BEARING CAPACITY OF FOOTINGS OVER TwWO-LAYER FOUNDATION SOILS

By Radoslaw L. Michalowski,' Member, ASCE, and Lei Shi,? Student Member, ASCE

ABsTRACT: The bearing capacity of strip footings over a two-layer foundation soil is considered. The kinematic
approach of limit analysis is used to calculate the average limit pressure under footings. The method is applicable
to any combination of parameters of the two layers, but the results are presented only for a specific case when
a footing is placed on a layer of granular soil resting on clay. The depth of the collapse mechanism is found
to be very much dependent on the strength of the clay. Very weak clay can “attract” the mechanism even at
great depths. The results are presented as limit pressures rather than traditional bearing-capacity coefficients.
The latter are strongly dependent not only on the internal friction angle of the sand, but also on the thickness
of the sand layer, cohesion of the clay, and surcharge pressure. Results are presented in the form of dimen-
sionless charts for different internal friction angles of sand. It was found that linear interpolation within 5°
increments is acceptable in the range of ¢ from 30° to 45°.

INTRODUCTION

The bearing capacity of footings comprises quite an exten-
sive literature today. Most design methods are based on sem-
iempirical formulas. The original Prandtl (1920) and Reissner
(1924) solution to limit pressure on a strip punch over a per-
fectly plastic cohesive-frictional weightless half-space is usu-
ally altered to accommodate departure from symmetrical loads,
to account for different footing shapes, and to include the
resistance due to the soil weight (Hansen 1970). Either limit
equilibrium considerations or an empirical approach is usually
used to account for the conditions not included in the Prandtl-
Reissner solution.

The methods for calculating the bearing capacity of mul-
tilayer soils range from averaging the strength parameter [cf.
Bowles (1988)]. using limit equilibrium considerations (Reddy
and Srinivasan 1967; Meyerhof 1974), to a more rigorous limit
analysis approach (Chen and Davidson 1973; Florkiewicz 1989).
The finite-element method can capture the complexity of the
boundary conditions and soil nonhomogeneity quite accu-
rately, but it is more elaborate and has not found a wide
acceptance in foundation design practice. The effort pre-
sented herein is restricted to finding the bearing capacity (or
average limit pressure) on symmetrically loaded strip footings
over a two-layer foundation soil. The method presented can
be applied to any combination of two different soils, but the
specific problem presented here is that where the footing rests
on a granular layer underlain by a cohesive, possibly weak
soil.

The approach to solving for the bearing capacity over a
two-layer foundation system is presented in the next section.
This is followed by a description of the collapse mechanisms
constdered in the analysis. Some comments about the solution
are given next. Results of calculations are then presented in
the form of design charts, and generic examples are given.
A comparison with experimental results and other methods
is also shown. Final remarks complete the paper.

APPROACH

The kinematical approach of limit analysis is used here.
This approach vyields the upper bound to the true limit loads,
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but, once reasonable collapse mechanisms are considered, it
yields failure loads that are very close to the true collapse
loads on elasto—perfectly plastic bodies. This has been con-
firmed by comparing the upper-bound results to exact solu-
tions (such as the bearing capacity of weightless soil, and
problems in metal-forming mechanics). For the bearing ca-
pacity of weightless soil the least upper bound is identical to
the exact solution (Shield 1954). while for a ponderable soil
(half-space) an exact solution is not known, but the discrep-
ancy between the upper-bound and the slip-line solutions is
almost negligible. The slip-line solution in this case can be
proved to be the lower bound, provided the soil is restricted
to a finite volume (not a half-space) limited by rough bound-
aries, and deformation is governed by the associative flow
rule. Close upper-bound and lower-bound solutions also can
be found for ultimate loads over nonhomogeneous clay layers
(Michalowski and Shi 1993). The kinematic approach of limit
analysis leads to solutions identical to those from the “‘limit
equilibrium™ approach so widely accepted in design; the two
are equivalent (Mro6z and Drescher 1969; Michalowski 1989;
Salengon 1990; Drescher and Detournay 1993). The authors
chose the kinematic approach as it has more appeal to en-
gineering intuition.

The advantage of the kinematic approach over the static,
lower-bound approach, is that it is based on the construction
of collapse mechanisms verifiable by experiments or practical
experience. In the static approach. however, the stress fields
are constructed without any clear relation to the true stress
field other than the stress boundary conditions. (Note the
difference between the lower-bound approach based on con-
structing statically admissible stress fields and the limit equi-
librium approach where only the global force equilibrium is
required.)

