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Stability Charts for 3D Failures of Steep Slopes Subjected
to Seismic Excitation
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Abstract: Design of slopes and analysis of existing slopes subjected to seismic shaking are carried out routinely using approximations
of plane strain and substitution of a quasi-static load for the seismic excitation. A three-dimensional (3D) analysis of slopes is carried out,
based on the kinematic theorem of limit analysis. A rotational failure mechanism is used with the failure surface in the shape of a
curvilinear cone sector passing through the slope toe, typical of steep slopes. A quasi-static approach is used to develop stability charts
allowing assessment of the factor of safety of slopes without the need for an iterative procedure. The charts are of practical importance

in cases of excavation slopes and whenever a slope is physically constrained, preventing a plane failure.

DOI: 10.1061/(ASCE)GT.1943-5606.0000412

CE Database subject headings: Slope stability; Seismic effects; Limit states; Three-dimensional analysis; Failures.

Author keywords: Slopes; Stability; Seismic analysis; Limit state analysis; 3D analysis; Failure.

Introduction

The routine assumption of plane failure in slope stability analyses
may be an overly conservative approach to stability assessment of
slopes with a well-defined extent of the failure mechanism. This
is clearly the case, for instance, in excavation slopes. An indica-
tion of this conservatism is included in the example in the latter
part of this note. Recent developments in limit analysis with
three-dimensional (3D) failure mechanisms (Michalowski and
Drescher 2009; Michalowski 2010) make a tractable 3D analysis
with seismic effects possible. The contribution in this note is in
extending this 3D analysis to seismic loads and presenting the
outcome in charts that do not require iterative procedures to read
the safety factor. The seismic excitation is included as a quasi-
static uniformly distributed horizontal load. Such an analysis, by
nature, does not reflect the true influence of the seismic load with
its duration, periodicity, and amplification, but it does constitute a
tool allowing for a quantitative assessment of safety. The analysis
is limited to steep slopes, for which the failure mechanism is
expected to pass through the toe.

The 3D analyses of slope stability are often attempted using an
approximate method of limit equilibrium, which requires global
equilibrium (force equilibrium) of the blocks that the failing mass
is divided into (for instance, Hungr 1987). As the problem is
statically indeterminate, additional static, often arbitrary, assump-
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tions are made. The second class of methods includes numerical
approaches, such as the finite-element method (FEM) (for in-
stance, Griffiths and Marquez 2007), and they allow assessment
of deformation prior to failure. These methods are better suited to
produce solutions for specific, well-defined slopes, rather than
yield a tool for safety assessment for a wide range of parameters.
Finally, the limit analysis approach can yield a rigorous bound to
the safety factor. While approximate, optimization of the failure
mechanism assures that the solution is a good estimate of the
“true” safety factor. This was confirmed by calculations of Chen
(1975), who concluded that the rotational mechanism for slopes
failing under plane strain conditions is the most critical one. Simi-
lar conclusions follow from comparisons of limit analysis results
and the finite element calculations (e.g., Griffiths and Lane 1999;
Lane and Griffiths 1997). The kinematic approach of limit analy-
sis is used in this note.

Limit analysis is a method that is well suited for slope stability
analysis, even though the slope stability problem is not a typical
problem where a boundary limit load is sought. Practical analyses
call for the factor of safety, and the charts here are developed in a
manner that allows for reading the safety factor without the need
for iterations.

First, the limit analysis method is briefly reviewed, followed
by the description of the 3D mechanism used to develop the
charts. An example illustrates the use of the developed tool.

Kinematic Approach with 3D Mechanisms

Limit analysis is a well-established method for assessment of sta-
bility of structures, and the reader will find the theorems of limit
analysis and their early application to slope stability problems in
Drucker et al. (1952) and Drucker and Prager (1952). A variety of
solutions to a wide range of problems using this method can be
found in the monograph by Chen (1975).

For the theorems to be applicable, the yield surface for the soil
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Fig. 1. Cross section of the 3D rotational failure mechanism (adapted
from Michalowski and Drescher 2009)

needs to be convex in the stress space and the deformation needs
to be governed by the normality rule. There have been only a few
attempts at 3D analyses using the kinematic approach of limit
analysis. These include a single and multiblock translation
mechanisms (Drescher 1983; Michalowski 1989), and rotational
mechanisms (de Buhan and Garnier 1998; Michalowski and
Drescher 2009). The 3D failures for purely cohesive soils were
considered earlier by Baligh and Azzouz (1975) and Gens et al.
(1988).

