FAILURE OF UNIDIRECTIONALLY REINFORCED COMPOSITES
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ABSTRACT:

A failure criterion for a composite with a frictional matrix and unidirectionally oriented tensile

inclusions is presented. The frictional matrix is comprised of granular material with or without cohesion. An
energy-based homogenization technique is used to derive the macroscopic stress state associated with the limit
state of the composite. The failure condition for a composite with long inclusions is expressed as a piecewise
function, and a closed-form representation is given. A numerical scheme is presented for finding the collapse
criterion for a composite reinforced with short fibers. Conditions derived can be used, for instance, to describe
collapse of reinforced soils. A solution to a boundary value problem is presented, using the method of charac-
teristics for solving the set of hyperbolic-type partial differential equations. A peculiar type of stress discontinuity
is found, characteristic of plastic stress fields in anisotropic materials.

INTRODUCTION

Fiber-reinforced cementitious composites have found a very
wide application from civil engineering to aerospace engi-
neering. The composite material considered in the present pa-
per is different in that its matrix is built of low or noncemen-
titious, but frictional material (such as granular or cohesive
soils). Only one aspect of the material behavior is considered
here: failure. In particular, a failure criterion for a unidirec-
tionally reinforced granular matrix with low or no cementation
will be presented.

Elastic and elastoplastic behavior of composite materials has
been described using various methods of homogenization (av-
eraging), ranging from self-consistent schemes [see, for in-
stance, Hill (1965), Budiansky (1965), and Mori and Tanaka
(1973)] to the finite element approach [for instance, Dvorak
et al. (1974)]. An excellent survey of techniques used for anal-
ysis of composite materials was presented by Hashin (1983),
and, since then, a significant interest in fiber composites has
been maintained. Little attention has been paid to composites
with granular or low-cementitious matrices, however. Failure
criteria of such materials must be known to evaluate the sta-
bility of structures such as, for instance, reinforced earth
slopes. The existing literature includes only a handful of pa-
pers with experimental results or case histories, and few at-
tempts have been made to theoretically describe the behavior
of fiber-reinforced or continuous filament-reinforced granular
composites (Sawicki 1983; de Buhan and Siad 1989; di Prisco
and Nova 1993; Michalowski and Zhao 1994, 1995).

The present paper shows a failure criterion for a frictional
and cohesive matrix reinforced with unidirectional inclusions,
such as traditional long reinforcement strips or short fibers.
The criterion can be made a part of the constitutive relations
used in numerical techniques, such as the finite element
method, for solving boundary value problems.

The scale of the constituents in the composite may vary
significantly here. If a matrix of the composite is a granular
material such as sand, then the length of fibers in the fiber-
reinforced composite needs to be of the order of centimeters.
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Spacing of fibers needs to be large enough so that the inter-
action among fibers can be ignored (a common restriction in
all self-consistent homogenization techniques). Here this spac-
ing is considered to be at least several grain diameters, with
the overall fiber content not exceeding 10% (for lack of ex-
perimental evidence this number is somewhat arbitrary and
perhaps low, but practical cases of soil reinforcement are ex-
pected to be significantly less than 10%). However, the com-
posite material considered here may also represent a reinforced
soil mass where the reinforcing strips or grids are meters long
(with, for instance, 0.5 m spacing). In the latter case, the fail-
ure criteria derived here can still be used in the analysis of
global stability of structures, provided the dimensions of the
structure are at least an order of magnitude larger than the
spacing of the reinforcement.

The homogenization scheme is presented in the next section
followed by derivation of the failure criteria. Implementation
of the derived criterion in a soil-mechanics problem is shown
next, and the paper concludes with some final remarks.

