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Abstract

The classical solution to the bearing capacity problem predicts the limit load on sym-
metrically loaded shallow strip footings. A useful hypothesis was suggested by Meyerhof to
account for eccentricity of loading, in which the footing width is reduced by twice-the-eccen-
tricity to its ‘effective’ size. This hypothesis sometimes has been criticized as being over-
conservative. This paper examines Meyerhof’s suggestion and presents the bearing capacity of
eccentrically loaded footings calculated using the kinematic approach of limit analysis. It is
found that the effective width rule yields a bearing capacity equivalent to that calculated based
on the assumption that the footing is smooth. For more realistic footing models and for
cohesive soils the effective width rule is a reasonable account of eccentricity in bearing capacity
calculations. Only for significant bonding at the soil-footing interface and for large eccentri-
cities does the effective width rule become overly conservative. For cohesionless soils, how-
ever, the effective width rule may overestimate the best upper bound. This overestimation
increases with an increase in eccentricity. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Classical solutions to the bearing capacity problem (Prandtl [1] and Reissner [2])
assume that the load applied to the footing is symmetric. Eccentricity of the load is
commonly included in design by reducing the width of the footing, B, by twice-the-
eccentricity, 2e, thus reducing the effective width to B—2e. This approach was sug-
gested by Meyerhof [3], and it has been widely accepted in geotechnical design. This
procedure is referred to here as the effective width rule. The issue was raised in the
literature that the procedure is conservative for cohesive soils, and that it may over-
estimate the bearing capacity for frictional soils (for instance, Pecker and Salengon
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[4]). The aim of this paper is to obtain a limit analysis solution to eccentrically loaded
strip footings, and to assess the effective width rule and interpret it in terms of
plasticity analysis. The kinematic approach of limit analysis will be used to solve the
bearing capacity problem of a footing subjected to eccentric loading. This approach
is based on a theorem which, for a perfectly plastic associative material, states that
the rate of work dissipation is not less than the rate of work of external forces for any
kinematically admissible collapse mechanism. This can be written as

JD(&,/)dV > J Tl‘V,‘dSv + J TividS, + J yividV (1)
4 Sy S, 4

where D(s,j) is the rate of work dissipation during incipient failure, and 7; is the
stress vector on boundaries S, and S;. Vector T; is unknown (limit load) on S, and
known on S, (for instance, surcharge pressure). v; is the velocity vector field in the
kinematically admissible mechanism, y; is the specific weight vector, and V is the
volume of the mechanism.

For a translational mechanism, where the footing (boundary S,) moves as a rigid
body (but does not rotate), the first integral on the right-hand side of Eq. (1) can be
written as v; f T;dS,, and an upper bound to the total unknown limit load (bearing
capacity) [ 7;dS, can be calculated from Eq. (1). Now it becomes apparent that a
solution to the total limit load, based on a translational mechanism, is independent
of eccentricity, since the work rate of the limit load, v; j T:dS,, is independent of the
distribution of T;.

Alternatively, a vertical eccentric limit load can be described as the total force
applied at the center of a footing, P, and a moment, M. The work rate of the limit
load can then be expressed as the sum of the work rate of the total force, P, and the
work rate of the moment, M. For a translational mechanism the moment work rate
is, of course, zero. The mechanism must involve footing rotation for the solution to
be dependent on the load eccentricity. Meyerhof’s hypothesis, however, suggests
that the classical Prandtl-Reissner solution be used for eccentric loads, but with
footing width reduced by 2¢ =2M/P. While intuitively understandable, this
hypothesis is examined here in terms of limit analysis.

A collapse mechanism for a smooth strip footing, with footing rotation, is pre-
sented in the next section, and it is shown that the effective width rule is equivalent
to assuming the footing smooth in the limit analysis. Next, a mechanism for a rough
footing is presented, to indicate the consequences of the effective width rule.

2. Eccentric limit loads on smooth footings

The purpose of this analysis is to show that Meyerhof’s effective width hypothesis
yields the same bearing capacity as the kinematic approach of limit analysis, which
includes footing rotation and a smooth soil-footing interface. This is demonstrated
here through closed-form solutions to the problem of bearing capacity of footings
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for both cohesive and frictional soils. A comprehensive study of the bearing capacity
of strip footings on cohesive (frictionless) soils was carried out recently by Salengon
and Pecker [5,6].