The kinematic approach of limit analysis is used here, and the
slope problem is formulated in terms of the factor of safety. The
yielding of soil is described by the Mohr-Coulomb yield condi-
tion which, for the 3D analysis, can be represented conveniently
as six planes in the principal stress space

flo,o)=0,—0;=(0;+0))sindb—-2ccos b=0; i,j=1,2,3
(1)

where 0; and o;=extremal principal stresses; ¢ =internal friction
angle; and c=cohesion intercept. This yield condition reduces to a

more familiar form for plane strain conditions

/ 2 .
flono,.1,)=V(o,—0,)+ 413, — (0, +0y)sin ¢ —2¢ cos $=0
(2)

The safety factor, F, is then defined as a ratio of the soil strength
parameters to those that are necessary to reach limit equilibrium

¢ tan
ol tand 3)
c; tan ¢y
where subscript d indicates the parameters “developed” at the
instant of limit equilibrium. It has been pointed out (Michalowski

Plane insert

Fig. 2. 3D slope failure mechanism modified with a plane insert
(adapted from Michalowski and Drescher 2009)

2010) that the kinematic approach to slopes leads to an upper
bound on the safety factor so formulated.

The mechanism of failure considered here is adopted from a
recent paper by Michalowski and Drescher (2009). The mecha-
nism cross section with a vertical plane perpendicular to the crest
line of the slope is shown in Fig. 1. The failing soil block is a
portion of a curvilinear cone with an apex angle of 2. The fail-
ure surface is generated by a circle of increasing diameter rotated
about an axis passing through point O. This shape is analogous to
the surface considered earlier in a 3D translational mechanism for
calculations of bearing capacity of square and rectangular foot-
ings (Michalowski 2001). The velocity within the moving block
represents a rotational field and is described by

v=pw (4)

where p=radius from point O to a point where the velocity is
determined and w=angular velocity about O. The velocities of
soil particles are perpendicular to radius p (Fig. 1).

The contour of the surface on the central cross section is
marked by two log spirals PAC

r= roe(e-e,,)mn b (5)
and PA'C’
= r(/)e—(e—eo)mn [ (6)

with angle 0 measured as indicated in Fig. 1. Such geometry
assures that the velocity of the rotating soil mass is inclined at ¢
to the failure surface at any point on the surface. The latter is
necessary for the mechanism in a frictional material to be kine-
matically admissible. The term kinematical admissibility relates
to deformation that is consistent with strain rates and velocity
discontinuities predicted by the normality flow rule used in the
plasticity model. The total width of the mechanism is constrained
to width B.

Before performing limit analysis calculations, the mechanism
in Fig. 1 was modified by adding a plane insert in the central
portion of the mechanism, Fig. 2. The geometry of this insert is
identical to the geometry of the plane mechanism considered by
Chen et al. (1969). This assures that the combined mechanism
tends to a plane mechanism when no constraints are placed on the
mechanism width.

Because the surface of sliding can be viewed as being gener-
ated by a circle of radius (r—r')/2, the geometrical description of
the surface is qualitatively different, depending on whether the
generating circle is rotated about an axis outside the circle, or
about its chord. This second case was also considered when de-
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Fig. 3. One-block translational mechanism (adapted from Drescher
1983)

veloping the charts, and a more detailed description of both
mechanisms can be found in Michalowski and Drescher (2009).
In rare cases (vertical slopes and narrow mechanisms, B/H=1), a
one-block translational mechanism considered earlier by Drescher
(1983), Fig. 3, assured a safety factor lower than the rotational
mechanism in Fig. 2.

Work Rate of Quasi-Static Seismic Force

The kinematic theorem of limit analysis indicates that an upper
bound to the critical height or the factor of safety of a slope can
be found from the balance of the work rate written for a kinemati-
cally admissible failure mechanism (Michalowski 2010). This
balance equation contains the rate of work that is dissipated, D
(internal work), and the rate of work of external forces. For a
slope with traction-free boundaries, the latter includes the rate of
work of the material weight, W,, and the work rate of the quasi-
static seismic force, W,. In general, this balance takes the form

D+ D =W+ WP+ WP+ WP (7)

where superscript 3D denotes the work rates for the 3D portion of
the failure mechanism and 2D relates to the plane insert (Fig. 2).

