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LIMIT ANALYSIS OF WEAK LAYERS UNDER EMBANKMENTS

RaposLaw L. MicHALOWSKID

ABSTRACT

Limit loads on finite layers of weak soil over a rigid base are analyzed using the upper bound
approach. The soil is considered cohesive, and the Tresca yield condition is used to describe its
strength. Strength increasing with depth is considered, and different strengths of the base
interface are accounted for. The analysis is performed having the design of embankments in
mind, and it makes it possible to account for the arbitrary horizontal component of the load
generated by the horizontal thrust in the embankment. Results are compared to the lower bound
solutions of particular cases available in the literature. Even though the upper bound approach
was used, the solutions presented fall very close to the lower bound solutions. The advantage of
the solutions presented in this paper is in easier calculations of bearing capacity, especially when
the soil strength increases with depth, and in accounting for the arbitrary horizontal load
transmitted from the embankment to the foundation soil. A proposal for arriving at critical
heights of both unreinforced and reinforced embankments is given.
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tangential stress on the interface {smooth
INTRODUCTION footings) is then expected to be unsafe in unre-
The resultant load on the foundation soil  inforced embankment design. The adverse
from embankments is vertical and equal tothe  effect of the horizontal outward load can be
weight of the fill; however, the outward-acting  prevented by placing reinforcement at the bot-
tangential load (with a zero integral over the  tom of the embankment fill (see, e.g., Jewell
entire embankment width} is caused by the  1988). This paper considers the bearing capaci-
horizontal thrust in the embankment. During  ty of a weak layer subjected to an arbitrary
failure of the foundation soil, this outward  horizontal load component, characteristic of
load continues to exist, as the embankment is  unreinforced and reinforced embankments.
free to “*spread’ laterally, following the The bearing capacity of a finite thickness
displacements of the foundation soil. These  layer was first considered by Jirgenson (1934),
outward horizontal forces have an adverse  and a substantial contribution can be found in
effect on the bearing capacity, as opposed to  a paper by Mandel and Salencon (1972). The
the inward forces resisting failure under rough  bearing capacity of cohesive layers with
footings. Application of bearing capacity solu-  strength increasing with depth was later analyz-
tions for footings which, at best, assume no  ed by Matar and Salengon (1977). Both papers
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employ the method of characteristics to solve
the set of hyperbolic equations describing the
stress field in the layer. Even though these solu-
tions were meant as the bearing capacity of
layers under footings, they are used in most
design techniques for embankments over soft
soil layers (e.g., Silvestri 1983, Bonaparte et
al. 1987, and Rowe and Soderman 1987). The
solution to the entire boundary value problem
is shown in Fig. 1 for rough interface DO’. It
starts with the Cauchy problem in triangle
ABC, followed by the solution in area BCDE
with a singular point at B. The last characteris-
tic of fan BCDE coincides with interface BE.
Hence, the limit load along BE has an inward
horizontal component of intensity equal to the
soil cohesion. The same is true along EG,
where point G is found from the condition
that characteristic GJ must approach line OO’
at angle n/4 (symmetry condition). The inten-
sity of the horizontal load along OG is not
known, but it can be estimated from extending
the plastic region into GJO. This intensity
drops to zero at point O.

The assumption of inward-acting horizontal
forces, quite appropriate for rough footings,
leads to a significant overestimation of the
bearing capacity if applied to unreinforced em-
bankments, where the shear stress on the foun-
dation soil is of the opposite sign. It should be
emphasized that the solutions by Mandel and
Salencon and by Matar and Salengon were not
intended by those authors to describe the
bearing capacity under unreinforced em-
bankments, and the correctness of these solu-
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Fig. 1. Stress characteristics field in the solution of the

bearing capacity of a rough footing over a layer on a
rough base, Mandel and Salengen (1972)

tions is not questioned. Only the extension of
the applicability of these solutions to unrein-
forced embankments is disputed.

A different approach to estimating the
bearing capacity of weak layers under em-
bankments was offered by Leshchinsky (1987).
This approach is based on a rotational mechan-
ism of failure. While such a mechanism is very
effective in analyzing the failure of embank-
ment slopes (Leshchinsky, 1987), its extension
to modeling failure under the entire embank-
ment leads to bearing capacities which are
higher than those based on the collapse
mechanisms proposed in this paper, especially
for wide embankments or thin layers (as both
estimates are upper bounds, the lower one is
more reliable). An approximate approach
based on the differential slice technique was
proposed by Jewell (1988). Analyses of the
bearing capacity of a weak soil of unlimited
thickness under loads with arbitrary horizon-
tal components were presented by Houlsby
and Jewell (1988) and Michalowski (1992).