A kinematically admissible mechanism of failure of a smooth footing over a fric-
tionless soil is presented in Fig. 1(a). This mechanism is similar to one of those
considered by Salengon and Pecker [5]. The footing is loaded with an eccentric ver-
tical load, P, and it rotates during failure about point O with the angular velocity w.
Point O is located somewhere along interface AB, but its precise location is yet
unknown. This is an incipient mechanism, and the tendency to deform is shown in
Fig. 1(b). There is no friction or adhesion (or suction) at the interface, and no
internal work needs to be expended if part of the footing separates from the soil
surface. The part of the footing width which remains in contact with the soil is
denoted by &B, where coefficient £ is not known a priori. Region OCB undergoes
simple shear, and so does area BDE. Region BCD is subjected to continuous shear.
Line OCDE is a strain-rate discontinuity, but not a velocity discontinuity. Notice
that the soil along OB undergoes extension, therefore sliding must occur on footing—
soil interface OB. Since the footing is assumed to be smooth, this sliding occurs
without energy expenditure. The specific terms for the rate of work dissipation and
the rate of work of external forces are derived in Appendix A.

Equating the sum of dissipation from expressions in Egs. (A3), (A4), and (A9), to
the work rate of the limit load and the surcharge load in Eqgs. (A10) and (A11), one
obtains the upper bound solution for the average bearing pressure p

_ 1 1 1
P= 3 iyl e =al ) ®

where ¢ is the cohesion, and ¢ is the surcharge load. Notice that & and angles « and
¥ have not been specified, and they will now be found by requiring that p in Eq. (2)
is the minimum solution (best upper bound), i.e.
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Fig. 1. Collapse mechanism of a cohesive soil under a smooth footing: (a) mechanism with footing rota-
tion and simple shear under the footing, and (b) schematic of the deformed configuration.



240 R.L. Michalowski, L. You/Computers and Geotechnics 23 (1998) 237-253

The first expression in (3) yields ¥ = 2¢, and the second, one ¥ — « = 7/4 (thus,
a = /4 and ¢ = 7/2). Substituting these into Eq. (2), one obtains

_ 1 g
=[cR+nm)+qlz ——— 4
p=[c2+m+4ql5 P 4)
Using the third condition in Eq. (3) yields € = 1 — 2¢/B, hence
_ e
p=1cC+m+ql(1-27) (5)

The expression in Eq. (5) represents the average limit load on a footing subjected to
eccentric loading. Although the weight of the soil was not considered, this result is
valid for both weightless soil and soil with y > 0. This is so because the total work
rate of the weight of an incompressible soil with a horizontal surface is equal to zero
(a direct consequence of the mass conservation principle in the absence of volu-
metric strain).

The first part of Eq. (5) [¢(2 + 7) + ¢] is the same as the exact solution to the
bearing capacity of a cohesive soil loaded by a centrally applied load. The expression
in the second set of parentheses on the right-hand side of Eq. (5) is identical to
Meyerhof’s procedure of reducing the width of the footing by twice-the-eccentricity.
Hence this specific example (¥ =0) shows that Meyerhof’s suggestion is equivalent
to assuming that the footing is smooth.

An identical conclusion can be drawn for a frictional soil, although the analytic
derivation is slightly more elaborate. A closed-form solution, based on the collapse
mechanism in Fig. 2, is shown here for a weightless soil. Specific terms for the rate of
dissipation and the rate of work of external forces are given in Appendix B. When
substituted into Eq. (1), the following expression results for the upper bound to the
average bearing pressure

_ 1 sin o 2 tang sinacos(Y —a+¢) 5y
_ —1 Ytang
P !c|:tan(o: — ) + sin ¢ sin(a — @) (e ) sin(a — @) sin(y — @) ¢
—q sina Sin(lﬂ —a+ §0) ezwlanw l 52
sin(o — ¥) sin(a — ¢) 26-14%

(6)

The minimum of p is now sought by means of the conditions in Eq. (3), which leads
to:a =m/4+ ¢/2, ¥ =m/2, and § = 1 — 2¢/B. These, when substituted into Eq. (6),

yield
5= <cNC+qu)(1—2l—§) )

where
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Fig. 2. Failure mechanism of a smooth footing over cohesive-frictional soil (footing rotation, simple shear
under the footing).