The rate of dissipation and the rate of work of the soil weight
for the 3D portion of the mechanism were described in detail in
Michalowski and Drescher (2009), whereas the components for
the plane insert can be found in Chen (1975). The rate of work of
the quasi-static seismic force in the plane insert can be found in
Chen and Liu (1990) and Michalowski and You (2000), and here
we present only the term that describes the work rate of the seis-
mic force in the 3D portion of the mechanism.

The seismic load is substituted with a distributed horizontal
load, with the magnitude being fraction k,, of the soil unit weight,
or

kh = (8)

where a,=horizontal ground acceleration and g=gravity accelera-
tion. The outward seismic force is consistent with the horizontal
seismic acceleration pointing into the slope. Vertical shaking is
not considered directly, but it can be included with an appropriate
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Fig. 4. Stability number for undrained slopes (¢=0)

modification of the unit weight (in such case the horizontal seis-
mic coefficient has to be adjusted accordingly). The work rate
term accounting for the rate of work of the horizontal seismic
load can be written in a general form as

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / FEBRUARY 2011 /185

Downloaded 24 Jan 2011 to 141.212.44.50. Redistribution subject to ASCE license or copyright. Visithttp://www.ascelibrary.org



8
6 6 6
F F F
—— 4 — 4 —
tang tang tang !
2 2 2
k,=0.1 : k,=0.2
p=45° ' p=45° : . p=45°
0 T T T T 0 T T T T 0 . T T |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
c c _c
yH tang yH tang yH tang

Fig. 5. Safety factor for 3D slope failure: slope inclination 45°
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Fig. 6. Safety factor for 3D slope failure: slope inclination 60°
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Fig. 7. Safety factor for 3D slope failure: slope inclination 75°
, _ equation in Eq. (7) was transformed to calculate dimensionless
WP =k, WP = kyy f v sin BdV ) critical height yH/c, and its minimum (best upper bound) was
v

where v=velocity magnitude and y=unit weight of soil. The
shape of the rotating volume V is complicated, and the details of
integration are given in the Appendix.

Stability Charts

The analysis developed so far allows for calculations of safety
factors in steep slopes, for which the failure mechanism is ex-
pected to pass through the toe, and for slopes with no phreatic
surface present within the failure mechanism (no pore-water pres-
sure, while matric suction enters the analysis through its influence
on cohesion).

Computations were carried out for steep slopes, with inclina-
tion angles (3 ranging from 50° to 90° for slopes failing in un-
drained conditions ($p=0) and between 45° and 90° for ¢>0.
The search for the most critical mechanism was subject to a con-
straint on the total width of the mechanism B/H. The balance

obtained by minimizing its value with variable parameters 6, 6,,
ro/ o, and the relative width of the plane insert b/H, subject to
constraint B/H on the overall width of the mechanism. These
variables are illustrated in Figs. 1 and 2.

The results of calculations are presented in Figs. 4—8. Stability
number ¢,/ yHF (as defined by Taylor 1937) is illustrated in Fig.
4 for undrained slopes. The safety factor F can easily be found by
reading c¢,/yHF for a slope of given inclination and width B/H,
and dividing the actual value c,/yH for the slope by the read
stability number. For ¢>0, the magnitude of F/tan ¢ (or
1/tan ¢,) is plotted in Figs. 5-8 as function of ¢/yH tan ¢. Such
presentation allows one to avoid iteration when reading the safety
factor from the charts. This is because quantity ¢/yH tan ¢ is
independent of the safety factor, i.e., ¢/yH tan $=c,/yH tan .
In slopes made of purely frictional soils (c=0), the solutions con-
verge to shallow failures approaching the slope surface, as for
plane-strain solutions. However, this is not likely to be a case for
partially submerged slopes (Michalowski 2009).

All charts are presented for seismic coefficient k;, ranging from
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Fig. 8. Safety factor for 3D slope failure: slope inclination 90°

0.1 to 0.3. For $>0 and B=60°, two charts are presented for
every combination of parameters, with the second chart focusing
on a small range of variable c/yH tan ¢. The relative width of the
mechanism of failure, B/H, ranges from 1 (1.5 for ¢$=0) to 5; in
addition, the solution for the case of the plane mechanism is plot-
ted (after Michalowski 2002).