An extensive study of case histories of em-
bankments over soft soils was conducted by
Humphrey and Holtz (1986). They found that
predictions of embankment heights based on
the classical Prandtl solution (H=35.14¢/y,)
considerably underestimate the true critical
value, and they concluded that the limited
thickness of the weak foundations and the in-
crease of strength with depth (which is usually
the case) are likely to be among the factors
responsible for critical heights larger than ex-
pected. Both strength increase with depth and
foundation thickness are accounted for in the
solutions presented in this paper.

The solutions in this paper are obtained us-
ing the upper bound approach of limit
analysis (Drucker et al., 1952). The limit stress
state of the soil is described by the Tresca yield
condition {(with the undrained shear strength
being the material parameter}, which is a
generally accepted failure criterion for normal-
ly consolidated cohesive soils under undrained
conditions. The flow rule is assumed to be
associative. The upper bound theorem can be
expressed as follows: the rate of work done by
the external forces (tractions and material
weight) is less or equal to the energy dissipa-
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tion rate in any kinematically admissible
failure mechanism. Hence, equating the rate
of external work to internal dissipation allows
one to calculate the upper bound to the true
limit load. The flow rule associated with the
Tresca yield condition leads to a velocity field
with incompressible deformation. It also im-
plies that a velocity jump vector across a veloc-
ity discontinuity considered as a non-
elongating line is constant and tangent to that
discontinuity. The term *‘velocity jump vec-
tor” will be used throughout the paper to
describe the difference in velocity of neighbor-
ing particles separated by a velocity discon-
tinuity (failure surface).

The mechanisms of failure of a soil layer
under an embankment considered in this
paper are presented in the next section. In the
following sections the bearing capacity of a
layer under an embankment is analyzed for
cases of homogeneous soil and soil with
strength increasing with depth. Next, a more
approximate  closed-form  solution s
presented. Application of the results is then
shown for finding critical heights of em-
bankments, including the influence of rein-
forcement. The conclusions are presented in
the last section.

MECHANISMS OF FAILURE

Three kinematically admissible collapse
mechanisms of a layer over a rigid base are
shown in Figs. 2{a), 3(a}, and 3(c). All three
are plane-strain mechanisms, as the length of
the load (embankment) is considered large
with respect to the width.

The first mechanism, Fig. 2(a), is similar to
that associated with the static solution propos-
ed by Hill (1950), with its depth restricted by
the thickness of the layer. Length AE is equal
to half of the width of the load (half of the em-
bankment width). Vertical component ¥° of
the velocity along AE is a given boundary con-
dition. Block ABE then moves as a rigid body
with velocity Vage (see hodograph in Fig. 2(b)),
whose vertical component is equal to V', area
BCE undergoes continual deformation, and
block CDE moves as a rigid body. The two
other mechanisms (Figs. 3(a) and 3(c)) are very

different from the first one, in that the part of
the layer immediately under the load is divided
into more rigid-motjon blocks, some of which
slide over the rigid base. The number of
blocks increases with an increase in ratio /r.
These mechanisms are similar to those
adapted in the limit analysis of the compres-
sion of metal blocks between rigid platens
(e.g., Collins 1969) and those used by Izbicki
and Mroz (1976) to analyze limit loads on soil
layers. The vertical velocity component of
boundary OBD is, again, considered a bound-
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Fig. 2. (a) Symmetrical half of the Hill-type failure
mechanism; (b) hodograph; (c) limi¢ value of /¢ for
different outward shear siress mobilization on the
foundation soil; homogencous soil
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ary condition. The rigid blocks in the
mechanism shown in Fig. 3(a) are separated
by velocity discontinuities OA, AB, BC, and
CD. Velocities of particular blocks are
represented on the hodograph (Fig. 3(b)),
where the velocity jumps across discon-
tinuities are indicated by brackets. Only area
EGD undergoes continual deformation. Inter-
facial failure is assumed to take place along
the base (ACE). The mechanism in Fig. 3(c) is
similar to that in Fig. 3(a); however, here, the
middle block, OAB (symmetrical half), is con-
sidered to move down vertically.

The limit load is assumed to be distributed
along surface OBD (Figs. 3(a) and 3(c)). The
horizontal Joad component is given as a frac-
tion of the undrained shear strength at the sur-
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{a), (c) Collapse mechanisms of 2 layer; (b), (d) hodographs

face of the layer, T=xc (x in the range of —1
to 1, the limit values representing fully mobiliz-
ed inward and outward shear stress, respec-
tively), 7 is then a stress boundary condition.
Angles o« and  in the first mechanism, and
angles « and B in the other two, must be such
that the mechanisms are kinematically admissi-
ble. Their particular values will be determined
from a minimization scheme where the
minimum of the limit load, 4, is sought.