Yielding of the soil is described here by the Mohr-Coulomb
condition (compression taken as positive)

flo,,0.,7.) = (0, + o.)sing

- Vo, —0.) + 41 + 2ccos @ = 0 (1)

where ¢ = the internal friction angle; and ¢ = cohesion. The
upper layer of the granular soil is described by (1) with ¢ =
0, and the strength of the cohesive soil (lower layer) is de-
scribed by the undrained shear strength equal to ¢, (¢ = 0).
The deformation is governed by the associative flow rule

. e .

8,,=)\f, '); Az=0.i,j=1273 (2)
ia,

where €; = the strain rate tensor; o; = the stress tensor;

and A = a nonnegative multiplier.
Eq. (2) implies dilatancy for pressure-sensitive granular soil
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and incompressibility of clays during deformation. Conse-
quently. in rigid-block mechanisms where all deformation takes
place along interfaces between blocks (within “‘rupture lay-
ers”), the velocity ““jump™ between two blocks in granular
soil must be inclined at the angle of internal friction ¢ to the
discontinuity, and in clays it must be tangent.

The upper-bound theorem states that the rate of energy
dissipation is larger than or equal to the rate of work done by
external forces in any kinematically admissible mechanism.
Thus. if the material properties and geometry of a collapse
mechanism are known, one can find an upper bound to the
true limit load through equating the rate of work of external
forces to the rate of internal energy dissipation. Optimization
of the geometrical parameters in the failure mechanism pro-
vides the best approximation of the collapse load (least upper
bound).

COLLAPSE MECHANISMS

Due to limited space, considerations are restricted here to
a case of practical importance when a layer of granular soil
is underlain by a cohesive, possibly weak, material. A sym-
metrical half of the first of the mechanisms considered is
shown in Fig. 1(a). The mechanism is constructed in such a
way that the velocity discontinuities originating at point A
are bent at the interface between the layers. The angle at
which they bend is equal to the difference in the internal
friction angle of the soils in the two layers. The velocity-jump
vector along segment AG,, for instance, is then parallel to
that along G,D,. Their magnitudes are also the same, and
block AG,D,D:G;A moves as one rigid body with velocity
V5. The hodograph for the entire mechanism is shown in Fig.
1(b). A similar mechanism was anticipated by Karal (1979).
No analysis or numerical results were offered by Karal, how-
ever.

For the mechanism in Fig. 1, the rate of work by the un-
known traction under half of the footing is equal to pV,B/2
(V. being the magnitude of the vertical velocity of the foot-
ing). The upper-bound theorem is used to calculate the av-
crage limit pressure p along boundary OA, with traction g
given along AF. The upper bound to the average traction p
can be written as

2
p = ﬁ [J o€, dv — L q,V, dS - j vV, dz':| (3)

where €, and V; = the strain rate tensor and velocity vector
in the kinematically admissible mechanism of collapse; o; =
the stress tensor; ¢, = the known traction vector on boundary
S (here AF); vy, = the unit weight vector; and v = volume
of the collapsing mass. The first integral in (3) represents the
rate of energy dissipation in the mechanism (discontinuities
included in volume ), the second one shows the rate of work
of a given traction on boundary S (AF), and the last one
represents the work rate of the soil weight.

The mechanism consists of rigid blocks, and the energy is
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FIG. 1. Collapse Mechanism: (a) Rigid-Block Collapse Mecha-
nism of Two-Layer Foundation Soil; and (b) Hodograph
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dissipated in the shear layers between the blocks. The total
rate of energy dissipation in the mechanism {first integral in
(3)] was calculated as the sum of dissipation along all dis-
continuities. Since the associative flow rule is used. the dis-
sipation rate along the velocity discontinuities in the granular
material is zero, and in clay (¢ = 0) it is equal to the product
of the shear strength and the magnitude of the velocity-jump
vector (dissipation per unit area of the discontinuity surface).
More specifically. (3) can be written. for the mechanism in
Fig. 1. in form

5 "
P = [( 2 VI~ gAFV;, — v 2 A/‘VA} -
BV“ il Ao
where /; = length of the jth velocity discontinuity in clay (for
instance, G,D,, D\ D,, etc.); [V]; = magnitude of the veloc-
ity-jump vector along that discontinuity; m = number of
straight-line discontinuity segments; V; = vertical compo-
nent of the velocity of the kth block (negative if upward);
A, = area of the kth block within the sand layer only: and
n = number of blocks (¢, is undrained shear strength of clay;
v is unit weight of sand). All velocities can be obtained from
geometrical relations in the hodograph in Fig. 1(b).

