LIMIT STRESS FOR GRANULAR COMPOSITES REINFORCED WITH
CoNTINUOUS FILAMENTS

By Radoslaw L. Michalowski,' Member, ASCE

ABSTRACT: The concept of using continuous filaments (threads) to reinforce soils has been applied in practice
for more than a decade. The design of soil structures reinforced with continuous thread is based on limit state
techniques where the failure criterion of the composite is the essential function. This paper is focused on deriving
such a function. A homogenization technique is used to calculate the components of the macroscopic stress state
at failure. The limit condition is anisotropic because of the preferred plane of the filament deposition. In the
stress space used here the limit condition has the shape of a convex cone with a cross section close to that of
a circle. The numerically derived function gives reasonable estimates of the increase in strength (apparent
cohesion) of granular materials reinforced with continuous threads. Further work needs to concentrate on a more
accurate description of the stress mobilization in filaments during failure, and on including the filament-matrix
slip. The numerically calculated failure criterion has a form convenient for use in stability analyses of structures.

INTRODUCTION

Composites with granular matrices have found extensive ap-
plication as construction materials in geotechnical engineering,
yet little attention has been paid to their modeling. The design
of structures with granular matrix composites is predominantly
based on limit state analysis, and an accurate description of
the macroscopic stress state at failure is particularly needed
for realistic design. A substantial body of literature exists on
soils reinforced with long metallic strips (of length comparable
with the size of the structure), or large sheets of synthetic
fabric or geogrid. This type of reinforcement is analyzed using
a structural approach where the soil (granular matrix) and re-
inforcement are considered as two separate structural compo-
nents. This paper describes a different composite, where it is
more appropriate to describe its average (macroscopic) prop-
erties before analyzing its structural stability.

The composite considered here has a granular matrix (sand),
and is reinforced with very thin continuous filaments (threads)
in the amount of about 0.1-0.2% by weight. The linear density
of the filament is measured in dtex units (10 dtex = 1 tex = 1
g/km). Each thread consists of a number of monofilaments (not
twisted) and, for instance, designation 167/30 describes a
thread of density 16.7 g/km with 30 monofilaments in it. The
length of the thread in 1 m® of the composite is typically more
than 100 km and can reach several hundred km/m’.

Construction with continuous filament composites involves
simultaneous deposition of soil slurry and filaments. The result
is an anisotropic composite with a preferred plane of filament
orientation (bedding plane).

There have been a few attempts at theoretically describing
the elastic and elastoplastic properties of thread-reinforced
soils (Villard and Jouve 1989; di Prisco and Nova 1993). Re-
sults from experimental testing are also available (Leflaive and
Liausu 1986; di Prisco and Nova 1993; Sanvito 1995; Stauffer
and Holtz 1995). These will be helpful in validating the de-
scription presented here. This paper is focused on the macro-
scopic failure stress (failure criterion) of thread-reinforced
granular soils. Stresses at the instant of failure will be homog-
enized using a technique developed earlier for isotropic fiber-
reinforced soils (Michalowski and Zhao 1996a); this technique
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will now be extended to the anisotropic distribution of rein-
forcement orientation. Homogenization techniques of a similar
type were considered earlier for metal matrix and cementitious
composites [for instance, Hill (1964), Budiansky (1965), Shu
and Rosen (1967), McLaughlin and Batterman (1970)], and an
excellent survey of these techniques can be found in Hashin
(1983).

The composite material considered is described in the next
section, followed by a brief description of the homogenization
concept. Subsequently, the failure criterion for the anisotropic
composite will be derived in terms of macroscopic stresses,
and a comparison with available laboratory test results will be
shown. The paper ends with remarks on limitations of the
model.

COMPOSITE MATERIAL REINFORCED WITH
CONTINUOUS THREAD

Unlike in metal-based composites, where the matrix mate-
rial can be considered a continuum, the size of the fibers or
filaments, relative to the grain size, plays an important role in
determining the type of interaction in granular composites.

