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Three-dimensional analysis of locally loaded slopes

R. L. MICHALOWSKI*

A three-dimensional slope stability anmalysis for
drained frictional-cohesive material based on the
upper-bound technique of limit analysis is present-
ed. A rigid-block toe or above-the-toe collapse
mechanism is considered, with energy dissipation
taking place along planar velocity discontimmities.
The technique is appropriate for slope analysis
when question arises as to the level of permissible
loads on slopes where the load is confined to a
limited area (local load). The results in terms of
limit loads are compared with those available in
the literature for a particular case of a frictionless
material. It was found that, for a wide variety of
parameters {especially for large safety margins),
the present analysis yields lower values of limit
loads. Since they are rigorous upper bounds to the
true limit load, these results should be considered
as closer to the actual limit load.

KEYWORDS: bearing capacity; limit state analysis;
slopes; stability.

Une analyse a trois dimension de 1a stabilité d’une
pente pour un matériaux drainé et basée sur la
technique dé i limité Supérieure est présentéé. Un
mécanisme d’éffondrement du bloc au pied ou au
dessus du pied est considéré avec une dissipation
d'énergie le long de discontinuitées planaires de
vitesse, L’analyse en trois dimension présentée
dans cet article est une technique convenable pour
Panalyse d’une pente lorsque le niveaun de la sur-
charge possible sur une pente est comsidérée et
lorsque la surcharge est confinée a une aire limitée
(surcharge locale). Les résultats en terme de sur-
charge critique sont comparés avec les résuitats
disponibles publiés pour le cas particulier d’un
matériaux sans friction. On a trouvé que pour des
pentes avec des marges de securité, Panalyse donne
des valeurs plus faibles des surcharges critiques et,
puisqw’il s’agit d’une borne supérieure rigourense
par rapport 4 la vraie surcharge, ces résultats
doivent étre considérés plus prés de la vraie valeur.
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INTRODUCTION

Many practical geotechnical problems involving
evaluation of admissible loads require three-
dimensional (3-D) analyses, yet in most cases a
traditional plane-strain analysis is used. This per-
tains to such important engineering issues as
bearing capacity of rectangular footings or stope
stability under local loads. This Paper is con-
cerned with the problem of stability of slopes.

At least four different formulations of the slope
stability problem can be distinguished: in terms
of the factor of safety, the limit load of the slope,
the critical height (maximum height) of the slope,
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and the optimal shape of the slope. The analysis
presented in this Paper concerns omly the first
two cases and is based on the upper-bound
approach of limit plasticity.

Most of the methods for estimating the factor
of safety are based on the equilibrium of (usually
vertical) slices (2-D analysis). Variations of the
slice method were presented by Fellenius (1927),
Bishop (19535), Janbu (1957), Morgenstern & Price
{1965) and Spencer (1967). The shape of the slip
surface (or its location) corresponding to the
minimum value of the safety factor is sought
using various searching techniques. The slice
approach seems to imply a mechanism of slope
failure which involves sliding along the assumed
slip surface. No restrictions, such as kinematical
admissibility, are placed on that mechanism. The
approach is purely static, based on a global equi-
librium of slices, and the flow rule for the material
{constitutive relation) is not even mentioned. If a
simple perfectly plastic model of the soil is postu-
fated with the Mohr-Coulomb yield condition
and the associated fiow rule, then collapse mecha-
nisms implied by the slice methods are usually
kinematically inadmissible (e.g. a rigid rotation
mechanism for an assumed cylindrical slip surface
in frictional materials). Statical admissibility of

the stress field is also not satisfied, as some arbi-

trary assumptions are made to remove statical
indeterminacy and as only a global equilibrium of
slices is required. In some methods even this
requirement is relaxed, as the number of global
equilibrium equations that are satisfied for a
single slice is reduced from three to two or one.

Validation of methods based on such approx-
imate concepts, in terms of accuracy, without ref-
erence fo more rigorous analyses, does not seem
possible. None of these methods can be con-
sidered exact, and thus there is no solution avail-
able against which the results could be checked. It
is only a hypothesis (used by a number of
authors) that the more equilibrium equations
there are satisfied (generally three for every slice
under plane-strain conditions), the more accurate
the method. In the case where both kinematical
and statical admissibility is violated, any such
hypothesis seems to be risky. It is only fair to
conclude that since the concept of slice limit equi-
librium is of an approximate nature, none of the
methods utilizing this concept is accurate.