HOMOGENIZATION SCHEME

The purpose of homogenization is to represent quantities
such as stresses and strains or material properties (such as
elastic moduli) as average quantities that take into account
microstresses in the composite constituents, volumetric pro-
portions of these constituents, their respective properties, and
shape of inclusions. Here the objective is to represent the fail-
ure criterion of a pressure-dependent (frictional) material re-
inforced with longitudinal inclusions. Such a criterion is to be
represented in terms of the macroscopic stress; that is, the
stress averaged over the two solid constituents of the compos-
ite (matrix and fibers). The term macroscopic here pertains to
the average stress, or properties, of the composite, as opposed
to the stress or properties in the constituents (microscopic).
The terms macroscopic and microscopic do not relate here to
the size of the composite representative element.

The diameter of the inclusions is considered to be at least
an order of magnitude larger than the diameter of the grains
in the matrix, and the dry friction law is considered applicable
on the soil-fiber interface. The aspect ratio of the inclusions is
at least of the order of 10' to 10° and spacing is of at least
one order of magnitude higher than the inclusions’ thickness/
diameter. Under such circumstances one can expect that, given
sufficient confining stresses, a tensile force can be induced in
longitudinal reinforcing elements that allows the macroscopic
stress in the composite to increase beyond what would be con-
sidered a limit stress for the matrix alone.

A kinematics (or energy-based) approach to homogenization
will be used in which a plastic velocity field for a represen-
tative composite element, such as in Fig. 1, is assumed, and
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FIG. 1. Composite Material: (a) Macrostress; (b) Deformation
of Composite Element

the energy dissipation rate in the constituents of the composite,
D(¢,), is equated to the work performed by the macroscopic
stress G0,

6',-jéi/ = l J’ D(G,j) dv (1)
V v

where V = volume of representative element of composite; and
€, = macroscopic (average) strain rate. Such a concept was
explored earlier in the context of cementitious composites by
Hashin (1964), Shu and Rosen (1967), and, for two-dimen-
sional membranes, by McLaughlin and Batterman (1970). This
homogenization procedure was also suggested for finding fail-
ure criteria for soils reinforced with randomly distributed fibers
(Michalowski and Zhao 1996). Once the energy dissipation
rate during the plastic deformation (collapse) of the element
is calculated, the macroscopic stress &;; can be calculated from
(1). This macroscopic stress then can be represented as a point
on the failure surface in the macroscopic stress space.

Of interest are failure criteria associated with plane kine-
matics where the uniaxial reinforcement is contained in the
plane of deformation. In this homogenization scheme we will
assume a linear velocity field throughout the representative
element in the form

U = ayXy 2)

where v; = velocity vector; x; = Cartesian coordinate; and a;;
= matrix of coefficients subject to constraints imposed by di-
latancy of base (matrix) material.

FAILURE CRITERIA

To calculate the energy dissipation rate, D(€,), the strain rate
field, &;, inside the representative element needs to be known.
As the velocity field throughout the representative element is
assumed to be linear [see (2)], the strain rates are uniform, and
the macroscopic strain rate €; = £,. While such an assumption
would not be realistic for elastic deformation or a hardening
flow regime, it is a reasonable one when the composite failure
is reached (zero hardening modulus).

The matrix of the composite is assumed here to conform to
the Mohr-Coulomb failure criterion and the associative flow

rule. Consequently, the strain rate field used in the kinematical
approach must satisfy the relation (plane strain)

év
é] - ég

= —sin ¢ 3)

where €, = €, = volumetric strain rate; €, and €; = maximum
and minimum principal strain rates, respectively; and ¢ = in-
ternal friction angle of matrix, which, for the associative flow
rule, also indicates rate of dilation.

There is some controversy about using the normality rule
since the laboratory results for sand indicate less dilation than
that predicted by the associative flow law. Here, however, the
associative flow rule is used only to select a virtual deforma-
tion in the homogenization scheme. It is convenient to use the
associative rule, since the energy dissipation rate in the com-
posite matrix becomes, in such case, independent of a partic-
ular stress state (zero for a noncementitious matrix). Discus-
sion of the normality rule versus the nonassociative flow law,
however, is beyond the scope of this paper.

