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Abstract

One of the major challenges facing ITS (Intelligent Transportation Systems) today

is to offer route guidance to vehicular traffic so as to reduce trip time experienced. In

a cooperative route guidance system, the problem becomes one of assigning routes to

vehicles departing at given times from a set of origins to a set of destinations so as to

minimize the average trip time experienced (a so-called system optimal criterion) Since

the time to traverse a link will depend upon traffic volume encountered on that link,

link times are dynamic. The complex interaction resulting between objective function

and constraints makes the dynamic problem significantly more difficult to formulate

and solve than the static version. We present a mixed integer linear programming

∗This work was supported in part by the Intelligent Transportation Systems Research Center of Excellence

at the University of Michigan
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formulation of the problem which is formally derived from a set of traffic flow assump-

tions. Principal among these is the simplifying assumption that vehicles upon entering

a link assume the speed that traffic would attain were the traffic volume encountered

on that link in steady-state. The integer variables correspond to selection of vehicle

capacity constraints on the link while the continuous variables correspond to selec-

tion of vehicle routes. Implicit within this MILP formulation of the dynamic traffic

assignment problem is therefore a decomposition of the problem that results in a con-

ventional capacitated linear programming network flow problem. A small illustrative

subnetwork extracted from the city of Sioux Falls is solved to optimality by IBM’s OSL

Branch-and-Bound algorithm.

1 Introduction

The problem of cooperative route guidance in the context of Intelligent Transportation Sys-

tems is the problem of assigning vehicular traffic to paths or routes from given origins to

given destinations in such a way that average trip time is minimized, a so-called system

optimal solution. (The user optimal criterion for non-cooperative route guidance leads to

a descriptive, as opposed to normative, model that assigns routes so that no single vehicle

can change its route and achieve a strictly lower trip time). The static version of this traffic

assignment problem assumes that traffic is in a steady state so that link volumes are time

invariant and the time to traverse a link depends only upon the number of vehicle routes

that include that link. In the dynamic case, the origin-destination demand is allowed to be

time-varying so that the number of vehicles passing through a link and the corresponding

link travel times become time dependent. Unlike the elegant and complete treatment of

the classic static case (Potts and Oliver [1972], Sheffi [1985]), the dynamic traffic assignment

problem is still largely unexplored, at least from a formal point of view, where even its proper

formulation is not clearly understood.

One of the more controversial issues in modeling the dynamic traffic assignment problem

is the question of how the dynamic character of traffic speeds should be formulated. McGur-

rin and Wang [1991] have constructed a microscopic traffic simulation built on car-following

models. The penalty for this microscopic level of detail is significant computational times.
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Chen and Mahmassani [1993] and Van Aerde et al [1989] have constructed more macroscopic

simulations in which vehicle speeds are determined by static speed functions applied to some

average congestion level, but these approaches may produce link inconsistency (i.e. violation

of first-in first-out, which is unreasonable in a deterministic model) and take limited account

of the dynamic character of the problem. Janson [1989,1991] takes a similar approach in

a nonlinear integer programming model with a mixed discrete/continuous time character;

the model can also suffer from inconsistency and the discretization is based on relatively

long intervals, again limiting the degree of dynamic character. Merchant and Nemhauser

[1978], Carey [1987, 1990], Friesz et al 1989], Wie et al [1990], and Wie [1991] have proposed

models where nonunique (i.e. dispersionary) link travel times are determined implicitly by

link outflow functions, which give the number of vehicles to depart a link as a function of

instantaneous link volume. Link outflow functions, although relatively tractable analytically,

have the undesirable tendency to manifest flow rates which increase with congestion. Ran

et al [1993, 1994] represent outflow rates as decision variables constrained by compound link

travel time functions (distance traversal time plus queueing delay). However, the values of

these link travel times are approximated by an iterative process in which each iteration itself

requires iterative solution of an nonlinear optimization problem of traffic assignment in the

network of interest.

In this paper, we formulate a macroscopic model that implicitly views the assignment

problem as decomposed into two stages. First is the selection of time dependent link vol-

umes, and second is the assignment of routes that optimally utilize those volumes. Since link

volumes and speeds are related in a one to one fashion through link impedance functions,

the first choice is equivalent to selecting a time dependent number of time periods corre-

sponding to desired link travel times. This choice is modeled by integer valued variables.