Matrix-Filament Interaction

If the diameter of the fiber is an order of magnitude smaller
than the grain size, the flexible fiber may be accommodated
(in a three-dimensional grain assembly) entirely by the pore
space even if the fiber aspect ratio is large. In such a case little
or no load can be transferred to the fibers, since the fibers will
slip in the process of matrix deformation. However, fibers be-
come effective when the grain size becomes small compared
to the fiber diameter [Fig. 1(a)]. In the latter case the number
of fiber-grains contact points becomes large enough for the
fiber-matrix interface to be considered as continuous and fric-
tional. In the former case the reinforcement will become ef-
fective only if it is a continuous and flexible filament so that
the force in the filament can be induced due to the ‘‘belt fric-
tion effect,”’ since the filament will be *‘wrapped’’ around the
grains or around clusters of grains [Fig. 1(b)]. The nature of
the load transfer is then quite different in the two cases shown
in Fig. 1.

The belt friction effect is illustrated in Fig. 2. If the filament
moves in the direction opposite to force T;, then force T is
equal to

Tz = T’]e”'p (1)

where . = coefficient of friction between the grains and the
filament; and B = envelope (wrap) angle, equal here to B, +
B.. The force in the filaments is induced because of the de-
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FIG. 1. Reinforced Soil: (a) Fiber Reinforcement; (b) Continu-
ous Thin Filament

FIG. 2. Filament Wrapped around Clusters of Grains

formation of the matrix. A tensile force so induced will not
relax due to slippage because of the ‘‘serpentine’’ deposition
of the filaments in the matrix. However, during a deformation
process only a portion of the filaments is subjected to exten-
sion (stretching), whereas the remaining part is likely to kink
because of the inability of filaments to carry compression
(also, portions of filaments at transition from the extension to
the compression regime may slip). It is the portion of the fil-
aments subjected to extension that will contribute foremost to
the composite strength.

Filameént Distribution

Two functions convenient for description of the axisym-
metrical distribution of the filament orientation are considered
in this subsection.

The distribution of the filaments in the granular composite
is deemed to be anisotropic because of the techniques used for
its deposition. The bedding (deposition) plane is the preferred
plane of filament orientation. The distribution of the threads
is then likely to be axisymmetrical with respect to the axis
perpendicular to the deposition plane.

The average density of the filament distribution is defined
as

p= @

<=

where V,; = volume of the filaments; and V = total volume of
the specimen. The distribution of orientation of the filaments
can be described as the distribution of the filament concentra-
tion p(8) (volumetric density), similar to the distribution of
orientation of fibers in fiber-reinforced composites. The frac-
tion of the filaments contained in volume dV in Fig. 3(a) is
understood here as the portion whose tangents are parallel to
the radii contained within volume dV. Referring to the xOz
plane in Fig. 3(a) as the bedding plane, the density of the
filament distribution (axisymmetric about y) can be described
as

P(8) = prn + alcos™8| 3

where pni,, = minimum density (volumetric concentration); n
= parameter indicating anisotropy of distribution (zero if iso-
tropic); and a = difference between the maximum and mini-
mum p(6). A more convenient set of parameters may include
a ratio b of minimum to maximum of p(6), and the average
filament concentration p. Referring to Fig. 3(a), the average
volumetric concentration for an anisotropic composite is

YA

i) p(6)

eq.(8). n=2
eq. (34)

eq.{8, n=8, b=02

FIG. 3. Filament Concentration p(6): (a) Integration Space; (b)
Polar Plot of Different Filament Orientation Distributions
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The expression in (4) can be used to arrive at a different form
of the filament concentration function given in (3)

b
p(6) = pB (1 — Icos”el> )
where b = ppin/Praxs and
1
B= b w7 ©
— + cos" "8 48
1-6

Examples of the distribution in (5) are shown in the polar plot
in Fig. 3(b). The integral in the denominator of (6) does not
have a convenient closed form for a general case of n. When
the exponent n is a positive even integer, coefficient B in (6)
becomes