A rigorous 2-D analysis of slopes, based on the
upper-bound theorem of limit analysis, was pre-
sented by Chen, Giger & Fang (1969) {see also
Chen & Giger, 1971; Chen, 1975). Although the
problem was formulated in terms of a critical
height, the stability factors {as defined by Chen et
al.) can be transformed into the factors of safety
(for slopes with no external load and material
with non-zero cohesion).

Two-dimensional analyses, although helpful for
designing most slopes and embankments, are not
applicable to slopes with distinct local loads.
However, in practice, because no established 3-D
method exists, slopes loaded locally are analysed
by means of 2-D methods, assuming loads of an
infinite extent. This may lead te a very conserva-
tive design.

A few approaches to 3-D analysis of slope sta-
bility have been proposed in the past decade or
s0. The method proposed by Hovland (1977) and
Chen & Chameau (1982) (see also Hungr, 1987)
seems to be amn explicit extension of the plane-
strain slice method. To account for the spatial
failure mechanism the slices were replaced by
columns, and equilibrium of the columns was
required. The 3-D column method inherits the
approximate nature of slice analysis, and ques-
tions as to the relevance of assumptions and
accuracy of results cannot be answered easily.

Another approach to 3-D analysis was pro-
poscd by Baligh & Azzouz (1975) (see also Baligh,
Azzouz & Ladd, 1977; Bliz, Brodel & Reinhardt,
1981; Azzouz & Baligh, 1983). These authors
used a slice technique in order to evalnate limit
loads or safety factors of slopes. In the particular
case analysed by Azzouz & Baligh (1983)
{frictionless material and cylindrical slip surface
with conical caps), the slice method solution may
provide the same results as the upper-bound solu-
tion for the rigid rotation mechanism, An exten-
sive analysis of rotational 3-D mechanisms with a
cylindrical centre part was presented recently by
Gens, Hutchinson & Cavounidis (1988). However,
the results obtained by Azzouz & Baligh and
those by Gens et al. cannot be generalized to fric-
tional soils.

A variational analysis was applied to the 3-D
slope stability problem by Leshchinsky, Baker &
Silver (1985). Their approach was based on a
limit-equilibrinvyrn method, and the solution pro-
vides two potential failure surfaces, one of which
is truly a 3-D surface. Not surprisingly, the solu-
tion corresponding to the 3-D mechanism yields
factors of safety higher than those for 2-D failure,
and the results following from the 2-D failure
mechanism are identical to those shown by Chen
(1975) (the results were presented by Leshchinsky
et al. (1985) in terms of a stability number which
is the inverse of Chen's stability factor).

The method for the analysis of slope stability
presented in this Paper is bascd on the kine-
matical approach of limit analysis. This technique
was applied by Drescher (1983) to 3-D stability
analysis of vertical cuts, This analysis was related
to forming empty channels in storage bins for
granular materials. The present analysis can be
regarded as an extension of Drescher’s analysis to
more complex failure mechanisms.
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The analysis presented here is mathematically
rigorous, although it yields only the upper esti-
mation of the limit load {or the factor of safety). It
is believed, however, that the 3-D analysis pre-
sented is more appropriate as an engineering tool
than other available methods, especially if it
shows that the limit loads or the factors of safety
obtained are lower than those from other
methods.

THEOREMS OF LIMIT ANALYSIS

The theorems of limit analysis constitute a
useful tool for analysing problems in which a
limit load is to be found. These theorems are
explicit extensions of the principle of maximum
work derived by Hill (1948}, and were given in the
form of theorems by Drucker, Greenberg &
Prager (1952). The following assumptions are
made: (a) the material is perfectly plastic at the
Limit state; (b) the limit state is described by a
yield function f(s;) =0, convex in the stress
space o;; and (c) the material obeys the potential

flow rule associated with the yield condition

. : Ollg;)

by = A 30, ,A=0 ()
where &; is the strain rate tensor, oy is the stress
tensor and A is a non-negative scalar function.

The application of the first, lower-bound
theorem, is based on the construction of statically
admissible stress fields. Such stress fields must
satisfy statical boundary conditions and equa-
tions of statical equilibrium at every point of the
material, and must not violate the yield function
of the material, i.e. the stress state can be either at
its limit (limit state} or below. The first theorem
states that a statically admissible stress field
supplies a load which is not higher than the true
limit load.