The resulting assignment problem then becomes a multicommodity network flow problem

which we formulate as an ordinary linear program. The resulting mathematical program is

called a mixed integer linear program or MILP. There exists an algorithm for solving such a

formulation called the Branch-and-Bound algorithm (Murty [1976]). However, based upon

our computational experience in solving a four node network problem as reported in section

4, an exact solution by Branch-and-Bound can only be expected for small scale networks.

The principal contributions of the model offered in this paper derive at this point from its
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mathematically precise statement and axiomatic justification, together with its associated

linear programming relaxation allowing for an exact solution through Branch-and-Bound, at

least for small scale networks. However, the opportunity to solve for a true system optimal

solution for even small scale network problems can result in benchmark problems against

which more efficient heuristic algorithms may be tested for ability to recover most of the

times savings possible.

2 The system-optimal time-expanded network model

In this section we model the problem of dynamic traffic assignment, where we seek to deter-

mine the time-dependent traffic volumes and link travel times that occur in a spatial traffic

network with known topology and time-dependent origin-destination travel demands. We

discretize the finite interval of time to be studied and model traffic as a continuous-valued

multicommodity flow in a time-expanded version of the spatial network. Traffic congestion is

modeled by simple capacity constraints, with upper bounds on instantaneous link congestion

determined by impedance functions. Queueing effects on downstream links leading to spill-

back are indirectly modeled through the finite capacities of these links. It is assumed that

platoons of vehicles entering a link during a single time period exit the link together during

a single later time period; this is modeled by multiple-choice constraints on 0-1 variables

which correspond to the time-dependent travel arcs. Note here that this assumption of no

platoon splitting is not so severe as it would be in the static case, since platoons are already

separated by time of entry to the network.

We model the flows that would occur under cooperative behavior, i.e., dynamic system

optimality, by attaching total network travel time (or equivalently average trip time) as an

objective function to be minimized.

We present a general dynamic impedance model as an extension of static impedance

functions. Vehicle movements are assumed to be static (i.e. in steady state) within links but

dynamic (i.e. transient state) across links. The fundamental assumption is that travel time

along a link is that which would be experienced were the current link loading in steady sate

conditions. Hence the dynamic character occurs across and not within links. In particular,
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Figure 1: Time expansion of the spatial network

link congestion behaves under stationary dynamic traffic flows as it would under static flows.

Daganzo [1995] has noted that dynamic traffic flow models that are driven by link impedance

functions can suffer from various anomalous behaviors unless the impedance functions are

severely restricted in scope. We would expect our model is subject to the same behaviors.

The stability of the model as the period decreases to zero is another interesting issue which

we expect to explore in a future investigation.

2.1 Network definition

Let G = (N, A) be the traffic network with node set N and link set A. We model the

problem with a horizon of h periods, each of duration ∆t, as a time-expanded version of G,

G(h) = (N ,A). Corresponding to each node x of N , N has h+1 nodes x(τ), τ = 0, 1, . . . , h.

Corresponding to arc (x, y) of A, A has arcs (x(τ), y(τ + s)), τ = 0, . . . , h− 1, s = 1, . . . , h.

The time expansion is illustrated in Figure 1. Since N is assumed to contain no self-loops

(x, x), we prevent stalling at nodes by not including any arcs (x(τ), x(τ + s)) in G(h).

(Stalling arcs would appear as horizontal arrows in Figure 1.)

We represent vehicle flows by nonnegative continuous-valued flow variables fd(x(τ), y(τ + s)),

representing the flow volume of traffic with final destination d ∈ N which enters link (x, y)

at time τ and exits at time τ + s. We represent the total such flow volume irrespective of
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destination by

f(x(τ), y(τ + s)) =
∑
d∈N

fd(x(τ), y(τ + s)).

We adopt the general notation g(Z) ≡ ∑
z∈Z g(z) for vectors g and sets Z, and we define

S = {1, 2, 3, . . .} and S̄ = S ∪ {0}. Sums over time expressed in this way will have upper

limits apparent from context, determined by the time horizon. Multiple sets occurring in

a single expression denote multiple summation; for example, the system-optimal objective

function will include terms

f(x(τ − S̄), y(τ + S)) ≡
τ∑

u=0

h−τ∑
s=1

f(x(τ − u), y(τ + s))

which give the volume, i.e., number of vehicles, on link (x, y) during the τ th time period.