The rate of energy dissipation per unit volume of the matrix
during plastic deformation under plane strain conditions is

D™ =0t = (€ — &)c cos ¢ 4

where o7 satisfies Mohr-Coulomb failure function (¢ = co-
hesion and ¢ = internal friction angle of matrix material). The
amount of reinforcement inclusions is characterized here by
reinforcement concentration (volume density)

Vv,

P= &)
where V, = volume of inclusions; and V = volume of entire
representative composite element. We are considering com-
posites where the volume of reinforcing inclusions (for in-
stance, fibers) is small compared to the volume of the com-
posite (p << 1); thus D" in (4) can be interpreted as the
dissipation rate in the matrix per unit volume of the composite.

Long Inclusions (Strips/Bars)

First a composite with long reinforcing inclusions is con-
sidered, where no slip occurs. Such composite material is rep-
resentative of *‘traditional’’ reinforced soil. The yield point of
the reinforcement material is o,. Since the deformation of the
reinforcing inclusions is assumed to be the same as that for
the matrix, the dissipation rate in the inclusions per unit vol-
ume of the composite is

D/ = PU{jéij = <§>p0’0n,~njéu (6)

where n; and n; = unit vectors in direction of reinforcement;
and coefficient {(£) depends on mobilization of tensile force in
fibers

_J-1 whengnn <0
© _{ 0 otherwise @

As most applications of the theory presented here are in soil
mechanics, we assume that the tension is negative. Coefficient
& represents mobilization of the stress in the reinforcement,
and, in general, it can vary in the range of —1 =< £ =< 0, but
the energy can be dissipated in fibers only when yield point
Oy is reached (£ = (§) = —1). Note that, according to (6), the
contribution of the longitudinal inclusions (fibers, bars, strips)
in the compressive regime to the composite strength is ne-
glected here (due to buckling and kinking).
Eq. (1) can now be written for plane strain conditions as

G.& + 6,6, + 27,6, =D" + D/ €]
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It is convenient to represent the macroscopic failure criterion
for plane strain conditions in space p, g, %.,, where p = (G, +
G,)/2 and g = (G, — &,)/2. Introducing the angle of inclination
of the major principal macrostress to the x-axis ¥

tan 2§ = _—27”—:— =
g, — Oy q

©

Eq. (8) takes the form
(p+ @QE + (p — @), + 2q tan 2y¢,, = D™ + D’/ (10)

It was found to be convenient to calculate points on the failure
surface in space p, g, 7,, by calculating in-plane stress invar-
iant R for given values of p and angle s

\/(6x - _y)z + 4’f§y = \/q2 + sz = lql V1 + tan22\|;
an

Using (4) and (6), solving (10) for g, and using the relation
in (11), one obtains

c cos @V/(E, — &) + 4€3, + (E)poot, — p(&, + &)
€ — €, + 28, tan 2¢
V1 + tan®24 (12)

where €, = magnitude of rate of strain in direction of rein-
forcing inclusions

R=

-

RE, &), &) =

£, = €;mn; = €, cos’a + €, sin’a + &, sin 2a (13)

and a = angle of inclination of inclusions to x-axis. As this
approach yields the upper bound to the macroscopic failure
criterion, a minimum R was sought from (12) in an optimi-
zation scheme where the strain rates were variable with re-
striction in (3) and with (£) determined in (7). Cross sections
of the failure surface calculated (p = constant) are shown in
Fig. 2. The failure surface in space p, g, %,, is presented in
Fig. 3. It consists of two conical surfaces joined by two plane
segments.

The matrix of the composite was assumed to obey the
Mohr-Coulomb yield function and the associative flow rule.
The resulting flow rule for the composite also conforms to the
normality rule.