Applications of the second theorem are based
on the comstruction of kinematically admissible
velocity fields. Such fields have to comply with
the kinematical boundary conditions and com-
patibility conditions following from flow rule (1).
The second, upper-bound theorem, can be
expressed as: il a kinematically admissible veloc-
ity field is found, then the load obtained from
such field, through the balance of external forces’
work and internal dissipation, is not lower than
the true limit load.

These theorems are true when the load to be
found is active, i.e. when the direction of load
action is the same as the displacement direction
of the loaded boundary. If the reactions are to be
found, then the first (statical) theorem yields the
upper bound, and the second (kinematical) the
lower bound to the true value of the reaction. In
order for the solutions to be valid, the deforma-

tions before the limit state need to be negligible.
This requirement is necessary for the principle of
virtual work to be applicable.

The theorems of limit analysis do not provide
the exact value of the true limit load, but two
bounding values. It would seem natural, then, to
use both theorems in order to estimate the range
in which the true limit load is contained and to
try to perform the analysis in such a way as to
minimize this range, so that a precise judgement
as to the actual limit load (or factor of safety) can
be made. Unfortunately, this is not always pos-
sible.

Kinematical velocity fields (mechanisms) used
to obtain upper bounds usually have a distinct
physical interpretation, associated with true col-
Iapse mechanisms (known from experiments or
practical experience), Stress fields used in the
lower-bound approach, however, are constructed
without a clear relation to real stress fields, other
than the stress boundary conditions. Moreover,
in geotechnics, where the formulation of problems
often involves a semi-infinite haif-space, the
extension of the stress field into the half-space is
either cumbersome or seems to be impossible.
There are only a few non-trivial solutions in geo-
technical engineering for which the extension into
the far field has been found. In most cases, even
though the stress field may be found using the
rigorous method of characteristics (plane-strain
problems), the extension of the solution beyond
the domain determined by the hyperbolicity of
the statical equations meets certain difficulties.
Because of the problems with constructing adrnis-
sible stress fields, only the upper-bound
(kinematical) approach will be used in this Paper.

Upper-bound solutions based on kinematically
admissible rigid-block velocity fields {associated
with the linear Mohr-Coulomb yield condition)
satisfy global force equilibrium equations
(Appendix 1). Hence, in some cases, the limit-
equilibrium method may yield the same resuits as
the rigorous upper-bound approach. By no
means, however, can the two methods be regard-
ed as equivalent. This is discussed in more detail
in Appendix 1.

FORMULATION OF THE PROBLEM

This Paper presents a consistent analysis, based
on the kinematical theorem of limit plasticity,
which can be used to obtain both the limit load
of slopes {load necessaty to produce failure} and
the factor of safety, and which can be applicable
in both 2-D and 3-D cases of slope failures.

The soil is considered to be isotropic and per-
fectly plastic, and to obey both the Mohr-
Coulomb yield condition and the associated flow
rule. The unknown load is assumed to be vertical,
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Deformations of the slope before the limit state
are considered to be negligible.

Almost ideal applications of the upper-bound
theorem are those in the plastic forming of
metals, where the movement of a tool-piece is
well-defined (boundary condition} and the kine-
matical approach yields the upper, and thus ‘safe’,
estimation of forces necessary for the deformation
process to take place. In geotechnics, besides the
fact that the upper bound is an ‘unsafe’ estima-
tion, the kinematical boundary condition is
usnally not well-defined. In the problem of
bearing capacity of footings, for example, it only
can be assumed that the loaded boundary moves
in a rigid-motion manner, but the relationship
between the translation and the rotation of the
footing cannot be given a priori. The problem of a
slope limit load does not have a well-defined
kinematical condition either. In [act, in this case,
even the assumption of a rigid-motion boundary
may not be true., Nevertheless, solutions present-
ed in this Paper are obtained solely for the
boundary condition defined as a rigid translation.
This does not contradict the rigour of the kine-
matical approach, and the results will still be
upper bounds to the true limit load.

The slope stability problem is traditionally for-

mulated in terms of a factor of safety. Such for-
mulation seems to have an advantage over that of
the limit load. The loading of slopes consists, for
the most part, of the weight of the material itself.
It would be difficult, however, to make a distinc-
tion between the part of the material which loads
the slope and that which resists the collapse. The
factor of safety makes this distinction unneces-
SArY.