2.2 Traffic modeling assumptions and implied constraints

We now list our modeling assumptions governing vehicle dynamics and translate them into

mathematical programming constraints.

I. No dispersion of platoons within links. We assume that all vehicles entering a link

in a single period τ experience the same link travel time. We enforce the assumption by

introducing 0-1 integer variables δ(x(τ), y(τ + s)) for each (x(τ), y(τ + s)) ∈ A. A vehicle

platoon entering link (x, y) at time τ experiences link travel time s only if δ(x(τ), y(τ + s)) =

1, by virtue of the constraints

f(x(τ), y(τ + s)) ≤Mδ(x(τ), y(τ + s)) (x(τ), y(τ + s)) ∈ A (1)

where M is an arbitrarily large constant. We prevent dispersion of the platoon by the

multiple choice constraints

δ(x(τ), y(τ + S)) ≤ 1 (x, y) ∈ A, 0 ≤ τ < h (2)

permitting at most one link travel time s (i.e. one arc (x(τ), y(τ + S))) to be chosen from

S for link (x, y) at time τ). Note that if no vehicles enter link (x, y) at τ , then it is feasible

not to choose any arc, i.e., δ(x(τ), y(τ + S)) = 0. It might be preferable to require a choice
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Figure 2: Link inconsistency

so that we would know what link travel time would occur if some increment of flow were

rerouted onto (x, y), but the corresponding revision of (2) as strict equality constraints has

a drawback, illustrated below, in connection with our next assumption.

II. Link consistency. We assume that vehicles do not pass one another, i.e., that among

two platoons traversing a link, the one that enters later does not leave earlier. An inconsistent

arc choice is illustrated in Figure 2(a). (The terminology is from Kaufman and Smith [1993],

where link consistency is discussed in more detail.)

By observing that a nonzero traffic flow entering (x, y) at τ experiences link travel time equal

to
∑h−τ

s=1 sδ(x(τ), y(τ + s)), we write the link consistency constraints

τ +
h−τ∑
s=1

sδ(x(τ), y(τ + s)) ≤ ω +
h−ω∑
s=1

sδ(x(ω), y(ω + s)) (3)

for all (x, y) ∈ A, 0 ≤ τ < ω < h such that δ(x(ω), y(ω + S)) = 1.

The constraint cannot be applied when δ(x(ω), y(ω + S)) = 0 (whereas, if δ(x(τ), y(τ + S)) =

0, it is vacuous). This restriction is technically nonlinear, but has the simple linear reformu-

lation

τ +
h−τ∑
s=1

sδ(x(τ), y(τ + s)) ≤ ω +
h−ω∑
s=1

sδ(x(ω), y(ω + s)) + M(1− δ(x(ω), y(ω + S)))(4)

for all (x, y) ∈ A, 0 ≤ τ < ω < h for a suitably large value M .
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We can now explain why we have chosen the inequality form of the multiple-choice constraint

by discussing the example in Figure 2(b). Consider link (x, y) loaded by only those platoons

shown descending vertically in the figure. Say that the platoons of 15 and 5 vehicles entering

empty link (x, y) at times τ−2 and τ+1 have link travel times of 3 and 1 periods, respectively.

In the congestion model we will present, link travel times are determined simply by the

number of vehicles anywhere on the link at the moment of entry, including the entering

platoon. Thus the zero-flow platoon entering at time τ would see a total of 15 vehicles on

the link and choose a link travel time of three periods (shown by the dashed arc) if the

equality multiple-choice form were in force. To resolve the resulting inconsistency, we would

have to delay the link exit of the five-vehicle platoon by one period. We have used the

inequality form in (2) to prevent this “phantom-vehicle” delay effect.

III. Finite horizon addressed with fixed trip-completion penalties. We will permit vehicles

to enter the network throughout the study horizon, so vehicles that enter near time h may

not be able to finish their trips by h. We require that these vehicles occupy some time-

expanded node y(h) at time h, rather than being left in the middle of a time-expanded arc.

This will be accomplished by leaving all arcs of the form (x(τ), y(h)) uncapacitated. We

then penalize each vehicle that failed to complete its trip to node d and instead finished at

y(h) by an estimate β(y, d) of the travel time required to finish the trip. For example, β(y, d)

can be chosen to be the free-flow time from node y to node d. There are at least two ways

to circumvent the necessity to specify these end-of-study penalties. The first is to eventually

prevent vehicles from entering the network and set the horizon sufficiently large to allow all

vehicles to clear. The second is to set the horizon sufficiently distant that the effect of these

penalties becomes negligible with respect to the early routing decisions. Although such a

horizon is difficult to a priori compute, its existence is assured (Schochetman and Smith

[1997]).