NL':(Nq_ I)COt(p, Nq:tanz(%_i_g)eﬂtan(p (8)

The reader will recognize the classical bearing capacity coefficients in Eq. (8)
(Prandtl [1], Reissner [2]). It is apparent that for both types of model soils (¢ =0
and ¢ > 0, and y = 0) Meyerhof’s hypothesis of effective width is equivalent to the
limit analysis solution for a smooth footing.

The mechanisms considered in this section allowed for sliding along the footing—
soil interface, but this sliding required no energy expenditure, since the footings were
considered smooth. It is a straightforward conjecture that for rough footings the
average bearing pressure must be larger than that in Eq. (5) or (7), because of the
additional internal work that needs to be expended on the interface sliding during
failure.

3. Eccentric limit loads on rough footings

A solution to an eccentric limit load on a rough footing is presented in this sec-
tion, so that a conclusion can be drawn as to the consequences of the effective width
rule for realistic (rough) footings.

The mechanism considered here for rough footings does not involve sliding at the
footing—soil interface; instead, the footing and the soil immediately underneath
rotate as one rigid block. First, a solution will be presented for a frictionless soil.
The mechanism considered is presented in Fig. 3(a), and it is similar to the one
analyzed earlier by Murff and Miller [7], and more recently by Salengon and Pecker
[4,5]. The reader will find a comprehensive analysis of this mechanism in Ref. [5]
where the footing is loaded both with an eccentric load and a horizontal force
component. The numerical limit analysis approach to the problem of combined
loading on strip footings on clay was considered recently by Ukritchon et al. [8]

The footing and area A’CB rotate as one rigid body about point O. The soil in
region BCD undergoes shear, with B being a singular point, and block BDE under-
goes a superimposed rigid displacement and simple shear. The weight of the soil
does not influence the bearing capacity for the frictionless soil, and, for simplicity,
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we first consider a case where the surcharge load ¢ = 0. The dissipation rate terms
for this mechanism are listed in Appendix C. Substituting Egs. (A10) and (C1) into
(1), one obtains the upper bound to the bearing pressure, p, in the following form

L&

= _ _ 2 _
p—2$+,_ [(7 — 2e) tan” a + 2¢ — tan(y + o)]c 9)

Se1
o=

where c is the cohesion, and «, ¥, and & are shown in Fig. 3(a). Now, assume that the
footing does not separate from the soil, i.e. £ = 1. Using the second condition in Eq.
(3), one finds ¥ = 3/47 — «, and the first of the conditions in Eq. (3) yields a
numerical solution o = 23.218°. Substitution into Eq. (9) yields

p=5331c

142 (19)

SN

If the third condition in Eq. (3) is used, one finds that the minimum bearing
capacity (least upper bound) occurs when the footing separates from the soil,
& =1—2e/B, and the bearing capacity formula becomes

p=5331c(1-25) =eN(1-2%) (11)

While coefficient (1 —2¢/B) is identical to that used by Meyerhof, the bearing
capacity factor for the rotational mechanism (V.= 5.331) is slightly larger than that
from the classical solution [N¢ = (2+ m)]. For small values of ¢/B (¢/B<0.065) the

-

Fig. 3. Rotational collapse of a rough footing over cohesive soil: (a) failure mechanism with soil-footing
separation, (b) tension cut-off interface strength model, (c) perfect adhesion interface, and (d) perfectly
rough interface model.
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mechanism in Fig. 3(a) was substituted with one where & =1 and 8 < 0 [positive 8
being shown in Fig. 3(a); notice that when & < 1, 8 and & are not independent
parameters]. Calculations based on such a mechanism lead to a better upper bound
on p for small ¢/B, and for the particular case of ¢/B = 0 one obtains p = ¢(2 + 7)—
a slight improvement over the solution in Eq. (11).

It was assumed in the derivation of Eq. (11) that no energy is needed to separate
the footing from the ground. However, one should expect that for a rough interface,
or an interface with some adhesion (or ‘suction’), there will be an expenditure of
energy for the work needed to debond the footing from the soil. Therefore, we now
assume three types of interface:

1. an interface with a tension cut-off according to Fig. 3(b),
2. an interface with perfect adhesion, Fig. 3(c),
3. a perfectly rough interface but with no tensile strength, Fig. 3(d).

The last type of interface was considered by Salencon and Pecker [5]. Velocity
vectors marked in Fig. 3(b—d) represent possible separation velocities on interface
AA' [Fig. 3(a)]. The term on the left-hand side of Eq. (1) now needs to include an
additional energy dissipation rate due to plastic work of the interface debonding
process. This additional term, for the three interface models in Fig. 3(b—d), is given
in Appendix C.