1
B=— ! @

+
1-6 d+m

where !! = double factorial [n!! =2+4-6 ... n and (n + 1)!!
=357 ... (n + 1)]. For a realistic case where no filament
has a tangent perpendicular to the bedding plane (b = 0), a
convenient form of the concentration function results (for even
natural n)

+ N
p@®) =p (]—,‘,1)“ cos"@ ®
nl
The expressions in (5) and (8) describe the distribution of fil-
ament orientation as a function of inclination angle 6 to the
bedding plane (axisymmetrical distribution about axis y in Fig.
3). An example of distribution in (8) with n = 2 is presented
in Fig. 3(b). The polar plot of p(8) in Fig. 3(b) becomes more
““flat’’ with an increase in n.

A distribution function similar to that in (3) (but with the
sine function) can be used for fiber (or filament) composites
with a preferred direction of fiber orientation (rather than a
plane)

p(0) = P + a|sin"| ®)
or
_ b .
p(8) = pB T + |sin"0| 10)
where
1+n
B=( b)l + bn an

When no filament is expected in the plane transverse to the
preferred direction (b = pri/Pmax = 0), the distribution function
in (10) assumes a convenient form

p(0) = p(1 + m)|sin"0| (12)

This function is characteristic of composites with fiber (fila-
ment) orientation concentrated about a preferred direction.
However, it can be employed also for the description of fila-
ment distribution with a preferred plane when negative n is
used [Fig. 3(b)].

HOMOGENIZATION

A homogenization technique is used here to find the average
stresses in the composite at failure (failure condition). Failure
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is defined as the point on the stress-strain curve associated with
zero stiffness. The rate of change of elastic energy is zero at
failure, and the rate of work of external load must be equal to
the work dissipation rate in the composite. Viscous effects are
not considered here, and the work dissipation is attributed to
plastic deformation.

An increment of macroscopically homogeneous deformation
of the composite element at failure is considered with the av-
erage (macroscopic) stresses &, and strain rate &,. The rate of
work of the average stress is equal to the rate of work dissi-
pation per unit volume

. 1 .
o€y = ‘—/ J:/ D(¢y) dV (13)

The formula in (13) will be used to find the components of
the macroscopic stress tensor at failure. A plane-stain defor-
mation increment will be considered although the composite
structure is three-dimensional. A similar technique was used
earlier for deriving a failure criterion for an isotropic fiber-
reinforced granular-matrix composite (Michalowski and Zhao
1996a). Here the anisotropy of the distribution of filament con-
centration makes the application of this technique more elab-
orate, but still tractable, and it is presented in the next section.

MACROSCOPIC FAILURE STRESS

A representative composite element in Fig. 4(a) is subjected
to plane-strain deformation as shown in Fig. 4(b). The matrix
of the composite conforms to the classical Mohr-Coulomb fail-
ure criterion; its deformation at failure is assumed to be equal
to the macroscopic deformation, and it is governed by the
normality rule. The dilatancy of the composite is assumed here
to conform to that of the matrix. Under plane-strain conditions
(&, = &, = 0) the associative flow rule leads to the following
relation for the deformation components:

(a)

Deformed
/-, configuration

O,

FIG. 4. Continuous Filament-Reinforced Composite: (a)
Three-Dimensional Element; (b) Plane-Strain Deformation of
Composite Element; (c) Quarter-Spherical Integration Surface



£, &+ & .
— =———= —sin (14)
Yo &1 — & ¢
and the ratio of the principal strain rates becomes
ég 2 an P
2o —tan’ (= + =)= -K 15
g, - n (4 2) » as

where ¢ = angle of internal friction of the matrix material.

Calculations of the work dissipation rate D(¢;) in (13) and
the derivation of the failure criterion is presented in the fol-
lowing two subsections.