The second collapse mechanism is shown in Fig. 2(a). This
mechanism is also symmetrical, with blocks AGDOA and
AGEJA moving as rigid bodies, and with region GDE de-
forming in a continuous fashion. The failure pattern in clay
resembles that in the classical Prandtl mechanism. and the
energy dissipation rate [first integral in (3)] now includes dis-
sipation both along discontinuities and within the continually
deforming region GDE.

In addition to the two mechanisms shown in Figs. 1 and 2,
a one-sided collapse pattern and a failure mechanism confined
to the top layer only [similar to that in Michalowski (1993))
were considered. The objective of the calculations was to
obtain the least upper bound to the bearing capacity, and
each of the mechanisms considered is a kinematically admis-
sible failure pattern. It was not clear prior to calculations,
however, which mechanism would predict the minimum bear-
ing capacity (best upper bound), and all four different mech-
anisms were considered in order not to predefine the collapse
mode. For all cases analyzed here, cither the mechanism in
Fig. 1 or the mechanism in Fig. 2 ensured the minimum limit
load; therefore, the other two mechanisms mentioned arc not
presented here.

COMMENTS ON SOLUTION

The results of calculations are presented in the next section.
Here, however, some consideration is given to the feasibility
of presenting the results in terms of traditional bearing ca-
pacity coefficients. Also, it is indicated when a weak clay
underlying a granular soil has an adverse effect on the bearing
capacity.

FIG. 2. Collapse Mechanism: (a) Failure Mechanism with Contin-
ual Deformation Field in Clay; and (b) Hodograph



Bearing Capacity Coefficients

It follows from the incompressibility of clay and the ge-
ometry of the problem considered that the net work done by
the weight of the clay must be zero. The solution to the
bearing capacity must then be independent of the specific
weight of the clay. Dimensional analysis allows one to con-
clude that the bearing capacity for the two-layer foundation
soil can be represented as

P t c, q
[ [ e i 5
B f<B'yB’yB"P> (%)

where p = average limit pressure under the footing; B =
footing width; ¢+ = thickness of the sand layer; y and ¢ =
the unit weight and the internal friction angle of the sand,
respectively; ¢, = undrained shear strength of the clay; and

= surcharge load at the boundary adjacent to the footing
[Fig. 1(a)]. Solutions based on (3) can be written as

CH
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VB = B N, + B N, + N, (6)
The inequality sign in (6) indicates that the solution yields
the upper bound to p/yB [as do all solutions based on the
consistent limit force equilibrium method, e.g., Terzaghi 1943)].
By comparing (5) and (6) one concludes that f; are not nec-
essarily functions of the internal friction angle alone, as sug-
gested in bearing capacity formulas for uniform soils. For
instance, f, and f; (N,., N,) for the case where g = 0 and
¢ = 35° are shown in Fig. 3 for different ¢/B, as functions of
¢,/vB. These functions were calculated from the specific terms
in (3) applied to the optimized collapse mechanisms, where
a minimum of bearing pressure was sought, and independent
angles describing the geometry of the mechanism were var-
iable. Coefficient N. drops down with an increase in strength
of the underlying clay, and, for sufficiently large c,/yB, it
becomes zero. This occurs when the entire mechanism of
failure is contained within the upper layer of granular ma-
terial. Coefficient V., on the other hand, increases with an
increase in c,/yB, and, when the mechanism becomes re-
stricted to the upper layer, N, reaches a value independent
of ¢, /yB (it is dependent, however, on ¢ and ¢g/yB).

Numerical calculations with optimization of failure mech-
anisms show that all functions f; in (6) (which can be inter-
preted as bearing capacity coefficients N, N, and N,) are
dependent on g/yB, t/B, c,/yB, and ¢. Presentation of these
functions would be more elaborate than presentation of the
average bearing capacity alone. Therefore, the results are
presented in terms of p/yB rather than coefficients N., N,,
and N,
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FIG. 3. Bearing Capacity Coefficients as Functions of Cohesion
of Underlying Clay for Different Thickness of Sand Layer, t/B, and
g = 0: (a) Coefficient N_; and (b) Coefficient N,