Thus the complete system-optimal objective function is

min
h−1∑
τ=0

∑
(x,y)∈A

f(x(τ − S̄), y(τ + S)) +
∑
d∈N

∑
(x,y)∈A

β(y, d)fd(x(h− S), y(h)) (5)

where the first term expresses the actual total travel time in the system (as explained in

section 2.1), and the second term adds the trip completion penalties.
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IV. Flow conservation except at trip completion. We require that for vehicles with any

particular destination d, the number departing any time-expanded node x(τ) (x 6= d) is

equal to the number entering x(τ) plus the number that begin their trips at x(τ). Given that

vd(x(τ)) vehicles enter the network at x(τ) with destination d, we write the corresponding

constraints as

fd(x(τ), N(τ + S))− fd(N(τ − S), x(τ)) = vd(x(τ)) x, d ∈ N, x 6= d, 0 ≤ τ < h. (6)

We omit conservation constraints for τ = h since vehicles still on the network at time h are

handled via trip-completion penalties. We also omit constraints for x = d, allowing vehicles

that reach their destinations to drop out of the network and cease contributing to the total

travel time component of the objective function.

V. Capacitated congestion modeling. We now model the delay caused by increasing traffic

loads. Our congestion modeling is determined by three assumptions:

V.1 Feasible link travel times for a platoon entering link (x, y) at time τ depend only

on the volume of traffic on (x, y) at time τ , including the entering platoon.

V.2 The dynamic model of link travel time, applied to a traffic network in steady state,

agrees with standard static models.

V.3 Congestion can be modeled by capacity constraints

f(x(τ), y(τ + s)) + f(x(τ − S), y(τ + S)) ≤ c(x(τ), y(τ + s)) (7)

for all (x(τ), y(τ + s)) ∈ A, τ + s < h such that δ(x(τ), y(τ + s)) = 1

where c(x(τ), y(τ + s)) is the capacity of spatial link (x, y) given that flows entering at

time τ can achieve link travel time s.

Assumption V.1 is reflected in the structure of constraint (7), which takes into account only

flows f(x(τ − S̄), y(τ + S)) which entered (x, y) at or before time τ and will exit after τ .

Assumption V.2 helps to determine capacity values c; we defer this topic to Section 3.
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The multiple choice structure allows us to sum constraints (7) over s, reducing the number

of constraints by O(h) and yielding

f(x(τ), y(τ + S)) + f(x(τ − S), y(τ + S))

≤
h−τ∑
s=1

δ(x(τ), y(τ + s))c(x(τ), y(τ + s)) (8)

for all (x, y) ∈ A, 0 ≤ τ < h such that δ(x(τ), y(τ + S)) = 1

which is a nonlinear restriction as was (3), but which can be reformulated linearly in the

manner of (4). Also, the compressed version requires c(x(τ), y(h)) = M for all (x, y) ∈ A,

0 ≤ τ < h so that arcs ending at time h are effectively uncapacitated, as specified under

Assumption III.

2.3 The mathematical program

The mixed integer-linear mathematical program for system-optimal dynamic traffic assign-

ment consists of objective function (5) subject to non-dispersion ((1) and (2)), consis-

tency (4), flow conservation (6), and capacitated congestion modeling (the linear version

of (8)), given the decision variables as specified in Section 2.1.

The program requires time-dependent travel demand data vx(d(τ)) and link capacities

c(x(τ), y(τ + s)). We do not further discuss the issue of travel demand data which must be

provided from the field. We discuss link capacities in the following section.

3 The capacitated congestion model

In this section, we demonstrate that a standard model of the steady-state behavior of the

link, in combination with Assumption V.2, uniquely determines the capacity data required

for the mathematical program specified in Section 2.3.