A generally accepted definition of the safety
factor is that given by Bishop {1955): the ratio of
the available shear strength of the soil to that
required to maintain equilibrium. IT it is assumed
that the material effort is equally attributed to
cohesion and internal friction, a useful form of the
safety factor is obtained

F = ¢fc,, = tan ¢ftan ¢, (2)

where ¢ and ¢ are the actual cohesion and inter-
nal friction angle of the material, and ¢, and ¢,
are the parameters required to maintain the limit
equilibrium. This definition is used throughout
this Paper. In order to obtain a unique solution it
is necessary to assume that the material effort is
the same along all of the shear surfaces (i.c. there
is one factor of safety describing the strength
mobilization along all failurc surfaces). The factor
of safety is a function of the geometrical param-
eters of the collapse mechanism (the geometry of
the slope and material parameters being constant
for a given slope), and it is useful information
only if it corresponds to its minimum value.

z

Fig. 1. The collapse mechanism (xOy is the plane of
Symmnieiry)

ASSUMED COLLAPSE MECHANISM OF A
LOCALLY LOADED SLOPE AND THE
PROBLEM SOLUTION

The mechanism of failure used in the analysis is
shown in Fig. 1. It consists of rigid-motion blocks
separated by planar velocity discontinuity sur-
faces. Although only five blocks are shown in Fig.
1, the number of blocks can be increased without
any extra analytical effort (up to 50 blocks were
considered in the calculations). An external load
is located on a rectangular area, as shown in the
fipure. All blocks have a prismatic shape, with tri-
angular or quadrangular bases. In the particular
case where the loading extends to the crest of the
slope, all blocks have triangular bases.

To calculate the work raie of the external
forces and the internal work dissipation rate, the
velocities of ail blocks have to be known.
However, the velocity on the loaded boundary is
not well-defined. Collapse of a slope will probably
involve a combination of translation and rota-
tion. It is assumed in this analysis, however, that
the loaded area does not rotate. If rotation were
assumed as a boundary condition, then the limit
load could be estimated only in terms of a
moment, and an additional assumption would be
required as to the distribution of the load in
order to determine the limit force. Rotation of the
loaded boundary (e.g. around axis Ay Ay in Fig
1) would produce continual deformation in the
soil mass. Only rigid block mechanisms are con-
sidered in this Paper.

Using the trigonometric relationships shown in
Fig. 2, the velocities ¥, of blocks {k=1,2,3 ... n,
n being the number of blocks) and the velocity
jumps between the blocks [V], can be derived.
Note that in kinematically admissible mecha-
nisms, velocity increment vectors across velocity
discontinuity surfaces have to be inclined to those
surfaces at the internal friction angle ¢
(associative flow rule). Angles o, and n, (Fig. 2)
and £ (Fig. 1) are here assumed to be known. The
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Fig. 2. (a} Cross-section of a collapse mechanism; (b) hodograph

velocity magnitude of the first block is V, =
Vossin (o, — ¢). For all other blocks, two cases
have to be considered. For the first case, when
4GS nk=2,3,4...n

sin (4 + &y — 2¢)

Vi=¥._
e a2 O
_ sin (0., — o)
L e Py B
and the condition
e+, — 24 >0 (5)

has to be satisfied in order for the mechanism to
be kinematically admissible. For the second,
whenop >0 _,,k=2,3,4...n

sin (i + o —1)

K.=V_ (5)
F e S et ) @
sin {0, — o _y)
= V- . . 7
V=¥ s o Y
and the necessary condition is
=~ > 0 t)]

With the geometry of the mechanism known in
cross-section xOy (Fig. 2(a)), and the velocities
now determined, the planes limiting the mecha-
nism on its ‘ends’ can be found. The ‘end planes’
must be inclined to the velocity vectors at angle
¢. Analytical peometry relations were used in
order to find the ‘end surfaces’, as well as the
surface areas of blocks and their volumes
(Appendix 2).