Critical Depth of Weak Layer

Fig. 4(a) shows the average limit pressure p (dotted line)
and the depth of the collapse mechanism 4, both dependent
on the thickness of the sand layer (¢/B), for a specific internal
friction angle of sand and parameter c,/yB. Cohesive soil
weakens the foundation system, but the limit pressure p in-
creases when the depth of the clay increases. When this rel-
ative depth reaches 2.7 (for this specific case) limit pressure
p becomes constant, since for greater depths of the clay layer
the critical collapse mechanism becomes contained entirely
in the upper layer of sand. At /B = 2.7, however, the same
least upper bound to pj is associated with two failure mech-
anisms: a deep mechanism extending into the clay (A/B =
3.75), and a much more shallow mechanism, restricted en-
tirely to the sand layer (/B = 1.4). Fig. 4(a) indicates that,
for @ = 40°, a clay layer with ¢,/yB = 3.0 is a “weak" soil.
It follows from Fig. 4(a) that the depth of the failure mech-
anism increases with an increase in the depth of the weak
clay layer, all other parameters being constant. A weak clay
at a certain depth below the footing “attracts’ the failure
mechanism. However, when parameter c,/yB is large, the
close proximity of the strong clay to the surface increases
limit pressure p relative to that for the sand alone.

The critical depth of a clay layer is defined here as the
largest depth of the clay layer that still has an effect on the
limit pressure. For the specific case in Fig. 4(a), the dimen-
sionless parameter (¢/B) representing the critical depthis 2.7.
Fig. 4(b) shows calculated critical depths for a variety of pa-
rameters (but all for a surcharge load equal to zero, ¢ = 0).
It indicates that the weaker the clay layer, the larger the depth
up to which the clay has an adverse effect on the bearing
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FIG. 4. Critical Depth: (a) Depth of Collapse Mechanism and Limit
Pressure as Functions of Thickness of Sand Layer; and (b} Critical
Depth of Clay as Function of Clay Shear Strength
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capacity of a footing (critical depth). Also, the stronger the
sand layer (the larger ¢ is), the larger the critical depth.

This observation indicates that the often-suggested calcu-
lations for estimation of the critical depth of the weak layer
as a function of the width of the footing and parameters of
the soil immediately under the footing should be abandoned.
Calculations such as those suggested in the present paper
should be used [for case where ¢ = 0 use Fig. 4(b)]. Design
charts for bearing pressure p/yB given in the next section,
however, do not require that the critical depth be calculated
first. This critical depth is accounted for in the charts.

DESIGN CHARTS

Results of the calculations are presented in a dimensionless
form in Figs. 5-7. All diagrams represent least upper bounds
obtained from analyses based on mechanisms in Figs. 1 and
2. whichever yields the minimum. The number of blocks in
the mechanism in Fig. 1 used in the calculations was 20. The
increasc of the number of blocks beyond 20 affected the least
upper bound by less than 1%. The independent angles de-
scribing the geometry of the mechanism were varied in an
optimization scheme (with the smallest angle increment being
0.05%), and (3) was used to calculate the bearing pressure p
for each combination of these angles. The minimum of p was
sought.

Dimensionless coetficient p/yB representing the average
limit pressure under a footing is a function of four parameters,
(5). and it cannot be represented conveniently (without mak-
ing crude approximations) as a function of bearing-capacity
coctticients dependent on the internal friction angle alone.
Theretfore, diagrams for p/yB are presented without sepa-
rating components dependent on cohesion, surcharge load,
and the unit weight of the soil (this would require three times
more diagrams).

Figs. 5-7 present results for surcharge load ¢/yB equal to
0. 0.5, and 1.0, respectively. Results are independent of the
unit weight of the clay; v is the unit weight of the granular
soil, @ is its internal friction angle (¢ = 0 for clay), and ¢, is
the undrained shear strength of the clay (no cohesion in the
upper layer). In cach figure separate diagrams are shown for
the internal friction angle of the upper layer: 30°, 35°, 40°,
and 45°. The separate curves on the diagrams represent the
dependence of the average limit pressure on the shear strength
of the clay for a singie depth of the clay soil. These curves
are shown for different ¢/B in the range from 0 to 5.5 in 0.5
increments.