The failure criterion of an anisotropic pressure-dependent
material under plain-strain conditions can be, in general, writ-
ten as

g=35°
c/po,=0.3

a=10° 1.5 'Txy/poo

p/po,=0.5
p/po,=1.0 -1.5

FIG. 2. Cross Section of Failure Surface for Unidirectionally
Reinforced Composite with Long Inclusions (No Slip)
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FIG. 3. Failure Surface for Unidirectionally Reinforced Com-
posite in Space p, g, 7., (No Slip of Reinforcing Inclusions)

f(&n &Y’ '?xy) =R - F(pv ll’) =0 (14)

where s and invariant R are given in (9) and (11), respectively;
and p = another in-plane invariant {p = (&, + ,)/2]. When
function F is independent of ¥, (14) represents an isotropic
yield criterion. Representation of failure surface f(p, g, 7.,) =
0 can be given as a piecewise function. Analytical expressions
are given next, in which angle a is the angle of inclination of
the principal axis of anisotropy to the x-axis (inclination of
the direction of reinforcing inclusions). For the part where no
influence of fibers is present (§ = 0), i.e., where

20 - 20| =2~ ¢ (as)
the analytic representation of the macroscopic yield function
is

R=F(p)y=psing + ccos ¢ (16)

For planar segments in Fig. 3 (—1 < £ < 0), angle 2y remains
in the range

0.5pa,

iy v
== —2a|=—=— ¢+ tan | ————— 17
5~ @<[2¢ —2af =3 - ¢+ tan (ptawﬂ) a7

and the failure criterion is

psing + ccos ¢
sin(QYy — 2a + ¢)

R=F(p, )= (18)

When the strength in the fibers is fully mobilized (§ = —1),
angle 2¢ remains in the range

X ( 0.5p0,

™
— — ¢ + tan”
ptan ¢ + ¢

> ><|2¢——2a|5'n' (19)

and

R=F(p, ¥) = —0.5p0, cos 2(y — )

+ VI(p + 0.5pay)sin ¢ + ¢ cos 9> — [0.5pay, sin 2(fs — )]
20y

A surface identical to that in Fig. 3 can be obtained through
a purely static approach as in the theory of mixtures. This
surface is an envelope to the sum of the limit stress in the
matrix and stresses at or below failure in reinforcing strips/
fibers. Such an approach, however, would be very cumber-
some when applied to homogenization of the stress in a com-
posite with short fibers, as presented in the next subsection.



The former was considered earlier (de Buhan and Siad 1989)
for the case of a noncementitious matrix, but the failure sur-
face was presented in a different stress space. A more con-
venient analytical description for this perfect case was found
recently (Michalowski and Zhao 1995).

No lab test results on composite samples are available to
verify the failure criterion derived. Later in this paper, a so-
lution to a boundary value problem (collapse of a vertical
slope) is compared to the result from a lab test on a physical
model to indicate the rationality of the description proposed.

Short Inclusions (Fibers)

A model of a composite with short inclusions is represen-
tative of fiber-reinforced soils. In some applications, such as
rolled subgrades of airfields, the preferred orientation of the
fibers is horizontal. If the plane of deformation is any vertical
plane, then the failure criterion as presented here can be used
to describe the strength of such composite (the effective length
of fibers being the average of the fibers’ projection on the
plane of deformation).

No cohesive bond between the fibers and the matrix is con-
sidered, and the load transfer to the fibers has a frictional na-
ture. During plastic deformation of the composite, fibers are
expected to slip in the matrix at a low confining pressure, and
to fail in tension at large mean stresses. In the latter case, the
ends of fibers slip to a distance where the yield stress, gy, is
mobilized in the fibers. Fig. 4 presents an expected distribution
of shear at the fiber surface and axial stress during deformation
of rigid-perfectly plastic fibers in a matrix subjected to the
velocity field in (2). Assuming cylindrical fibers with radius r,
the length of slip region s (Fig. 4) is

r 0o

s (21)

= 5 g, tan @,
where o, = stress normal to fiber surface; and ¢, = friction
angle of matrix-fiber interface. In order for the tensile collapse
of fiber to occur, the length s must be smaller than half of the
fiber length //2, which occurs when

1 To
- 22
n> 2 o, tan ¢, (22)
where m = fiber aspect ratio
— i (23)
n= 2r

We assume here that all fibers have the same aspect ratio 7.
The energy dissipation rate due to the plastic deformation of
fibers (yielding) per unit volume of the composite can be cal-
culated now as

(a) {b)

slip |
» E
i tensile '
failure
~ fiber
m \:,
slip |

FIG. 4. Expected Stress Distribution for Rigid-Perfectly Plas-
tic Fiber in Uniformly Deforming Matrix: (a) Shear Stress at Fi-
ber/Matrix Interface; (b) Axial Stress

. 1 To .