HOMOGENEOUS LAYER OVER
SMOOTH AND ROUGH BASES

Fig. 2(c) represents results based on the
analysis of the failure mechanism shown in
Fig. 2(a). The average limit pressure g/c is
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shown as a function of ratio b/¢ (half-width/
fayer thickness) for different horizontal load
coefficients ¥ {(x=1%/c). This mechanism is

while the inclined parts were obtained from
Eq. (1), where w=n/4+a and a=arcsin
(t/ b) to yield

forced to a depth not exceeding the thickness g 7 ‘ Ay
of the layer, and the solution can be presented  —=1+—+2 arcsin (_5) +(1—y) (_) —1
as (Michalowski, 1992) ¢ 2 t

(3}
c =2y (I =) cot atcot (¥~ ) M Eq. (3) overestimates the true limit loads, par-

ticularly for smooth bases (the limit loads
from such analysis are independent of whether
the base is smooth or rough).

The failure mechanisms leading to more
realistic upper bounds for large ratios b/¢ are
those in Figs. 3(a) and 3(c). Only the analysis
based on the first mechanism, Fig. 3(a), will be
presented in detail, while the numerical results
shown will be based on both mechanisms. De-
pending on ratio /¢, the number of blocks in
This solution, though obtained in a different the mechanism changes. The number of mov-
form and using the method of characteristics, ing blocks under the loaded surface is taken as
was obtained earlier by Sokolovski (1965). Eq.  {he characteristic number »n. For the
(2) describes the horizontal portions of the mechanism in Fig. 3(a), #=4. Note that » can
lines in Fig. 2(c), where the base of the layer assume only even natural values.
does not interfere with the failure mechanism, The upper bound theorem can be written as

I‘QI

where angles « and w are found from a
minimization procedure of §/ ¢ with the condi-
tion: sine=<#/b. For a half-space (infinitely
thick layer), the minimum was found
analytically when w=n/4+o and o=
(arccosy)/2, hence
g i

?=1-f~—2~+arccos x+ A l=—y? 2

E é?}audv+§ VI dL+S (V1 dLbag Q,»V,—dS+5 wVide, i, j=1,2,3 (d4a)
Lh 5 v

v L

or
bl.+bL+DLb2 WQ+ W}, (4’b)

where superscript & denotes a strain-rate and velocity fields related to the kinematically admissi-
ble mechanism. The first term on the left-hand side represents the work dissipation rate in the
continually deforming area (8:} being the strain rate tensor and g;-the stress tensor), and the sec-
ond and third terms represent the dissipation rates along discontinuities within the layer and
along the base, respectively (¢,~the shear strength of the base interface). The two terms on the
right-hand side represent the work rate of external load ©; (stress vector with components § and
7) and the work rate related to displacement of the soil, y; being the vector of unit weight. Due to
the incompressibility of the material, the last term in Eq. (4) is equal to zero {a direct conse-
quence of the mass conservation principle). The energy dissipation rate along a velocity discon-
tinuity surface of length / within a cohesive material (per unit width) is

d={[V]e (5)

where [V] is the magnitude of the velocity jump vector and c is the cohesion. Velocity jumps
across discontinuities OA, BC, and AB and CD in Fig. 3(a) are ¥°/sin « and V%/sin f, respec-
tively. The velocity jump across discontinuity EGH is Vyn (cot a+cot £)/2. The dissipation rate
within all discontinuities within the layer then becomes

niv® N ntVe +mrrV° ot +ntV
= . t
L osint et 2sm"ﬂc 8 (cot a+cot f)e 2

9

{cot a-cot S)c {6a)
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where the four terms represent dissipation rates along discontinuities inclined at angle « to the

horizontal, along those inclined at angle f to the horizontal, and dissipation along EG, and GH,

respectively. Eq. (6a) can be rewritten as
D= v +(n+1) t ar+cot f)

=—V - — co co
T2 sin?f# \4 (cot &
where # describes the number of moving blocks under the loaded surface. Pissipation within
area DGE is