A weak clay layer at a relatively shallow depth always has
an adverse effect on the bearing capacity. As expected, the
limit pressure increases with an increase in the strength of
the clay and with an increase in the clay depth. For most cases
the limit pressurc reaches a constant value and further in-
crease in the clay strength does not improve the bearing ca-
pacity. This limit is equal to the bearing capacity of the gran-
ular soil alone. Only when the clay is strong and the layer of
sand overlying the clay is thin relative to the footing width
can the bearing capacity increase beyond that expected for a
homogeneous granular soil [see Fig. 5(a) and (b), and Fig.
6(a)]. In such cases the bearing pressure reaches a higher
constant level at large ¢, /yB (beyond ¢, /yB shown in diagrams
here). In the case when ¢ = 0, the bearing capacity increases
proportionally to the clay strength.

The critical depth is implicitly included in the diagrams in
Figs. 5-7. If the value of p/yB read from these diagrams for
a given (/B is less than the limit set by the granular soil alone
(horizontal lines), it implies that this specific /B is less than
the critical depth. [f the value read from the diagrams is equal
to the constant limit independent of ¢, /yB. the specific /B
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is larger or equal to the critical depth. Using the charts in
Figs. 5-7 does not require estimation of the critical depth.

The following two examples show the application of the
charts in Figs. 5-7 in the design of footings.

Example 1

Find the bearing capacity per unit length of a 2-m wide (8
= 2 m) strip footing placed on the surface of a 4-m layer (¢
= 4 m) of sand (¢ = 35°, vy = 17 kKN/m?). The sand layer
rests on clay whose undrained shear strength is ¢, = 50 kN/
m?. From Fig. 5 for ¢ = 35°, ¢,/yB = 1.5and 1/B = 2, we
obtain p/yB = 22.5, hence the average limit pressure p =
765 kN/m? (calculations using the computer program: p =
764.16 kN/m?). The bearing capacity is then equal to pB =
765 X 2 = 1,530 kN/m.

Example 2

Find the bearing capacity of a 4-m wide strip footing placed
at a depth of 2 m (D = 2 m) in a 12-m deep layer of sand (1
=12 — D = 10 m) with ¢ = 42°and y = 17.5 kN/m*. The
clay beneath the sand has an undrained shear strength of
¢, = 105 kN/m2. The surcharge load is ¢ = yD = 35 kN/m-*
and g/yB = 0.5; ¢,/yB = 1.5 and /B = 2.5. From Fig. 6:
for¢ = 35°, p/yB = 36 (= 1); for ¢ = 40°, p/yB = 45 (% 1);
and for ¢ = 45°, p/yB = 57 ( = 1). Both parabolic and linear
interpolation were tried to find out whether simple linear
interpolation is acceptable for practical purposes. Parabolic
interpolation for ¢ = 42° yields p/yB = 49.44, thus the av-
erage limit pressure p = 3,461 (=70) kN/m>. Linear inter-
polation yields: p/yB = 49.80 and p = 3.486 (=70) kN/m-.
Calculations using the computer program for ¢ = 42° gave
p = 3,432 kN/m? (the maximum depth of the failure mech-
anism calculated by the program was 20.74 m). It is concluded
that linear interpolation in the range of ¢ from 30° to 45°
within 5° steps is acceptable.

COMPARISON TO OTHER METHODS

The method for calculations of the bearing capacity of a
two-layer foundation soil suggested by Hanna and Meyerhof
(1980) is perhaps the most widely known. and is therefore
used here for comparison. Fig. 8 presents the comparison of
the average limit pressure calculated using the proposed method
to the experimental tests performed by Meyerhof and Hanna
(1978) on a model of a footing (B = 0.05 m), and to calcu-
lations based on design charts presented by Hanna and Mey-
erhof (1980). Calculations were performed for the internal
friction angle of the sand layer equal to 47.5° (from direct
shear) and undrained shear strength of clay ¢, = 10 kN/m”,
as reported by Meyerhof and Hanna (1978), and vy = 16.3
kN/m?. It is rather unexpected that the upper-bound solution,
for all test points but one, yiclds a bearing capacity lower
than that of the actual experiment (this may be due to influ-
ence of the surface friction on walls of the test tank). Small
discrepancies between the proposed method and the labo-
ratory tests indicate that the method should prove useful as
a design tool.