Work Dissipation Rate during Failure

The work dissipation rate in the granular matrix is zero
when its deformation is governed by the normality rule (Davis
1968), so the entire dissipation rate is that due to the filaments.
To derive the failure criterion we assume that the filaments are
rigid-plastic; the consequences of this assumption will be dis-
cussed in the section on the comparison of the model and
experimental results. Depending on the inclination of the fil-
aments, relative to the principal axes of deformation, the por-
tions of the filaments subjected to extension will reach the
yield stress o, whereas the remaining part will kink (or slack)
due to the inability of filaments’ to support compression.
Therefore, the portion subjected to compression needs to be
excluded from calculations of the work dissipation rate. The
right-hand side of the formula in (13) can be written as

. 1
DEy =+, f P(B)ao(t,s) dV (16)
|4

where p(0) = distribution of the volumetric concentration of
the filaments, for instance the one expressed in (8); o, = yield
stress of the filament material; and (€,) = strain rate in the
direction inclined at angle 8 to the xz-plane (tension is taken
here as negative)

v [le] ifes<0
&) = { 0 otherwise an
Since the strain rate is assumed to be uniform in the rep-
resentative volume V [linear velocity field in the deformation
process in Fig. 4(b)], the dissipation rate in any segment of
the filament depends only on its orientation and not on its
location in that element. Therefore, for reasons of tractability
of the integration process, the representative composite ele-
ment is transformed into a quarter-spherical shape [Fig. 4(c)]
with straight filament segments originating from the center at
point O.
The velocity field in the representative composite element,
which conforms to the assumed uniform deformation in Fig.
4(b), is

v=—¢gxi — &yj (18)
A unit vector normal to the surface in Fig. 4(c) is
X . Y . 2
=—i+=j+—k
n R i R, j R (19)

where R, = radius of the sphere. The strain rate in the direction
of the filament identified by coordinates x and y on the spher-
ical surface of the representative element is

v'n_ &xX + &y
R,  R2

g = (20

Considering that dV = R,dS/3[dS being the surface element;
see Fig. 4(c)], (16) can be rewritten as

D&y = —2 f PO~ — &y?) dS @1
’"Ro s

where the integration surface S relates only to the part of the

spherical surface associated with extension in the radial direc-

tion [notice the change of sign because of the definition of

positive (&) in (17)].

The inclination of the filament with respect to the principal
directions of the strain rate determines whether it is going to
contribute to the composite strength through its tensile strength
or is going to kink. The sections of the filaments subjected to
extension in the idealized specimen in Fig. 4(c) are separated
from the ones under compression by two planes within which
the strain rate € = 0. Denoting angle 6 (in plane x, y) asso-
ciated with the zero extension planes as 6,, one can write the
expression

&4, = &, sin’Q, + £; cos’8p = 0 22)

Eqgs. (22) and (15) lead to the inclination angle of the two
planes containing zero extension filament segments

8= % (3 + 9) (23)

Now the surface integral in (21) can be written as an integral
over the range of a and 8 where the filaments are subjected
to extension [between planes ACO and BCO in Fig. 4(c)],
ignoring the sections of the filaments that are likely to kink
(see Appendix I for details)

"2 1
1
D@E)= p Ot f f p(8)(K, cos’a cos*0 — sin’0)cos6 do da
o J-er
24)

The work dissipation rate in (24) is dependent on the distri-
bution of orientation of the filament concentration p(0). In the
following subsection the failure criterion will be derived with
the filament concentration distribution expressed in (5).

Failure Condition

The suggested homogenization scheme in (13) is straight-
forward when used for isotropic materials (Michalowski and
Zhao 1996a), but it becomes more complex when applied to
an anisotropic composite. It is convenient, for plane-strain
conditions, to represent the failure criterion as the function

R—-Fp¥)=0 (25)

where R and p = in-plane invariants of the macroscopic stress
state

(26a,b)

and ¢ = angle of inclination of the major principal stress to
the x-axis. In an incipient deformation process, of the element
in Fig. 5 the principal directions of the strain rate tensor co-
incide with axes x’ and y’. However, the composite material
here is anisotropic, thus the principal directions of the mac-
roscopic stress tensor will, in general, deviate from the prin-
cipal directions of the strain rate. The equation in (13) can,
for the element in Fig. 5, be written as

o, + F,8, + 2%,,¢,, = D) @7

We now introduce stress parameter g’

q = —2& = R cos 20/ (28)

where ' = angle of inclination of the major principal stress
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FIG. 5. Plane-Strain Deformation Pattern Used in Homogeni-
zation Procedure of Anisotropic Composite

to the x’'-axis. Recalling the definition of invariant p in (26)
one obtains 0, = p — ¢’ and o, = p + ¢’, and, noting that
¢., = 0 (Fig. 5), the expression in (27) takes the following
form:

q'(éx — &) T plE, + &)= D(eij) (29)

