal privacy, community building, entertainment media, copyright or similar issues. Readings will be based on a coursepack.
Topical Outline & Reading Assignments

1. Sept 13 Introduction to the New Media
 1.1. Why Study the Technology?
 1.2. The Nature of Sound
 1.3. The Nature of Light
 1.4. The Physiology of Human Perception
 1.5. The Behavior of Electrons
 1.6. Electromagnetic Radiation and Propagation
 1.7. The Spectrum
 1.8. The Generic Properties of the New Media
 Vannevar Bush As We May Think
 Craig Freudenrich Light
 science.howstuffworks.com/light.htm
 Tom Harris Hearing
 entertainment.howstuffworks.com/hearing.htm
 Carl Bianco Vision
 science.howstuffworks.com/eye.htm
 Marshall Brain Electricity, Radio and Spectrum
 science.howstuffworks.com/electricity.htm
 electronics.howstuffworks.com/radio-spectrum.htm
 electronics.howstuffworks.com/radio.htm
 W. Russell Neuman The Generic Properties of the New Media

2. Sept 20 Capturing Sound and Light
 2.1. Alphanumeric Systems
 2.2. Edison’s Phonograph
 2.3. Photographic Fundamentals
 2.4. Motion Pictures
 2.5. Television Imaging
 2.6. Digital Imaging
 2.7. Enter Digital: Pulse Code Modulation
 Stephen Littlejohn Theories of Signs and Language
 Marshall Brain Analog and Digital Recording, Television
 electronics.howstuffworks.com/analog-digital.htm
 electronics.howstuffworks.com/cassette.htm
 entertainment.howstuffworks.com/tv.htm
 Charles Woodworth Photography
 science.howstuffworks.com/film.htm
 Jeff Tyson Motion Pictures
 www.howstuffworks.com/movie-projector.htm
 Karim Nice Gerald Jay Gurevich Digital Imaging
 electronics.howstuffworks.com/digital-camera.htm
 Hermann Helgert Pulse Code Modulation
3. Sept 27 Transmission Technologies
 3.1. The Model of Communication
 3.2. Telegraph
 3.3. Telephone
 3.4. AM Radio
 3.5. FM Radio
 3.6. Television Transmission
 3.7. Cable Television
 3.8. Satellite Broadcasting
 3.9. Data Communication
 3.10. Optical Fiber
 Tom Perera Telegraphy
 www.chss.montclair.edu/~pererat/pertel.htm
 Marshall Brain Telephony and, Television
 electronics.howstuffworks.com/telephone.htm
 electronics.howstuffworks.com/tv.htm
 Curt Franklin Cable Television
 entertainment.howstuffworks.com/cable-tv.htm
 Karim Nice and Tom Harris Satellite Broadcasting
 electronics.howstuffworks.com/satellite-tv.htm/printable
 Ray Horak Fundamentals of Data Communication
 Craig Freudenrich Optical Fiber
 electronics.howstuffworks.com/fiber-optic.htm

4. Oct 4 Storage & Display Technologies
 4.1. Paper and Printing
 4.2. Magnetic Tape
 4.3. CDs and DVDs
 4.4. ROM and RAM
 4.5. Speakers
 4.6. Cathode Ray Tubes
 4.7. Plasma, LCDs and DLPs
 David Macaulay Paper and Printing
 Marshall Brain CDs
 entertainment.howstuffworks.com/cd.htm
 Karim Nice DVDs
 entertainment.howstuffworks.com/dvd.htm
 Jeff Tyson ROM, RAM and LCDs
 computer.howstuffworks.com/rom.htm
 computer.howstuffworks.com/ram.htm
 electronics.howstuffworks.com/lcd.htm
 Tom Harris Speakers, Plasma Displays
 electronics.howstuffworks.com/speaker.htm
 electronics.howstuffworks.com/plasma-display.htm
 Craig Freudenrich DLPs
 electronics.howstuffworks.com/projection-tv.htm
Communication Studies Seminar 810 Digital Technologies and the New Media - 4

5. Oct 11 **Signals and Systems**
5.1. Fourier
5.2. Frequency response
5.3. Filters
5.4. Digital filtering
 Zover Karu *Signals and Systems Made Ridiculously Simple*

6. Oct 25 **Information Theory & Digitization**
6.1. Modeling a communications channel (coding, noise, decoding)
6.2. Measuring information
6.3. Channel capacity: Shannon's theorem
6.4. Digitization & Nyquist's theorem
6.5. Lossless Source Coding
6.6. Predictive Coding
6.7. Frequency Domain Coding
 Claude Shannon, Warren Weaver *The Mathematical Theory of Communication*
 Fred Dretske *Communication Theory*

7. Nov 1 **Networks**
7.1. Circuit Switching
7.2. Packet Switching
7.3. The ISO Layering Model & the CSTB hourglass
7.4. Flow Control/Access control
7.5. Latency
7.6. Error Detection
7.7. Queuing
 Frank Defler, Les Freed *How Networks Work*

8. Nov 8 **The Internet**
8.1. TCP/IP
8.2. Addresses and Domains
8.3. Routers
8.4. HTTP
8.5. Multicast IP
8.6. Dynamic Scripting
8.7. Email
 Preston Gralla *How the Internet Works*
 Sharon Gillett Eisner, Mitchell Kapor *The Self-Governing Internet*
 Marjorie Blumenthal, David Clark *Rethinking the Design of the Internet*
9. Nov 15 Wireless Communications
 9.1. Cellular systems: First, second, third generation
 9.2. Wireless data
 9.3. Spectrum policy, competition & innovation
 George Calhoun The Cellular Idea
 Ray Horak Wireless Networking

10. Nov 22 The Technical Standards Wars
 10.1. The Economics of Standards Setting
 10.2. The Politics of Standards Setting
 10.3. The Dynamic Process
 10.4. Standards Institutions
 Susanne Schmidt, Raymund Werle Coordinating Technology
 Joseph Farrell, Garth Saloner The Economics of Horses, Penguins and Lemmings

11. Nov 29 Data Security & Cryptography
 11.1. Authentication (Passwords, tokens, biometrics)
 11.2. Confidentiality (encryption)
 11.3. Integrity (error correction, digital signatures)
 11.4. Non-repudiation (digital signatures)
 11.5. Transposition
 11.6. One-way function: Hash Functions
 11.7. Symmetric encryption: Secret Keys
 11.8. Asymmetric encryption: Public Keys and PKI
 11.9. Digital Signatures
 Chey Cobb Cryptography Basics
 Simpson Garfinkle Digital Identification Techniques

12. Dec 6 Digital Rights Management
 12.1. The Legal Tradition of Copyright
 12.2. The Broadcast Flag
 12.3. Peer to Peer Challenges
 12.4. Containment Technologies
 12.5. Globally Unique Identifiers
 Randall Davis et al. Intellectual Property in the Information Age

13. Dec 13 Wrap Up & Review
Resource Readings

Communication Studies Seminar 810 Digital Technologies and the New Media