Further comparison of the computational results is pre-
sented in Fig. 9. The method presented here requires no
additional concepts [such as a ““coefficient of punching shear™
(Hanna and Meyerhof 1980)] beyond the standard Mohr-
Coulomb yield condition and the flow rule, and the design
charts presented (Figs. 5-7) are convenient to use. The dif-
ferences in results from the two methods (Fig. 9) originate
from consideration of different collapse mechanisms and dif-
ferent approach to calculations (optimization). The mecha-
nism used by Hanna and Meyerhof (1980). when considered
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in view of the flow rule in (2). is kinematically inadmissible.
This leads to conservative estimates with respect to the rig-
orous upper-bound calculations, for some combinations of
parameters (see curves t/B = 1.0 in Fig. 9). Overestimation
of the bearing capacity by Hanna and Meyerhof (1980) be-
yond upper bounds calculated here (for other combinations
of parameters; curves for t/B= 2.0, g/yB = 1.0), is due to
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not allowing for adjustments of the collapse mechanism (op-
timization) in calculations of the least bearing capacity.

The design charts presented in Figs. 5—7 were derived under
the assumption that the deformation of the sand layer is gov-
erned by the associative flow law (normality rule). It can be



12 ! ! 1
10 o Griffiths (1982) //
B This paper
/ e
8 o

P
S~ //
e

t/B=0.9 /"

4 //
2 // ' $=40° [ .
0 i

0 0.4 0.8 1.2 1.6 2

FIG. 10. Comparison of Bearing Pressure Caliculations to Finite-
Element Computations (Nonassociative Flow Rule)

argued that the normality rule does not accurately describe
the deformation of the granular soil, and a nonassociative law
should be used for sand. Such law can be described by (2)
with the failure function f(o;) = 0 replaced by a plastic
potential, say, g(o;) = 0. Further, function g(o;) = 0 can
be taken in form of the Mohr-Coulomb function, (1), where
the internal friction angle ¢ is replaced by the dilatancy angle
s (Davis 1968). Theoretical considerations (Drescher and De-
tournay 1993) allow one to conclude that for such a nonas-
sociative model of sand (¢ = 0) a solution can be obtained
using the same technique as presented herein, but with the
internal friction angle ¢ replaced by angle ¢ calculated from

tan ¢* — cos .11; sin 'ap 7
1 — sin ¥ sin @

Fig. 10 shows the comparison of bearing capacities calculated

by Griffiths (1982) using the finite-element method, assuming

the sand is incompressible (¢ = 0), with the ones calculated

using the design charts presented here [angle ¢* calculated

from (7)]. The two coincide remarkably well.

FINAL REMARKS

A method was presented for calculations of the bearing
capacity of strip footings over a two-layer foundation soil
system. Design charts are shown for the case where a layer
of granular soil overlies the cohesive soil, either weak or
strong. The method can be applied easily to a general case
where the strengths of both layers are characterized by both
internal friction and cohesion.

The formulation of the bearing-capacity problem and the
solution using the upper-bound theorem of limit analysis is
conceptually straightforward. The solution does not require
introducing concepts or assumptions [such as the “coefficient
of punching shear’ (Hanna and Meyerhof 1980)] used in some
timit equilibrium approaches to avoid statical indeterminacy.
The advantage of the upper-bound approach is in the clarity
of the concept and the small effort needed to generalize the
solution to include both friction and cohesion in both layers,
inclined loads, and so on.

The simplicity of the solution to the relatively complicated
problem of the bearing capacity of footings over two different
soils was achieved by introducing a failure mechanism where
the velocity discontinuities were bent at specific angles at the
interface between layers. This allowed one to construct a
simple hodograph, as in the case of a uniform soil. Optimi-

zation of the geometry of the mechanism led to the least upper
bounds. It was found, however, that, for a strong first layer
(large ¢) and weak underlying clay, a mechanism with a con-
tinual deformation field in the weak layer was more effective.

The collapse mechanism that assures the least upper bound
to the bearing capacity can attain a very large depth, far
exceeding that for homogeneous soils. This depth becomes
particularly large for a strong granular layer (high internal
friction angle) and a weak clay underneath.
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APPENDIX Il. NOTATION

The following symbols are used in this paper:

B = width of footing;
¢, = undrained shear strength of clay;
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D = depth of footing; t = thickness of sand layer or depth of clay;
f(o,) = yield condition; V, = velocity vector;
© = bearing capacity functions (i = 1, 2, 3); v = unit weight of sand;
h = depth of failure mechanism; ¢, = strain rate tensor;
N.. N, N, = bearing capacity coefficients; o, = stress tensor;
p = average limit pressure (bearing pres- ¢ = internal friction angle of sand; and
sure); U = dilatancy angle of sand.

g = overburden pressure (yD);
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