Coordinate system x', y’ is not related to the axes of anisotropy
(orientation of the bedding plane), whereas the failure criterion
must be derived in reference to the anisotropy pattern. The
plane of preferred filament orientation (bedding plane) is as-
sumed here to be perpendicular to the plane of deformation,
and its trace in Fig. 5 is marked by the x-axis.

Considering that the Mohr-Coulomb failure criterion used
to describe the granular matrix is independent of the inter-
mediate principal stress, the failure critcrion for the composite
is also expected to be independent of o,. The failure criterion
then will depend on three independent stress components T,
&, and 7, with direction x uniquely related to the bedding
plane (anisotropy pattern). Consequently, (29) can be used to
calculate one of the stress components, while the other two
are given. However, it was found more convenient to introduce
parameters R, p, and ¥ instead [see (26)], and calculate the
maximum shear stress R for given in-plane average stress p
and angle of inclination of the major principal stress ys. Be-
cause of the anisotropy of the composite, this scheme is not
straightforward. The following paragraphs describe the pro-
cedure used in calculations.

To find the failure criterion in stress space R, p, 7,, (Fig. 6),
calculations of R were performed for a constant p and varied
inclination angle { of the major principal stress to the x-axis.
This makes it possible to trace the contour of the failure cri-
terion in plane p = constant. The direction of x describes the
anisotropy of the composite (x is the trace of the bedding plane
on the plane of deformation).

The principal directions. of the strain rate field are kept con-
stant (x’, ¥'; see Fig. 5), and they do not coincide with the
principal stress directions since the composite is anisotropic.
The problem to be solved is formulated as follows (Fig. 5):
given the principal directions of the stress tensor (), what
would the preferred plane of filament orientation (w) need to
be in order for the principal directions of strain to be x’ and
y'? Angle ® is a ‘‘deviation’’ angle defined here as an angle
between axes x' and x (the x-axis coincides with the preferred
plane of filament orientation).
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FIG. 6. Strength of Filameant-Reinforcad Sand: (a) Cross Sec-
tions of Failure Criteria; (b) Failure Surface for Sand Reinforced
with Continuous Threads in Macroscopic Stress Space

The approach in (29) is analogous to the application of the
upper bound theorem of limit analysis. Therefore, the devia-
tion angle (w) needs to satisfy the requirement that the cal-
culated magnitude of R is a minimum.

Since R is an in-plane stress invariant we can write

’ ’

-9 __ 49 _ q
R= cos 20  cos 2§’ cos AP + w) S
and
, _ cos 2 + w)
cos 2V S

and, from (29) and (15)

. (D(e,,.) 1 — sing

£ 2 2

1
+psi
p sin (p) cos 2(¢ + w)

With a nonzero deviation angle w and the distribution of the

filament orientation given in (5), the expression for the work
dissipation rate in (24), which is to be used in (32), becomes

w/2 a*
1 b .
Dy = - ot pB f f (1 s + |cos"(® — w*)l)
o J-o

(K, cos’a cos’® — sin’8)cos 8 db da 33)
/4




where angle w* = a function of a and the deviation angle in
the plane of deformation w (tan w* = cos a tan w). An opti-
mization procedure was used in which the deviation angle w
was varied in (32) and (33), and the minimum of R was sought
(for given p and ¥).