The solutions to the bearing pressure for footings with rough or adhesive inter-
faces could be conveniently presented in a form similar to that in Eq. (11), but with a
different bearing capacity factor N.. Since the energy dissipation rate related to the
interface separation depends on the distance to which the footing separates from the
soil, the bearing capacity factor becomes a function of eccentricity.

4. Numerical results

All the solutions discussed for rough footings over cohesive soils are presented in
Fig. 4. The average bearing pressure p is normalized by the classical solution to the
bearing pressure of symmetrically loaded footing p, = (2 + 7)c. The assumption
that the footing does not separate from the foundation soil is a significant constraint
on the failure mechanism, which results in a bearing pressure significantly larger
than that from other solutions. The strength of the soil-footing interface influences
the bearing capacity significantly when ¢/B>0.1. This influence increases with an
increase in eccentricity. A soil-footing interface with perfect adhesion [Fig. 3(c)]
leads to the second largest bearing pressure. The bearing pressure for both the no-
separation and perfect adhesion models approach well-defined, larger-than-zero
limits when ¢/B — 0.5. The tension cut-off and the perfectly rough interface models
yield solutions that are no more than 7% and 10% higher, respectively, than that for
a smooth footing. The tension cut-off model of the interface is probably a con-
servative estimate of the interface strength, but a reasonable one for design purposes.
Meyerhof’s rule then seems to be a reasonable approximation for cohesive soils.
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Notice that for a very small eccentricity (e/B < 0.05) the rotational mechanism
yields the same bearing pressure, no matter what the interface model. This is
because, for a small eccentricity, the footing does not separate from the soil, and the
energy expenditure for soil-footing separation equals zero, independent of the
interface models considered. For a zero eccentricity the best upper bound from the
mechanism in Fig. 3(a) is obtained when angle « tends to 7/4 and the center of
rotation O moves to infinity. This mechanism then reduces to a classical translation
mechanism with region 4BC moving as a rigid block.

Results from calculations with a surcharge load are not shown here, but they fol-
low the same trend as those in Fig. 4.

Calculations also have been performed for frictional soils. The rotational
mechanism for a frictional soil is shown in Fig. 5, along with two interface models
considered. A similar mechanism was considered recently by Paolucci and Pecker [9]
in the context of seismic loads. No closed-form solutions were found for cohesive-
frictional soils, and the results are presented in a graphical manner in Fig. 6. For
simplicity, the soil was first taken as weightless and the surcharge load ¢ = 0. The
interface friction angle ¢,, was taken in computations as equal to the internal friction
angle of the soil ¢. The solutions follow a trend similar to that for frictionless soil,
but the difference between the bearing pressure of a footing with a perfect adhesion
interface and a smooth footing decreases now with an increase in the internal fric-
tion angle. Numerical calculations shown in Figs. 4 and 6 were all performed for a
weightless soil (y = 0). The soil weight does not influence the bearing capacity of a
frictionless soil since the rate of net work of the soil weight in mechanisms in Figs. 1
and 3 is equal to zero. However, the bearing capacity of frictional soils is affected by
y. The bearing capacity of a footing over a frictional or cohesive-frictional soil varies
now depending on cohesion ¢ and surcharge load ¢. Results of numerical calcula-
tions for a variety of model soils and a tension cut-off footing—soil interface
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Fig. 4. Solutions to bearing pressure p on cohesive soil for different soil-footing interface models (no
surcharge).
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Fig. 5. Rotational failure of a rough footing over cohesive—frictional soil: (a) collapse mechanism, (b)
tension cut-off interface model, and (c) perfect adhesion interface.
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Fig. 6. Solutions to bearing pressure p on cohesive—frictional soil for different soil-footing interface
models (weightless soil, no surcharge).
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[Fig. 5(b)] are presented in Fig. 7. Soils are characterized by their internal friction
angle and dimensionless coefficient ¢/yB, and the overburden pressure is given as
q/yB. Results are normalized by bearing pressure p, of a symmetrically loaded
footing (e/B = 0). Bearing pressure p,, varies now depending on ¢/yB and ¢/yB. For
a frictional-cohesive soil the results follow the same trend as for the cohesive soil,
and the effective width rule underestimates the best upper bound solution by about
the same margin (8%) as in the case of cohesive soil. However, for purely frictional
(granular) soil and relatively small surcharge loads, the effective width rule over-
estimates the best upper bound to the average bearing pressure. For a surface foot-
ing and eccentricity e/B = 0.25 this overestimation is 35%, and it increases with an
increase in ¢/B. Fig. 8 presents selected results in a slightly different form, where the
failure criterion for an eccentrically loaded footing is shown on the moment—force
plane. A straight line drawn through the origin of the M,P coordinate system marks
points of equal eccentricity e/B.
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Fig. 7. Numerical solutions to bearing pressure of eccentrically loaded footings (tension cut-off interface).
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Fig. 8. Failure criteria for shallow footings on the force-moment plane: (a) ¢ = 20°,¢/yB =1 and (b)
¢ =40°¢=0.