+ (6b)

sin? o0

. o o (nie o nm_
D=\ gy &,dv= Y n{cot a-+cot B)cdéd drz? Vlc(cot o +cot §) N

v ovo

The velocity jump vector along base AC is equal to the velocity of block number 2 (ABC), and is
equal to Vy(cot a+cot ), and the velocity along CE (block number 4) is twice as large. For a
mechanism with an arbitrary even number #, these velocities become: Vy(cot a4cot 8)i/2,
where (=2, 4, - -n. The rate of energy dissipation along the base then becomes

n—2

. i 1
Dy y=tVy(cot atcot ﬁ)zcbg > H_EMVO cot f(cot o +cot By, 1=2,4,6---n—2 (8a)

i=]

where the first term describes the dissipation rate along base interface AC (in general, for n>4,

there are more blocks similar to ABC sliding over the base interface), and the second term

describes the dissipation along CE. Eq. (8a) can be written in a more convenient form
. n

Du,=§ V %cy(cot ac+cot f)[{(n—2) cot a+{n+2) cot §] (8b)

The strength of the base interface, ¢y, is & fraction of the shear strength of the soil, c,=xc (x in

the range from 0 to 1.0, i.e., smooth to perfectly rough). The work of external forces on OBD is
sphit into two parts: the work of the unknown vertical load §

W,=gbV"° (9
and the work of the known, uniformly distributed, horizontal load 7. Horizontal components of
velocities of blocks OAB (block number 1) and BCD (block number 3) can be written in general
as VI(i+ D cota+(i—1)cot 81/2, where i=1, 3, 5-- -n—1. The rate of work of 7 becomes

. n=1
W.=t(cot a+cot )T >, VO[(i+ 1) cota+{i—1)cot B1/2, i=1,3,5 --n—1 (10a)
i=1

or

W,=n—8x ¥ %c(cot a+cot SY[(2+ n) cot a+(r—2) cot §] (10b)

where y is the coefficient describing the inten-

sity of the horizontal load as a fraction of the
shear strength of the layer, T=jx¢
{(—1.0=x=<1.0). An expression for the upper
bound to § can be obtained after substituting
Egs. (6)-(10) into Eg. (4) and solving for §.
The average dimensionless limit load §/c ob-
tained is independent of the true distribution
of g, as the vertical velocity component of the

loaded boundary is constant (thus the work-
rate of this load is independent of its distribu-
tion). The resulting expression is a function of
o, B, and the characteristic number n. Solid
lines in Fig. 4 were obtained from this expres-
sion, where o and n were varied {f is a depen-
dent parameter when b/ is given) to obtain a
minimum value of g (bullets in Fig, 4 are from
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an analytical solution presented later). The
diagrams are shown for smooth, *‘semi-
rough’® (base strength equal to half of the soil
strength, x=0.5}, and perfectly rough bases,
and for different factors x representing
different intensities of the outward horizontal
load on the layer (characteristic of unrein-
forced embankments; diagrams for y <0, ap-
plicable to reinforced embankments, are
presented later in the paper), While angle «
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Fig. 4. Dimensionless limit load §/c for outward
horizontal loads on the foundation layer,
iomogeneous soil: (a) smooth base; (b) base
interface strength equal to half of the shear strength
of the soil; (¢) perfectly rough base. Solid lines
indicate the numerical solution and bullets mark the
closed-form solation

can vary continuously within the admissible
range, the value of n can assume only even
numbers (2, 4, 6 -). For each value of 5/t
calculations were performed for all reasonable
values of #, and for each # the minimum of §
was found with angle o being the variable.
Then, the least minimum was selected as the
best upper bound estimate. Characteristic
“‘waves’’ In the diagrams in Fig. 4 can be seen
for small ratios b/f. These are due to an
abrupt change in number », which assures the
minimum value of G/c. The number n for
which the minimum of §/c is found increases
with an increase in /¢, A change in » leads to
a change in the geometry of the mechanism,
and, consequently, to a change in the
derivative of curves calculated in Fig. 4 (the
curves were smoothed by the plotting prog-
ram). For large b/#, these fluctuations become
insignificant. For small ratios b/¢ (thick
layers), the minimum limit load §/c is ob-
tained from the Hill mechanism (Fig. 2(a)),
and this load is independent of b/ ¢ (horizontal
portions; the base of the layer does not in-
terfere with the failure mechanism). Limit
load g/ c is very sensitive both to the intensity
of the horizontal load and to the strength of
the base inferface.

The least limit load is obtained for a smooth
interface, where, for no horizontal load condi-
tion (¥=0), limit load §/c becomes constant
for larger b/t and equal to 4.57 (or 3+n/2).
Once the horizontal load due to the thrust in
the embankment increases (increase in x), the
limit load drops down, and, theoretically,
reaches zero for sufficiently large ratios b/¢.
Here, the smooth base interface acts as a
“‘weakening” surface whose adverse effect
becomes more pronounced while its relative
depth becomes smaller {large b/¢#). This result
is not surprising, since, for a layer thickness
reaching zero, not even a small horizontal
load can be supported (smooth interface). The
limit loads are influenced significantly by the
strength of the base interface, reaching the
maximum for a perfectly rough base where the
shear strength (cp) is assumed to be equal to
that of the soil. As opposed to smooth bases,
limit load /¢ for rough bases increases with
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an increase in b/f.