7= —-—Jo
D’ = (E)poo (1 Zn o, tan <Pw> €, (24)
where (£) and &, are given in (7) and in (13), respectively. The
dissipation due to slip of the fiber ends (per unit volume of
the composite) is
To

D% = (£)po, L

—_ 25
4n o, tan @, (25)

Note that no dissipation is accounted for in the compressive
regime ((€) = 0). The total energy dissipation rate in fibers per
unit volume of the composite now becomes

. . . 1 Ty .
Df=Df + D! = ] — - — Y
1 b= (Epoo ( dno,t ‘Pw) €, (26)
when
1 Ty
L - — 2
n 2 0,tan o, @n

the fiber energy dissipation occurs in the slip mode only, and
it becomes independent of yield point o

D' = D4 = (Epno, tan ¢,&, 28

The failure criterion for a frictional matrix reinforced with
short fibers can now be obtained by following the same pro-
cedure as in the preceding section, with the exception that the
dissipation rate in the fibers, (6), needs to be replaced with
(26) [or (28)]. Consequently, the failure condition can be ob-
tained through minimizing function R in (12) where the second
term in the numerator is replaced with (26) [or (28)]. Notice
that when 1y — o (12) is recovered. The influence of the fiber
aspect ratio on the macroscopic failure criterion is illustrated
in Fig. 5.

While limited laboratory results on random fiber soil rein-
forcement are available, no experimental data on uniaxially
reinforced soils exist that could be presented in terms of a
failure surface in the macroscopic stress space. However, in
an early work by Yang (1972), one point on the failure surface
was obtained for which the major principal stress was perpen-
dicular to the direction of reinforcement. That result was for
long reinforcement and it is identical to a particular case of
(20) when 24 = 7 + 2a.

The length of the fiber slip section [refer to (21)] and the
energy dissipation rate due to fibers [refer to (26)] depend on

Try/ PO,
0.8

p/po,=0.6

q/po,

0.2 .4 0.6

c/poy=0
¢=35°
¢,=25°
a=10°

FIG. 5. Cross Sections of Composite Failure Surfaces (p =
Constant) for Fibers of Different Aspect Ratios

n=160
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the stress normal to the fiber surface. While the normal stress
in the plane of deformation can be represented as a function
of the limit macrostress @;;, distribution of the normal stress
along the entire perimeter of the fibers cannot be found, since
the resulting failure criterion is independent of the intermediate
principal stress. Any attempt at calculation of o, then will be
approximate. Stress o, was taken in calculations here as being
equal to the mean of maximum and minimum macrostresses
in the plane of deformation ( p).

IMPLEMENTATION

Two examples of application of the derived failure criterion
are presented next. Both solutions are for a composite with
very long fibers (n — =), since the closed-form criterion was
derived only for this case. The influence of the aspect ratio
(M) on the bearing capacity in the first example can be ascer-
tained, to a certain extent, from Fig. 5, where the effectiveness
of reinforcement as a function of m is illustrated.

A flat smooth punch indentation of a rigid-plastic half-space
whose failure criterion is described by the surface in Fig. 3
[see also (15)-(20)] is considered. The limit load is found
using the slip-line method. Eq. (14), along with the set of
differential equilibrium equations, leads to a set of two hy-
perbolic-type partial differential equations that can be solved
using the method of characteristics. The equations of charac-
teristics can be expressed as (Booker and Davis 1972)

d
I{ =tan(y — m — v), s,-characteristic (29a)
dy -
d_x =tan(y — m + v), s,-characteristic (29b)
and the stress relations along the characteristics are
0, d
sin2om — v] 22 4 2k ¥
asy as,
a d
+ vy cos(2m) [cos(Zv) 5—:1 — sin(2v) a—:l] =0, & (30a)
5] d
sin2m + v)) L 4 2r ¥
asZ 652
d, d
+ vy cos(2m) [cos(Zv) Bsiz + sin(2v) a—:z] =0, s (30b)
and
aF oF
= —— 2v) = — ,
tan(2m) 3F oy cos(2v) = cos(2m) p (31a,b)

where y = unit weight of soil. The gravity acceleration is as-
sumed here to be directed opposite of coordinate y.