Results of calculations with a perfect adhesion interface are shown in Fig. 9. For a
relatively small eccentricity (e/B < 0.2) the trend is similar to that for the tension
cut-off interface. For large eccentricities and small internal friction angles, however,
the best upper bound to the bearing capacity is considerably larger than that
resulting from the effective width rule. This difference decreases with an increase in
the internal friction angle.
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Fig. 9. Numerical solutions to bearing pressure of eccentrically loaded footings (adhesion interface).

5. Final remarks

Eccentric loading on footings is usually considered in calculations of bearing
capacity by reducing the size of the footing by twice-the-eccentricity to its ‘effective’
width. Such a method was first suggested by Meyerhof [3], and it was referred to
here as Meyerhof’s rule of effective width. It was demonstrated in this paper that
this rule leads to the same bearing capacity as the limit analysis solution for a
smooth footing, and it underestimates the bearing capacity of footings on cohesive
soils with frictional or adhesive soil-footing interfaces. This confirms earlier findings
by Salengon and Pecker [5]. The effective width rule significantly underestimates the
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bearing capacity for clays (¢ ~ 0) only when the footing is bonded with the soil and
the eccentricity is relatively large (e¢/B > 0.25). For cohesive—frictional soils this
underestimation decreases with an increase in the internal friction angle. The rule of
effective width gives very reasonable estimates of the bearing capacity of eccen-
trically loaded footings on cohesive or cohesive—frictional soils when the soil-footing
interface is not bonded (tension cut-off interface), and for any type of interface when
the eccentricity is small (¢/B < 0.1). In these cases the effective width rule under-
estimates the best upper bound solution by a margin of no more than 8§%. However,
it overestimates the bearing capacity for purely frictional soils when the surcharge
load is relatively small.

Design codes usually limit the extent of allowable eccentricity. Hence, very sig-
nificant underestimations and overestimations of bearing capacity, associated with
the use of the effective width rule for large eccentricities, are often excluded from
practice by design codes.
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Appendix A. Work rate terms for the mechanism with a smooth footing over
cohesive soil

The terms for the rates of internal and external work are given here for the
analysis based on the mechanism in Fig. 1(a). The soil in region OCB undergoes
simple shear [Fig. 1(b)], and the work dissipation rate per unit area in region OCB is
calculated from

d =06+ 0,8, + TV (A1)

Assuming axis x for region OCB to coincide with OC, and noting that the defor-
mation for the frictionless material is incompressible, the first two terms in Eq. (A1)
are zero, and

Vo w
=C - = C 2
EBsina sin® «

(A2)

where vy is the magnitude of velocity of point B (v = £Bw/ sin«), ¢ is the soil cohe-
sion, and angle « is shown in Fig. 1(a), but it is not yet specified. Since the work
dissipation rate per unit area is uniform in a simple shear field, the total work dis-
sipation rate in OCB becomes
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Docg = Socpd = Eca)ész cota (A3)

where Socp is the area of region OCB. Similarly, the work dissipation rate in BDE
can be derived as

Dgpr = %6@5232 cot(y — a) (A4)

The deformation pattern in BCD is not a simple shear, and the derivation of the
energy dissipation rate is more elaborate. For an incompressible frictionless soil the
rate of work dissipation per unit volume undergoing plane deformation is (see, for
instance, Davis [10])

d=(é — &) (A5)

where ¢ and &3 are the major and minor principal strain rates, respectively. Intro-
ducing polar coordinate system r,  with the origin at point B, velocities in region
BCD can be described as

=0, vy= vo(l - %) (A6)

where R is the radus of area BCD [see Eq. (A2) for vy], and the strain rates in region
BCD are