STRENGTH INCREASING WITH DEPTH

The influence of strength increasing with
depth was accounted for by Davis and Booker
(1973) for unlimited thickness weak cohesive
soils, and by Matar and Salen¢on (1977) for
layers, using the method of characteristics. An
upper bound analysis is performed here for
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Fig. 5. Limit load §/c,, for ontward horizontal loads on
the foundation fayer, strength increasing with depth
(&b/c,=5.0): (a) smooth base; (b) base strenpth
equal to half of the seil strength at the base; (c)
perfectly rough base. Solid fines indicate the
numerical solution and bullets mark the closed-form
solution

layers where the shear strength increases linear-
ly with depth z

c=CpEz {11)

where ¢, is the shear strength at the surface,
and ¢ is the gradient of the strength with
depth. Energy dissipation rates are calculated
taking the increased shear strength into ac-
count. Since the velocity jump vector along
cach discontinuity is constant, the dissipation
rate along each discontinuity is calculated tak-
ing into account the shear strength at its cen-
troid. The dissipation rate within the con-
tinually deforming area is calculated as
presented earlier (Michalowski, 1992). The
diagrams in Fig. 5 represent the limit loads
calculated for dimensionless coefficient
Eb/c,=5. The solid lines represent the
numerical solution, where the minimum of
g/ cm was sought. The horizontal portions of
the lines come from analysis of the Hill
mechanism. Depending on the base strength
and horizontal load, §/c, may increase or
decrease with ratio b/1¢.

CLOSED-FORM SOLUTION

Limit pressure §/cn over finite thickness
layers is dependent on parameters which
characterize the horizontal load (x), base
strength (x=c¢; [c), strength increase with
depth (£b/cy), and, of course, ratio b/f.
Presenting results for a wide range of useful
combinations of all parameters would require
a large number of diagrams, therefore, an
analytical (closed-form) solution was attemp-
ted, and it is presented in this section. This
analytic solution is attempted here to allow an
easy, though less accurate, assessment of Ilimit
loads. The analytical solution is based on the
mechanisms shown in Figs. 3(a) and 3(c), and
is restricted to cases where ratio b/¢ is equal to
natural numbers. The mechanism in Fig. 3(a)
is used to derive limit loads for b/t=2, 4,
6,- - -, and the mechanism in Fig. 3(c} is used
to obtain the solution for b/t=1, 3, 5,-+* In
both solutions it is assumed a priori that
angles o and 8 are equal to n/4. This is an ar-
bitrary assumption selected so that a closed-
form solution could be obtained. As the proc-
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ess of optimization of the geometry of the
failure mechanism is eliminated, the
overestimation of the true limit load is ex-
pected to be larger than that in the numerical
solution. Only for the particular case where

«=0and y=0do the two solutions yield iden-
tical results. Expressions for dissipation rates
and the work rate of external forces are given
in the Appendix. Substituting those into eq.
(4) makes it possible to solve for the upper
bound to G/c,

q T 1b Eb| ¢t K b
wmm Y e iy — = .
S=3 oo x)+cm [b 1+ ﬁ)+2}, T=2,4,6, (12)
for the mechanism in Fig. 3(a), and
q—, 2

IR Lo g
PRI G S G E

for the mechanism in Fig. 3(c).

Limit loads obtained from the analytical
solution (Egs. (12) and (13)) are presented in
Figs. 4 and 5 as small circles for horizontal
load intensity x=0.2, and as triangles for
x=0.8. As expected, the closed-form solution
yields higher limit loads than the numerical
one does. For a smooth base (x=0) and
x=0.2, the analytical solution overestimates
the numerical one by less than 0.3% (b/¢<10).
The overestimation becomes higher when ¥ in-
creases and is greatly influenced by the
strength of the base (see Figs. 4 and 5).

As the analytical solution (Egs. (12) and
(13)) is strictly valid only for b/¢ equal to in-
tegers, this solution should be interpolated for
b/t other than integers. Since the analytical
solution is a continuous function of ratio 5/+,
the interpolation can be performed by
substituting the required value of b/t (a
positive real number) directly into Eq. (12) or
Eq. (13). While substitution of »/¢ with values
other than integers contradicts the assump-
tions used to derive Eqs. (12) and (13), it
should be viewed only as an interpolation tech-
nigue.