Solutions to two boundary value problems are given next.
The application in Fig. 6 is similar to the smooth punch-in-
dentation problem considered by Hill (1950), with the excep-
tion that the half-space is now pressure-dependent and aniso-
tropic. The failure criterion is represented by (15)—(20). Such
a composite is representative of a soil subgrade reinforced with
horizontal reinforcement strips or blankets of geosynthetic ma-
terial. The matrix (fill) material is cohesionless with an in-
ternal friction angle ¢ = 35°. The geometry of the punch and
the amount of reinforcement are characterized by coefficient
vbipo, = 0.4 (v = specific weight; b = punch half-width). The
stress boundary condition is given along AG (Fig. 6) as a
vertical pressure, g,/yb = 0.25, and the direction of the limit
pressure along AB is vertical (smooth punch).

Along AG we have ¥ = 0, and the force in the reinforcement
is not mobilized in the entire triangle AFG. The failure crite-
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FIG. 6. Stress Characteristics Field for Smooth Punch Inden-
tation into Anisotropic Half-Space

rion is described here by the classical Mohr-Coulomb failure
function, (16), and the Cauchy boundary value problem in
AFG reduces to the isotropic case, as in Sokolovskii (1965).
Fan of characteristics AFC represents the slip-line solution for
a boundary value problem with a singular point at A. The case
where no force is mobilized in the reinforcement extends from
characteristic AF to AE. At point A of characteristic AE angle
2y = w/2 — ¢. Beyond characteristic AE a tensile force is
mobilized in the reinforcement, but the reinforcement stress
does not reach yield point o, [see (17) and (18)].

Using (31) and (18), expressions for 2m and 2v are found,
and, after substituting these into (29), the equations of char-
acteristics become

= tan «, s;-characteristic (32a)

ay
dx

dy = tan <E -—¢ + a), s,-characteristic (32b)
dx 2

where a = angle of inclination of reinforcing inclusions to x-
axis (inclination angle of axis of anisotropy). This comes as a
surprise, since the inclination of the characteristic lines is now
independent of the principal stress directions. Further increase
in angle ¥ at singular point A does not generate more char-
acteristics in fan AFC until angle s reaches the range ex-
pressed in (19). The latter is indicative of the reinforcement
reaching yield point oy, which occurs in the region to the right
of line AE; line AE is a stress discontinuity. This is quite
different from slip-line fields for isotropic materials where a
stress characteristic cannot become a stress discontinuity. This
peculiar type of discontinuity was first reported by Rice (1973)
for a pressure-independent (nonfrictional) material. Such dis-
continuities are always associated with plane segments of fail-
ure criterion in the space presented in Fig. 3.

The stress state in the plastic region to the right of stress
discontinuity AE satisfies (20) (yield point reached in the re-
inforcement). The average limit pressure along boundary AB
is Po/yb = 39.93, a 2.03 times increase above the limit pressure
over an unreinforced half-space.

The practical application of the solution herein is for a rel-
atively weak reinforcement where the subgrade failure is as-
sociated with plastic flow of inclusions or slip of fiber-like
reinforcement. Although some lab test results on small foot-
ings over reinforced sand beds are available, the limit state in
these tests is not associated with reinforcement yielding (the
strength of reinforcement is not scaled), and the results are not
comparable to the case calculated here. A structural approach,
where the reinforcement is considered as an additional struc-
tural element, would be more appropriate to interpret these
results.

It is important to note that an increase in the bearing ca-
pacity of a reinforced soil slab is influenced by the geometrical



changes in the shape of the reinforcement (an effect often con-
sidered in techniques for design of unpaved roads). This effect
can be accounted for using a structural approach for solving
boundary value problems with reinforcement, and it cannot be
addressed through the homogenization method as presented in
this paper.