The trace of the failure criterion in plane p/po, = 1.0 is
illustrated in Fig. 6(a), whereas Fig. 6(b) presents the macro-
scopic failure condition in space g, p, 7,,. For comparison, the
cross sections of the failure criterion for the unreinforced sand
(matrix) and for the unidirectionally reinforced sand (Mich-
alowski and Zhao 1995, 1996b) are also shown in Fig. 6(a).
The distribution of the filaments was considered here in form
(8) with n = 2, and the cross section of the strength criterion
is essentially circular (but off-center). Its shape becomes more
elliptical for larger values of exponent n. In the stress space
g, P, T, the failure criterion for the thread-reinforced soil has
the shape of a cone, with its axis shifted with respect to axis
p because of the anisotropic properties of the composite [Fig.
6(b)].

COMPARISON TO EXPERIMENTAL RESULTS

This paper is focused on deriving the failure criterion for
soils reinforced with continuous filaments. Here the results are
compared to those from experimental tests available in the
literature (Leflaive and Liausu 1986; di Prisco and Nova 1993;
Stauffer and Holtz 1995; Sanvito 1995). All of the results se-
lected for comparison come from triaxial tests on cylindrical
specimens. In soil mechanics terminology these results are re-
ferred to as drained triaxial compression tests. The specimens
were prepared by pluviating sand and simultaneously depos-
iting the filaments in the molds, or by first mixing the com-
posite and then tamping it in the molds. In either case the
bedding plane is horizontal (circular cross section of the cy-
lindrical specimen). Therefore, the specimens had an aniso-
tropic distribution of filament orientation, and even more so
at the instant of failure, because of the deformation that occurs
prior to specimen collapse.

Measurements of the true distribution of the filament ori-
entation in a specimen is a complex task and such measure-
ments are not available. For lack of better data, the distribution
in (8) is adopted with n = 2

p(0) = % p cos’0 (34)

The polar plot of this distribution is shown in Fig. 3(b).

In all the tests the bedding plane is inclined at m/2 to the
direction of the larger principal stress, thus only one point on
the failure surface [point A in Fig. 6(a)] can be validated.
Results of tests on filament-reinforced composites performed
in a direct shear device (Khay et al. 1990) do not allow for a
clear interpretation of the stress state, and, while useful in ap-
proximate design, they are not used here for validation of the
analytical model.

The model was derived considering the plane-strain defor-
mation process. However, the experimental results available
are from tests on specimens subjected to the axisymmetrical
stress state. The matrix of the composite was described with
the classical Mohr-Coulomb yield condition, which is inde-
pendent of the intermediate principal stress and includes axi-
symmetrical stress states. Since true granular soils do not ad-
here exactly to the Mohr-Coulomb criterion, the properties of
the matrix (¢) taken to predict the strength of the triaxial spec-
imens should also be determined from triaxial tests (and they
were).

An important difference in the derivation of the failure cri-
terion and the true behavior of the filament-reinforced com-
posite is that stress in the filaments in the extension regime

was considered in the derivation to have reached the yield
limit o,, whereas the filament stress in experiments appeared
to be well below rupture. This difference is due to the as-
sumption of the rigid—perfectly plastic deformation process in
both the matrix and the filaments. Therefore, when this model
is used to predict the strength of the composite, the mobilized
stress in the filaments needs to be estimated and used instead
of the yield stress o, Considering that the behavior of the
filaments is elastic prior to failure, the stress in the filaments
is not induced uniformly and depends on the filament direction
(inclination). An appropriate magnitude of the stress to be used
in model predictions is an average stress in filament segments
subjected to extension at the instant of composite failure. A
sound estimate of this average stress can be made, since, as
shown consistently by all laboratory tests, the composite fails
at a reasonably well-defined strain.