CRITICAL EMBANKMENT HEIGHTS
AND INFLUENCE OF REINFORCEMENT

Numerical and analytical results were
shown in previous sections for horizontal load
intensity x >0, as the thrust in the embank-
ment causes an outward horizontal load on
the foundation soil. The solutions presented,
however, also are valid for cases where the

+ «/5)+g (1+£-)}, %=1, 3,5+ (13)

b2

horizontal forces transmitted to the soil dur-
ing collapse are directed inward; such forces
are known to exist under rough footings.
Horizontal inward forces are also conceivable
under reinforced embankments, where during
collapse of the foundation layer the embank-
ment does not follow the displacements of
that layer, as the reinforcement constrains the
lateral spreading of the embankment.

Fig. 6 represents selected numerical and
analytical results for layers loaded with in-
ward horizontal loads, typical of reinforced
embankments. The analytical solution
represented by Eqs. (12) and (13) now yields
results almost identical to the numerical one,
independent of whether the layer is resting on
a smooth or rough base.

The total thrust (horizontal force) in the em-
bankment at the symmetry plane can be esti-
mated as . H2K/2, where H is the embank-
ment height, p, is the unit weight of the em-
bankment fill, and X is the coefficient of
lateral pressure. For unreinforced em-
bankments, this thrust is transferred to the
foundation scil as the outward tangential load
characterized by coefficient y =%/c. For rein-
forced embankments, part or all of the thrust
is taken over by the reinforcement, and, thus,
the tangential load transferred to the founda-
tion soil is likely to be smaller. Assuming that
the maximum force in the reinforcement is
equal to its tensile strength (implying tensile
failure rather than pull-out), coefficient ¥ can
be calculated as




164 MICHALOWSKI

(b)

ool

3

-—&IU‘

Llal

L Smocth Base e x=-0.8

i) 1 1 ] 1 1 { I 3 I

0 2 4 8 8 10

- |

Fig. 6. Limitload §/c, for inward horizontal loads on
the foundation layer: (a) smooth base, homogeneous
soil; (b) perfectly rough base, iomogeneous soil; (¢}
smeoth base, strength increasing with depth
(&bfe,=5.0). Solid lines indicate the numerical
solution and bullets mark the closed-form solution

T _yHK—2R
2bey,

where R is the tensile strength of the reinforce-
ment (or, for practical purposes, a tensile
force at some specified allowable lateral em-
bankment strain) per unit length of the em-
bankment. Coefficient of lateral pressure K
cannot be smaller than tan®(m/4—¢;/2)
(K=(1—sin ¢} is recommended for conser-

= 14
= (14)

vative design). It is conceivable that, if the rein-
forcement is strong enough, the soil is displac-
ed laterally during collapse of the foundation
soil layer (e.g., according to the mechanism in
Fig. 3(a)), while the embankment does not
spread, due to being constrained by the rein-
forcement., In such case horizontal forces
acting on the foundation layer are directed
inward (—1=yx<0).

It needs to be emphasized that, under work-
ing conditions, coefficient y is likely to be
positive. Only at the onset of failure, when the
soft soil begins to be ‘‘squeczed out’ from
underneath the embankment (incipient
failure), may the total thrust in the embank-
ment be equilibrated by the force in the rein-
forcement, and further increase in the
reinforcement force due to movement of the
foundation soil with respect to the fill may
cause inward horizontal forces (negative x).
Such a state may be allowed to persist under
embankments over soft soils until the con-
solidation process, caused by the surcharge
lpad (embankment weight), leads te an in-
crease in the foundation strength.

Critical heights of embankments over
cohesive soil layers can be estimated using the
respective diagrams, or using Egs. (12) and
(13). To make use of these diagrams and for-
mulae, coefficient y first has to be estimated
from Eq. (14). The limits on y are —1.0 and
1.0. The embankment for which y=—1.0 is
referred to as a fully reinforced embankment.
An increase in the amount of reinforcement
beyond that assuring x=—1.0 does not lead
to an increase in critical height (or the safety
factor). Once y is calculated from Eq. (14),
the particular diagram or formula can be used
to determine ¢/ c. Since the total vertical force
under one half of the embankment, §b, must
be equal to the weight of the fill,
yr(bH—H?*cot 6/2), the critical (failure)
height can be calculated as

| 2g
— —_—y ]
H=btan 5(1 by, tan 5) (15)

where 4 is the slope angle, Note that y is a func-
tion of H, therefore the process of finding the
critical embankment height is iterative. If g
becomes large enough so that the function
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under the square root becomes negative, the
embankment height becomes limited by its
maximum value of btand. Alternatively, as
suggested in the literature (e.g., Bonaparte et
al. 1987; Rowe and Soderman, 1987), the com-
putational width of the embankment can be
taken at its mid-height and the failure height
can be calculated as H=g/yy.