P 8v,._

T

. 1 9vy Ve

899—_;¥—7—0 (A7)
. 1/1 0v, dvg vy Vo

8"9__2<2 86+8r_r)_2r

The principal strain rates can be calculated easily based on Eq. (A7) as &, = +€4

and &3 = —¢&,, and, using Eq. (AS5) the rate of work dissipation per unit volume
becomes
. Ba
PR . (A8)
r rsina

and the total energy dissipation rate in region BCD is

RY
Dgcp = “drdedr = & Boy (A9)
00
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where R = BC [Fig. 1(a)]. The rate of work of the limit load is

W, =szd)($+%—%> (A10)

where p is the average pressure under the footing (p = P/B), and the rate of work of
overburden pressures is

: 1
W, = —quszd) (Al1)

The respective terms for the work dissipation rate and the rate of external forces
now can be substituted into Eq. (1) in order to obtain the expression in Eq. (2) for
the upper bound to the bearing pressure p.

Appendix B. Work rate terms for the mechanism with a smooth footing over
frictional soil

Regions OCB and BDE (Fig. 2) undergo simple shear during incipient failure, but,
since the material is now frictional, the material dilates. Line CD is now a sector of a
log-spiral, and the magnitude of the velocity vector at singular point B is now
increasing according to

v = ped @ne (B1)

where vy = £EBw/ sin(a — ¢), and 6 is an angle measured counterclockwise from BC
(0 <6 < ) [Fig. 1(a)]. Following a consideration similar to that in Appendix A, one
obtains the following expressions for the work dissipation rates in regions OCB and
BDE

: 1
Docs = Eca')g?Bz cot(a — ¢) (B2)

and

5 sina cos(Y — o + @) PAVtane
sin(a — @) sin(¢y — @)

. 1
DBDE = Eca)é'zB (B3)

The rate of internal work per unit volume of cohesive-frictional soil is

d= (¢ — é3)ccose (B4)
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and the total energy dissipation rate in BCD is

¥

. 1 er/ftango -1
J d rdodr = 3 cE’B*o)————— sina (B3)
0

Dpcp = —
Beb sin g sin(o — ¢)

So—x

where R = BCexp(ftan ¢). The form of d in Eq. (B5) is more complex than that for
the cohesive soil in Eq. (A8), because &g in region BCD [Eq. (A7)] is no longer zero.
Alternatively, the total dissipation in BCD can be derived by calculating dissipation
for an infinitesimal triangle with angle @0, and integrating it over entire ¥. The rate
of work of bearing pressure p is

e

1
=-3 (B6)

W, =pB® (£+

and the work rate of the surcharge pressure can be written as

1 28 sino sin(y — o + @) P2ty

Wq= 2 sin(a — @) sin(a — )

(B7)
The terms above, substituted into Eq. (1), yield the expression in Eq. (6).

Appendix C. Work rate terms—rough footing over cohesive soil

The work of limit force P acting at eccentricity e [Fig. 3(a)] is expressed by Eq.
(A10), and the respective terms for the work dissipation rate are

Dyc = 2er(m — 20,
DBCD = CR(R + 2)’)1#(,() (C])

. 1
DBDE = — ECR(R + 21‘) tan(a + Iﬂ)a)

The dissipation rates for regions BCD and BDE include the dissipation within the
continually deforming soil, and along the discontinuity segments CD and DE,
respectively.

The energy dissipation rate per unit length of the interface described by the ten-
sion cut-off and the perfect adhesion models is

d = cv(1 Fsin6) (C2)
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where v and 0 are the velocity at the interface and its inclination angle, respectively
[see Fig. 3(a—c)]. The total energy dissipation at the interface is

B
: rdo 1. sin B T B

Dyy=|d—— =-coB?&tan*a]——— + In|tan{=+% 3
" Jcoszé 5 co £ tan a{l:tsinﬁ+ n|:an<4+2)i|} (C3)

0

where
1§

tan f = 4
an Etan o )

The top and bottom signs in Egs. (C2) and (C3) relate to the tension cut-off
[Fig. 3(b)] and perfect adhesion [Fig. 3(c)) interfaces, respectively.
The energy dissipation rate at the perfectly rough interface [Fig. 3(d)] is

,

. do
DAA’ = JCV@C,

5= coB’E(1 — &) tana. (C5)
0
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