The average strain of the polyester filament at failure was
reported by Sanvito (1995) as 21 or 23% at the strain rate of
100 and 10 mm/min, respectively. The failure of the reinforced
specimens occurred at the axial strain of about 7—10% (de-
pending on the confining pressure and the sand used, the
smaller strain is for low confining pressure). To estimate the
strength mobilization in the filaments we first introduce the
dilatancy angle v in triaxial compression as

g, + & + &
AT 2. siny (35)
81_62—83

The expression in (35) was derived assuming the nonassocia-
tive flow rule and the plastic potential in a form identical to
the Mohr-Coulomb function, but with the internal friction an-
gle replaced by dilatancy angle v. Since in triaxial compres-
sion &, > &, = &;, the relation between &, and ¢; following from
(35) is

¢ 1
2= —K
S 2 (36)
where
1 + sinv [TV
=—= - +-
K=y =tn (4 2) 37

Thus for an incompressible composite (v = 0) subjected to
triaxial compression, the maximum extension rate in the fila-
ments during composite failure is exactly half of the axial
strain rate, and it increases with an increase in the dilation
angle. To estimate the strength mobilized in the filaments, we
assume that the ratio of the total strains at failure is the same
as the ratio of their rates (36). The dilation angles for the
reinforced composite reported by di Prisco and Nova (1993)
and Sanvito (1995) are only a few degrees, and calculations
were performed for v = 0 and v = 5°

Considering that the axial composite strain (g,) at failure is
about 10%, the maximum extension of the filaments (g;) at
failure is only 5% for an incompressible composite and 5.95%
for a composite with dilation angle v = 5°. Moreover, the fil-
ament strain is not uniform and reaches its maximum for por-
tions of the filaments oriented in the &,, &(g;, = &; in triaxial
compression tests) plane. The weighted average of the exten-
sion strain in filaments can be estimated as

f p(8)e, dV
YA (38)

f p(®) dv
|4

where volume V includes only fibers in the tensile regime, and
€, is the strain in filaments inclined at 8 to the plane of max-
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TABLE 1. Experimental Results from Triaxial Compression Tests and Model Prediction
Unrein-
forced
Sand Filament Reinforced Sand Modsl Prediction
Linear density Cohesion | Cohesion
@ p(pw) Tenacity | (dtex/filament Ya ¢ Cohesion (v=0) (v ="5°
Source ©) (%) (cN/tex) number) (kN/m?®) ) (kPa) (kPa) (kPa)
(1) (2) (3) (4) (5) (6) 7 (8) (9) (10
di Prisco and
Nova (1993) 40 0.144 (0.142) 50 167/30 13.5 40 70 59.7 71.1
Stauffer and
Holtz (1995) 40 0.233 (0.20) 36 167/30 16.1 44 83 95.9 115.1
Sanvito (1995) 35 0.234 (0.20) 38.5 78124 15.5 37 135 84.6 101.6
Leflaive and
Liausu (1986) 43 0.286 (0.20) 36 330/60 19.0 48 190 127.6 153.1

imum extension in the triaxial compression test. Taking func-
tion p(8) in the form of (34), one obtains [from (38)] & = 0.7
of €; for incompressible composite, and € = 0.705 when v =
5°. Consequently, the average extension strain of the filaments
at failure is only 3.5 or 4.2% for v =0 and v = 5°, respectively.

The initial elastic modulus of polyester thread was reported
by di Prisco and Nova (1993) as being slightly over 10 GPa.
If the behavior of the polyester is approximated as linear prior
to failure, the deformation modulus would become 2-3 GPa.
Mobilization of stress in filaments depends on the history of
deformation, and any attempt to assess its magnitude without
analysis of the process is bound to be approximate. We will
assume in the calculations that the average stress in filaments
at failure is proportional to the average strain at failure with
the deformation modulus of 3 GPa.

Results from triaxial tests are given in the literature in terms
of apparent cohesion. This is the maximum value of cohesion
in the anisotropic composite, because in triaxial compression
the horizontal bedding plane benefits the macroscopic strength
most. Calculations then were performed using (32) and (33)
(with n = 2 and b =0), where y = /2 and w = 0 [point A in
Fig. 6(a); the magnitude of R at point A, calculated at p = 0,
divided by cos ¢ yields the prediction of the maximum co-
hesion].