Under Assumption V.2, we require that for a link in steady state with constant inflow

rate and total volume over time, the dynamic model predicts the same link travel time that

would arise in static modeling. Static traffic modeling provides speed functions σxy(·), which

give the vehicle speed on link (x, y) as a function of the time rate of flow across the link,

assumed constant over time. We assume that σ is a positive, continuous, decreasing function.
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To make the dynamic model act as a true generalization of the static model, we construct

a steady-state loading in our time-expanded network G(h) where λ vehicles enter link (x, y)

in each period. The speed on (x, y) is therefore σxy(λ), constant over time. We denote the

physical length of (x, y) by dxy, and thus

σxy(λ) =
dxy

s
(9)

where s is the steady-state link travel time. The speed function σ has a well-defined inverse,

thus λ = σ−1(dxy/s).

Theorem 1 Assumption V.2 implies

c(x(τ), y(τ + s)) = sσ−1
xy

(
dxy

s

)
(x(τ), y(τ + s)) ∈ A.

Proof: With a flow rate of λ = σ−1(dxy/s) vehicles per period, assumed feasible, con-

straint (8) requires

c(x(τ), y(τ + s)) ≥ sσ−1
xy

(
dxy

s

)
, (10)

the right-hand side of (10) being the number of vehicles on link (x, y) at any time in-

stant. Now assume strict inequality holds in (10). Then σxy(c(x(τ), y(τ + s))/s) < dxy/s,

contradicting (9).

4 Computational example

The formulation we have developed presents a very challenging mixed integer linear program

to solve. Given a particular choice of the values of the 0-1 variables δ, many flow variables

are eliminated by constraints (1). However, O(|N ||A|h) columns remain in the underlying

linear program. More importantly, there are O(h|A|h) ways to specify the complete set of δ

values, ruling out optimization strategies based on complete enumeration.

One possible use of the MILP in large networks is to optimize small subnetworks in

isolation. Accordingly, we removed a centrally located subnetwork of four nodes, as shown
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Figure 3: Sioux Falls subnetwork

in Figure 3, from the Sioux Falls network of 24 nodes studied by Leblanc [1975]. Our small

test network has four nodes, eight physical links, and four destinations. We chose to study

a five period problem with the standard time interval representing 1.5 minutes.

4.1 Travel demand data

We produced an imputed set of travel demand data by identifying all shortest paths in the

original network under freeflow (i.e., zero-flow) link travel times. For each travel demand for

flow from node x′ to node d′ in the full network, we counted those vehicles as demanding

travel from node x to node d in the subnetwork if and only if the freeflow shortest path from

x′ to d′ intersected the subnetwork, entering at x and exiting at d. We accepted the resulting

totals as mean entry rates v̄xd per period for each origin-destination pair, and generated a

set of time-varying travel demands by sampling an entering flow vd(x(τ)) for each period τ

from the normal distribution with mean v̄xd and variance chosen nominally as 0.1v̄2
xd.

The resulting time-varying origin-destination demands in vehicles per period are shown in

Table 1, along with trip completion penalties β estimated as freeflow trip completion times.

(Recall that the penalty β(y, d) is applied to any vehicle with destination d which is at node

y at the end-of-horizon time h. Recall also that all nodes (x(τ), y(h)) are uncapacitated, so

that vehicles always occupy some node y at time h rather than being left in mid-link. This

has the effect of truncating all link travel times which would otherwise extend beyond h.)
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O-D for time 0 O-D for time 1.5 O-D for time 3.0

1 2 3 4 1 2 3 4 1 2 3 4

1 0 39 17 10 1 0 45 17 11 1 0 41 16 11

2 40 0 7 38 2 44 0 5 31 2 38 0 7 29

3 14 5 0 14 3 21 5 0 15 3 17 6 0 13

4 10 36 14 0 4 12 44 15 0 4 13 36 13 0

O-D for time 4.5 O-D for time 6.0 β(x, y) in ∆t units

1 2 3 4 1 2 3 4 1 2 3 4

1 0 37 14 12 1 0 44 17 12 1 0.000 2.000 1.768 3.576

2 38 0 7 42 2 42 0 5 41 2 2.000 0.000 3.768 2.348

3 15 6 0 13 3 17 6 0 16 3 1.768 3.768 0.000 1.808

4 9 35 12 0 4 12 30 13 0 4 3.576 2.348 1.808 0.000

Table 1: Actual travel demands and trip completion penalties used in the test problem

4.2 Capacity coefficients

The congestion behavior of the network is given in a different form than was assumed for

our discussion in Section 3, but as we now demonstrate, the principle by which we choose

capacities c(x(τ), y(τ + s)) is sufficiently flexible to handle this variation.