It is evident that the safety factor for a slope of given inclina-
tion is dependent on the relative width of the mechanism (B/H)
and the magnitude of the horizontal acceleration characterized by
the fraction k;, of gravity acceleration. Only toe mechanisms were
considered for 3D failures. The plane solutions, however, in-
cluded both toe and under-the-toe failures, whichever lead to the
minimum safety factor. However, the range of parameters for pre-
sentation of results was selected to exclude slopes for which
under-the-toe failures resulted in plane strain. This is why the
solutions are presented in Fig. 5 for a range of c¢/vyH tan ¢
smaller than that for the steeper slopes in Figs. 6-8. The 3D
failures for steep slopes are likely to be less prone to under-the-
toe collapse than the two-dimensional failures, but this statement
is yet to be validated with the development of a 3D limit analysis
with a below-toe failure surface.

Example

A 1:1 slope has a height of 15 m, and it is built of a uniform soil
characterized by ¢$=20°, c=40 kPa, and y=18 kN/m?3. The ex-
tent of the slope (width) is limited by rock formations spread 30
m apart (B/H=2). What would the factor of safety of this slope
be if the magnitude of the horizontal acceleration were 0.2 of the
gravity acceleration? First, calculate c¢/yH tan $=0.407; next,
read F/tan ¢ from Fig. 5: F/tan $=3.90. Consequently, F
=3.90-tan 20° = 1.42. Using plane-strain solution for this slope
would yield the safety factor of about 1.18, which is quite a
conservative estimate of the safety factor. The safety factor of this
slope without seismic influence can be found from charts in
Michalowski (2010): F~1.82.

Final Remarks

Limit analysis is a convenient tool for considering stability of
slopes. The analysis presented includes 3D and seismic effects,
but it is limited to steep slopes (toe failure). Consideration of
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seismic effect as a steady loading is approximate, and it does not
account for the temporal effects (or periodicity) during seismic
shaking. However, the charts produced are a convenient means
for evaluating stability, and they do not require an iterative pro-
cedure for estimating the safety factor. Further work will concen-
trate on constructing a 3D mechanism applicable to shallow
slopes (under-the-toe failure), and accounting for the influence of
pore-water pressure on 3D stability.
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Appendix

The contours of the curvilinear cone in Fig. 1 are described in
Eqgs. (5) and (6). The shape of this cone is generated by a circle of
varying radius R with its center described by radius r,,

r—r' r+r
2 T

R= (10)

"2
A local coordinate system x, y in each radial cross section is now
introduced, as shown in Fig. 1 (x perpendicular to the plane of the
figure). The velocity in Eq. (4) during rotation about point O is
now expressed as

v=_(r,+yo (11)

where w=angular velocity about O. The infinitesimal volume el-
ement is

dV =dxdy(r,,+y)do (12)

and the work rate of the distributed seismic force in Eq. (9) now
can be written as

_ 63 X" y*
WzD =k, WsD =2wkyy f f f (r,, +y)? sin Odydxd
0o 0 a

eh X" )V
+ f J f (r,, +¥)?* sin Odydxd® (13)
0 YO Jd

The two integrals in Eq. (13) include the work of the seismic
force in two portions of the rotating volume separated by the
plane perpendicular to the plane of Fig. 1 and passing through
points O and B. Angle 05 defining this plane was found from the
geometrical relations in Fig. 1

sin 60

0 = arctan
cos 0p—A

A sin(8,—0,) e % ¢ gin 9, —sin 6,

in(0 14
sin 0, sin 6, sin 3 sin(0,+B) (14)

The upper integration limit on y is a function of x: y*=\R?>-x?,
s w_\[p2_ 2 w_\p2_ 12 s

and the limits on x are x"=VR“—a” and x"=\R"—d" in the first

and the second integral, respectively, and a and d are given in

sin 0,

a=—; ro—r,
sin 0 "

_sin(B +6,)

— (0,—6p)tan & _ 15
sin(B+0) T (13)

The integrals in Eq. (13) were calculated analytically with respect
to x and y, and integration over angle 6 was carried out numeri-
cally.
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