DISCUSSION

Numerical and analytical (closed-form) solu-
tions were shown for the bearing capacity of
finite thickness layers of cohesive soil over
rigid bases. These sclutions account for a
horizontal, uniformly distributed load of ar-
bitrary intensity; they also account for an in-
crease in the soil stremgth with depth and
different shear strengths of the bases. The
analysis was performed with the design of em-
bankments in mind, where the intensity of the
horizontal load on the foundation soil
depends on the embankment height and on
whether or not reinforcement is used.

A comparison of the solutions presented in
this paper to those by Mandel and Salencon
(1972) and by Matar and Salencon (1977) is
shown in Fig. 7 for both smooth and rough
bases, for uniform strength, and for strength
increasing with depth (note that in this paper &
is the half-width of the embankment, while in
the other papers B denotes the total width). As
expected, the solutions for rough footings
based on the method of characteristics com-
pare very well to those presented in this paper
for large inward horizontal loads typical to
fully reinforced embankments (x close to
—1.0). Note that in solutions using the slip-
line method, the average intensity of the
horizontal load, y, does not reach —1.0
(x=—1.0 along BEG, Fig. 1, and y drops to 0
at point O).

An extension of the admissible stress field in
the layer beyond the loaded area can be found
for solutions by Mandel and Salencon, and
Matar and Salengon. Consequently, these solu-
tions can be proved to be rigorous lower
bounds to the true limit load. It may very well
be that they are exact solutions, since associ-
ated  kinematically admissible failure

mechanisms can be found. For these solutions
to be exact the work dissipation rate needs to
be proved non-negative everywhere in the
deformation field. As the solutions are
numerical in nature, there is no easy way to
prove this. Hence, the solutions by the method
of characteristics are cauticusly considered
here as lower bound solutions, and are used as
verification of the upper bounds obtained in
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Fig. 7. Comparison of proposed solutions to those of

Mandel and Salengon ¢1972) and Matar and Salencon
{1977) for rough footings: {a) smooth base, uniform
soil strength; (b) rough base, uniform soit strength;
(¢) rough base, strength increasing with depth
(&b/e,=5.0). Solid lines indicate the mumerical
solution and bullets mark the closed-form solution
for = —0.8
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this paper. The advantage of the solutions
presented here is in much simpler calculations,
especially when strength increase with depth is
to be accounted for. Fig. 7 indicates that the
solutions presented are especially accurate for
important practical cases: layers over rough
bases and a large inward-acting horizontal
ioad (characteristic of fully reinforced em-
bankments). The more general conclusion is
that the rigid-block collapse mechanism used
in the analysis is flexible enough to yield the
least upper bound very close {(within a few per-
cent) to the lower bound solution. Work is
underway to obtain slip-line solutions for an
arbitrary intensity of the horizontal load. The
preliminary calculations indicate that the
numerical sclutions presented in this paper
overestimate the ones from the slip-line
method to about the same extent as in the
cases in Fig. 7.

The collapse mechanism used to derive the
closed-form solution is more restrictive, as
angles o and £ (Fig. 3(a) and Fig. 3(c)} were
both fixed at 7/ 4; therefore the analytical solu-
tion has a higher overestimation margin. This
solution should be regarded as a more approx-
imate, but convenient tool for rough estimates
of the limit loads.

The solutions presented in this paper are
rigorous upper bounds to the true value of the
average limit vertical pressure, where the
magnitude of the horizontal load component
and its disiribution are given; this horizontal
load is not part of the solution. When it comes
to application of these solutions in the design
of embankment heights, the horizontal load
transmitted from the embankment to the soil
has to be estimated. While the total horizontal
load transmitted to the foundation soil under
one-half of the embankment can be estimated
assuming, for example, an active or at-rest
stress state in the embankment, its distribution
is not known. For lack of better data, uniform
distribution was assumed here. Such distribu-
tion was also assumed by others in a solufion
to bearing capacity of the half-space under em-
bankments (Houlsby and Jewell, 1988). If the
intensity of the horizontal load is assumed to
decrease from the center of the embankment

toward the slopes, then the solutions based on
mechanisms considered here will lead to larger
limit loads when the horizontal force is out-
ward, and smaller limit loads when the
horizontal force is inward. The opposite is
true when the intensity of the horizontal load
increases with the distance from the center of
the embankment. The uniform distribution
was used here when considering the bearing
capacity type of failure under the entire em-
bankment. Less favorable distributions are
likely to cause a partial embankment failure,
and such distributions are indirectly ac-
counted for in analyses of embankment slope
failure and embankment *‘spreading”, not
covered in this paper.