The second example of application is shown in Fig. 7. This
is a simulation of a collapse of a 3 m tall vertical slope built
of cohesive soil reinforced with 12 horizontal reinforcing lay-
ers. A physical model of the wall was laboratory tested, and
the details can be found in Wu (1992). The material parameters
[based on data reported by Wu (1992)] are cohesion ¢ = 82.7
kN/m? internal friction angle ¢ = 12.6° and unit weight y =
18.9 kN/m®. The reinforced soil mass is homogenized here,
and its failure condition is described by (15)—(20). There were
12 layers of geosynthetic reinforcement used with strength es-
timated from tests as 6 kN/m which, for a wall height of 3 m,
yields a macroscopic strength of pgy = 24 kN/m*. The wall
was loaded using air bags, and a pressure of 227 kN/m’ was
regarded as the failure load since it was associated with a
disproportionately large increment of displacement.

The stress state at failure and the limit load are calculated
here using the method of characteristics. The slip-line network
is shown in Fig. 7. Zero traction is given at boundary AD, and
the collapse load along AB is vertical. The tensile stress in the
reinforcing inclusions is now mobilized everywhere in the
composite mass, and the failure criterion is expressed by (20).
The average collapse load at AB was calculated to be g, =
216 kN/m?, while the model of the slope collapsed at p, = 227
kN/m® While such coincidence of results cannot be regarded
as verification of the failure criterion derived, it indicates that
the stability analyses based on such a criterion are reasonable.
In an associated velocity field discontinuities could occur
along slip lines. Shear bands examined at the side wall of the
test tank, however, do not coincide with characteristics from
the theoretical solution. This is probably caused by the small
depth-to-height ratio of the wall backfill in the experiment,
which did not allow for a full development of the field similar
to that in Fig 7.

It needs to be mentioned that the model wall was loaded
with air bags, and the structure used to brace the air bags
probably restricted the freedom of horizontal displacement of
the top boundary. A concentrated load cannot be included in
the slip line solution, but this support condition could be sim-
ulated approximately with a distributed horizontal component
of the load on boundary AB. The limit load calculated then
would have increased. In such a case, point A would become
a singular point in the stress field, giving rise to a fan of slip
lines between the Cauchy stress region in triangle ADC and
the mixed stress boundary value problem in ABC.

The quantity of the horizontal force at the support was not
measured in the experiment. Without an accurate measurement
of the horizontal load and without including it in the boundary

Po

A B
T
H c

D

FiG. 7. Stress Characteristics Field for Anisotropic Vertical
Slope (Simulation of Reinforced Soil Slope)

condition, one cannot make an assessment as to whether the
vertical component of the failure load calculated would be-
come even closer to the actual collapse load or whether it
would overestimate it. )

FINAL REMARKS

A particular case of a composite with a frictional matrix
was considered with unidirectionally placed reinforcing inclu-
sions. Failure criteria were derived for cases where the plastic
deformation process (collapse) takes place in a plane parallel
to the longitudinal inclusions. The failure conditions can be
used for describing fiber-reinforced soils. A predominantly
horizontal orientation of fibers can be expected for fiber-gran-
ular fill mixtures compacted by rollers (the effective length of
fibers here is approximately equal to the average of their pro-
jections on the plane of deformation). The mathematical de-
scription of the failure criterion developed can also represent
the collapse condition of a ‘‘traditionally’’ reinforced soil with
long strips or grids of geosynthetic material. This description
goes beyond the concept of an artificial ‘‘anisotropic cohe-
sion’’ (Schlosser et al. 1972).

The failure criterion derived here can be used for calculating
limit loads on reinforced soil structures. A peculiar type of
discontinuity appears in the plastic stress field of the homog-
enized continuum. This discontinuity is associated with the
mobilization of the force in the reinforcing strips or fibers.

Further efforts will concentrate on predicting failure con-
ditions for granular composites with a randomly distributed
orientation of fibers.
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