The comparison of the model prediction and results from
laboratory tests are shown in Table 1. The internal friction
angle of unreinforced sand is given in column 2, and the fil-
ament content by volume p (and by weight p,) is shown in
column 3. The internal friction angle of the composite and its
cohesion tested are given in columns 7 and 8, and the predic-
tion of the cohesion using the proposed model is shown in the
last two columns for an incompressible material and for dila-
tancy angle v = 5° The yield strength of the filaments (cal-
culated based on the given tenacity) is about S00 MPa, but the
actual stress in the filaments at the time of composite failure
is considerably less. As discussed earlier, at the instant of com-
posite failure the filament strain is about 4%, whereas the fil-
ament failure occurs at more than 20% of strain.

The model suggested overestimated the apparent cohesion
in one case and underestimated it in the remaining three cases.
However, the numbers are reasonable for the first theoretical
estimate. The comparison of experimental results by Stauffer
and Holtz (1995) and Sanvito (1995) is somewhat surprising:
both have approximately the same content of filaments, the
one with the lower internal friction angle of the matrix exhibits
a significantly higher apparent cohesion. This suggests that it
may not be feasible to seek a more accurate description of
failure without including further micromechanics-based con-
siderations (the two composites were reinforced with filaments
of similar deformation modulus, but of significantly different
length).

The experimental tests also suggest that the internal friction
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angle of the composite is larger than that of the granular ma-
trix, whereas the model does not predict any increase. This is
because the contribution of the filaments to the composite
strength was included as a dissipation term independent of the
composite stress state {compare with (33)]. The increase in the
internal friction angle suggests that there may be some slip-
page of the filaments in the matrix during composite failure.
The work dissipation rate in the slip regime is dependent on
the stress in the composite, and including such terms in the
model could account for the increase in internal friction.

It can be disputed whether triaxial tests can be used to verify
the plane-strain model derived. The failure criterion (Mohr-
Coulomb) and the normality flow rule used lead to a zero work
dissipation rate in the matrix material, independent of whether
its deformation is in-plane or axisymmetrical (the internal fric-
tion angle of the matrix sand used in predictions was deter-
mined through triaxial testing). However, different deforma-
tion modes affect theoretical results differently through the
contribution of the filaments, but the difference here was not
significant.

FINAL REMARKS

A model describing failure of granular soils reinforced with
continuous filaments has been presented. The homogenization
method was used in order to find the macroscopic stresses at
failure. The mechanism of stress transfer from granular matrix
to thin thread reinforcement is different from that in short fiber
composites. The filaments form a dense network of reinforce-
ment wrapped around clusters of grains, and the primary stress
transfer mechanism is analogous to the increase of forces in a
belt wrapped around a rigid drum (belt friction effect).

A polyester thread generally does not reach the yield point
during the deformation process since the failure of the com-
posite occurs at strains lower than that associated with filament
failure. Rupture of filaments may occur locally, however, be-
cause some micromechanical thread-grain configurations may
induce large strains locally in small portions of filaments. This
phenomenon was not found significant enough to be included
in the model.

The failure criterion derived was found to predict reasonable
numbers, but the model can be improved through a more ac-
curate account of the stress mobilization in the filaments at the
instant of composite collapse, and by including a slip com-
ponent of work dissipation during failure. Further studies also
are needed on the micromechanics of the soil-filament inter-
action.
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APPENDIX|. ENERGY DISSIPATION RATE
EXPRESSION

Considering the relation in (15), the expression in (21) can
be written as

. 1 1 P
From the geometrical relations in Fig. 3(a) [or Fig. 4(c)] we
have: y/R, = sin 8, x/R, = cos a cos 8, dS = R? cos 6 da ds,
and (39) can be transformed into

w2 9%
Dy = & 0ok f f p(8)(K, cos’a cos®0
o —o*

— sin*@) cos 8 d6 da 40)

Since the distribution of the filaments is axisymmetrical and
the deformation is plane, the integration limits on 6, which
include all filaments in the tensile regime (—0*, 6*), depend
on angle a [see Fig. 4(c)]. From geometrical relations it fol-
lows that

8* = arctan(cos o tan 6) 41)

where 6, is expressed in (23).
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