CONCLUSIONS

(a) Solutions to the bearing capacity of
finite thickness layers under rough footings,
based on the slip-line method, lead to
overestimation of the bearing capacity when
used in the design of unreinforced em-
bankments.

{b) The numerical solution presented is
based on collapse mechanisms leading to
results within a few percent of the lower
bound solutions available in the literature for
nearly-full mobilization of inward-acting
horizontal forces. It is expected to be equally
reliable for other horizontal loads, as the
minimization technique allows the mechanism
adjustment to account for the most adverse
effect of the horizontal load. The closed-form
solution should be used with caution.

(c) For thick foundation layers or narrow
embankments (small ratios b/¢), a failure
mechanism may occur which does not reach
the base of the layer; a solution based on the
classical Hill (or Prandtl) collapse mechanism
is appropriate in such case.

{d) TFailure of the foundation soil under
the entire width of the fill is only one possible
mode of embankment collapse. Failures under
a smaller portion of the fill, rotational embank-
ment slope failures, and *‘spreading”, not
presented in this paper, also need to be analyz-
ed in the entire design process.
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APPENDIX

The work dissipation rate in the incipient
failure mechanisms shown in Figs. 3(a) and
3(c), where both angles « and 8 are assumed
equal to =/4, are given below, Note that
assuming fixed values of « and f restricts
ratios /¢ to integer numbers (b/t=2, 4, 6-- -
for the mechanism in Fig. 3(a), and b/¢=1, 3,
5--+ for the mechanism in Fig. 3(c)). The
work dissipation rate along all discontinuity
surfaces in area QOAED can be written as

. &t
Dosepn=06 VOCm 2 +E— (16)
along discontinuity EG
. i 242 &t
Dpo=— bV, | 1 +—— = (17N
4 n 123
along GH
. V2 &t
Dcn-]:bVOCm I4+—— (18)
4 ¢
and within area DEG
. 1 &t
DDEG:Z bVOCm T+ 1/5;"‘ (]9)

The work rate of the vertical (unknown)
average pressure § is also the same for both
mechanisms, and is equal to

W,=bgV® (20)

The energy dissipation rate along the base in-
terface and the work rate of the horizontal
load component 7 (uniformly distributed),
however, is expressed differently for the two
mechanisms. The respective expressions are

Das=—s p0 b(1+éf) (21)
_— Cm— —
AR t Cm
and
.o 7]
Wr:_ Vﬂ m 22
2b (& p (22)

for the mechanism in Fig. 3(a), and
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. K o b ¢ &t
DAE=5 bV ¢, (7+—) (1 +—) (23)

b Cm
and
L X0 (D1
Wruszcm(r b) (24)

for the mechanism in Fig. 3{c). The above ex-
pressions were substituted in Eq. (4) to derive
closed-form solutions shown as Egs. (12) and
(13). (Note that D,=Dpges, Dr=Dosen+ Deg,
D[_,b;D,qE, WQ= Wq+ Wr, and Wy=0)

NOTATION

The following symbols are used in the paper:
b=half-width of the embankment
c=cohesion or undrained shear strength
cy=shear strength of the base interface
¢,,=minimum value of shear strength of seil (at sur-
face)
I, =work dissipation rate along velocity discon-
tinuities
Dy, =work dissipation rate along the base interface
D,=work dissipation rate in continually deforming
soil
H=embankment height

K=coefficient of lateral pressure
a=parameter indicating the number of moving
blocks within a layer under the loaded area
G=average vertical limit pressure over foundation
soil layer
(;=stress vector along a loaded boundary
R =tensile strength of reinforcement per unit length
of embankment
f=layer thickness
V;=velocity vector
[V1;=velocity jump across a discontinuity
Wo=work rate of external load g,
W,=work rate of the body forces
«=geometrical parameter (angle) of the failure
mechanism
fS=geometrical parameter
yy=unit weight of embankment fill
J=slope inclination angle
«=base strength ¢, over shear strength of the soil at
the base interface (¢, /c}
¢=parameter describing the increase of strength
with depth (strength gradient)
x=horizontal load intensity or coefficient of
mobilization of shear stress along the embank-
ment fill-foundation soil interface (x=%/c)
= geometrical parameter {angle) of the failure
mechanism
f=gaverage shear stress on the embankment fill-foun-
dation soil interface
p=internal friction angle of embankment fill