Rather than being given speed functions σxy(λ) and physical link lengths dxy, the Sioux

Falls network has associated link travel time functions which follow the well-known BPR

form (cf. Branston [1976]):

Txy(λ) = T 0
xy

1 + 0.15

(
λ

Cxy

)4


where λ is a vehicle flow rate and Txy(λ) is its associated link travel time, given the freeflow

link travel time T 0
xy and the practical link capacity Cxy. This data is given in Table 2 for

the links in the subnetwork, with travel times in units of 1.5-minute periods and practical

capacities as vehicles per period. (The links in this network are assumed to have identical

characteristics in either direction. For example, link (2,1) has freeflow duration and capacity

equal to that of link (1,2).)
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Link Freeflow travel Practical

(x, y) time T 0
xy capacity Cxy

(1,2) 2.000 25.00

(1,3) 1.768 12.50

(2,4) 2.348 33.75

(3,4) 1.808 12.50

Table 2: Link travel time function data

To apply our prior reasoning to this form, we write the associated speed function as

σxy(λ) =
dxy

T (λ)

where dxy is now an effective link length, rather than a physical length. (We need not

determine a value for the effective link length, as it is about to drop out of the capacity

expression.) We can easily find the inverse speed function to be

σ−1
xy (g) = Cxy

[
1

0.15

(
dxy

gT 0
xy

− 1

)]0.25

and thus by Theorem 1, we find

c(x(τ), y(τ + s)) = sCxy

[
1

0.15

(
s

T 0
xy

− 1

)]0.25

,

into which we substitute s = 1, 2, . . . , h for each link to complete the data needed for the

MILP.

4.3 Solution results

The MILP formulation for this example has 116 integer variables, 304 continuous variables,

and 296 constraint rows. To gauge the significance of the optimal solution, we first con-

structed an initial heuristic solution by assigning all vehicles to their freeflow paths. The

resulting objective function value was 4866.0 minutes.
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Using the branch-and-bound MILP solution package of the IBM Optimization Subroutine

Library, we obtained an optimal solution with objective function value 4803.0 minutes, an

improvement of 1.3%. The link travel times in effect in the optimal solution are illustrated in

Figure 4, by the device of showing a link (x(τ), y(τ +s)) of the time-expanded network if and

only if δ(x(τ), y(τ + s)) = 1. For ease of reading, the upper graph shows link travel times

for vehicles at nodes 1 and 4, and the lower graph gives the same information for nodes 2

and 3.

Note that the model does have the ability to model the balancing of flows by route

splitting, i.e., giving different routes to vehicles with identical characteristics (location and

destination). For example, although we have not shown the flow volumes divided by desti-

nation class, it can be verified that some vehicles enter at node 4 at time 1:30 and take the

long route through nodes 2 and 1 to reach node 3, rather than going on link (4, 3) directly.

This allows a reduction in link travel time on (4, 3) from 4.5 minutes to 3 minutes, giving

a clear indication that the system-optimal solution is distinct from a user-optimal, or Nash

equilibrium, solution.

We next repeated the generation of random travel demands to produce ten data sets. The

optimal solutions of the resulting programs improved on the associated freeflow-heuristic

solutions by an average of only 2.2%. However, we feel that this seeming inutility of the

MILP solution process is substantially due to end-of-horizon effects. Although the solution

required only six minutes on an IBM RS/6000 workstation, the size of the problem strained

the available memory, inducing our choice of a horizon of only five periods. As a result, many

of the vehicles which enter the network are unable to complete their trips by the end of the

horizon, thus incurring the trip completion penalties β, which were derived from freeflow link

travel times. Therefore, the cost function of the MILP bears a strong resemblance to pure

freeflow travel time, which was minimized in generating the heuristic solution. The optimal

MILP solution value would thus be expected to be close to the minimal freeflow travel time.

If this modest improvement over a freeflow solution were to persist in more extensive

empirical studies, this would suggest the important conclusion that heuristic methods could

be expected to capture most of the travel time savings possible. (Another more disturbing

implication would be that potential savings through route guidance are not substantial.) An

implementation of Branch-and-Bound that specifically exploited the network structure of the
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Figure 4: Link travel times in system-optimal solution

subproblems to be solved during its execution would be in a position to solve a considerably

longer horizon problem that we were able to address in this initial study.
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