Having the velocities of ali blocks, as well as
their volumes and surface areas, the upper bound

{oz + 72— 200 Vg

Vi

®

to the limit load can be found. The upper-bound
theorem can be written in the form

jV,’I} ds < Iaﬁ.*.e,i,.* do — in V*do (9
53 L4 v

where 7; is the unknown true limit stress vector
on boundary S where velocity vector V] is pre-
scribed (indices i and j denote cartesian co-
ordinates; i, j = 1, 2, 3), and v is the volume. Note
that, in general (when F is not constant on ),
inequality (9) allows one to determine the upper
bound to the work (rate) of the unknown (limit)
force, rather than the upper bound te the limit
force itself. The first term on the right-hand side
of inequality (9} denotes the rate of work dissi-
pation within the material, where &* is the
assumed field of admissible deformation (rate)
and g,;* is the stress field related to &;* through
the flow rule (equation (1)). The last term in
inequality (9) denotes the work rate of body
forces, X; being the body force vector. Intro-
ducing a load multiplier p, such that g > 1, and
assuming that boundary § undergoes a rigid
translation with given velocity ¥ (V, = ¥° on 5),
inequality (9) can can be written as

A J;'E ds = J.U'ij*é:‘j* dv — J'X Frdv (10)

Work dissipation per unit area of a discontinuity
surface within the cohesive-frictional material can
be expressed as

D=[V]ccos ¢ (11
where [¥] is the magnitude of the velocity jump
and ¢ is the cohesion. For the particular rigid-

block mechanism considered, where the only
energy dissipation takes place along velocity dis-
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continuities, equation (10) can be written as

pTVy=ccos ¢ Y, SV, + ccos ¢ 3 8.V,
k=1 k=1

—y 3 Vol K sin (e — ) (12

where pT is the upper bound to the true (vertical)
limit load T (u being a dimensionless coefficient,
u2 1) ¥ is the vertical velocity component of
the joaded boundary, y is the specific weight, and
n is the number of blocks. Vol, is the volume of
block k, and S, and 8" are the areas along which
jumps ¥, and [V], occur, respectively.

The set of angies o, g, k=1, 2,3 ... n) and
angle £ so far have been assumed to be known.
Any set of these angles that would produce an
admissible mechanism of a slope failure would
provide an upper bound to the true limit load. A
numerical technique was used in the computa-
tions in order to find the set corresponding to the
least upper-limit load. This technique was based
on a simple algorithm where, in one computa-
tional loop, angles a,, n, and ¢ were changed
twice by step Az (—Aw and + Ag), and the value
of the limit load was calculated after each change.
If the variation caused the limit load (or factor of
safety) to decrease, then the value of the respec-
tive angle was changed accordingly (by I Ae)
Step Ac was decreased in computations from 5°
to 0-1°. The calculations were continued unti} two
subsequent loops yielded the same limit load
(with Ax = 0-1°). The minimum limit force always
corresponds to d = I (Fig. 1).

If the slope stability problem is formulated in
terms of the factor of safety, the algorithm for
computing velocities, areas and volumes of blocks
and the searching procedure are virtually the
same., Now, however, force T in equation {12 is
the known boundary condition. The factor of
safety is then found by the iteration technique, in
which the values of cohesion ¢ and tan ¢ are
dropped at the same rate until equation {12} is
satisfied. The last ratio in the iteration procedure
is then equal to the factor of safety defined by
equation (2). Coeflicient u is not known, and the
slope loading is substituted for T in equation
(12). This procedure yields the vpper estimation
to the true factor of safety defined by equation (2).

COMPUTATIONAL RESULTS

The mechanisms of deformation used here to
predict limit loads consist of rigid motion blocks
(Fig. 1), and there is no mechanical limitation as
to the number of blocks. As expected, it was
found that the limit load obtained from the pro-
posed analysis approaches an asymptotic value

1
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Fig. 3. Typical decrease of the calculated Iimit load with
increasing number of blocks 1 (g,, is the load caleulated
for & 20-block mechanism). The calculations have been
made for data from Fig. 6(a) (8 = 15°, afhk = 0r1)

when the number of blocks in the mechanism
considered is increased.

All results presented in this Paper are from cal-
culations with six-block mechanisms. It was
found that an increase of the number of blocks
beyond six {up to 50) produced a drop in the limit
load of less than 1%. A typical decrease of the
limit load with an increasing number of blocks is
shown in Fig. 3. The computer program was
written in such a way as to allow a minimum of
four blocks.

All values of limit loads and factors of safety
{or respective ratios) presented in this Paper cor-
respond to geometries of failure mechanisms
which vield the lowest values ol the loads or
factors. Three-dimensional analysis in terms of
the factor of safety presented in this paper makes
sense only for locally loaded slopes. If no local
loading is declared, angle & (see Fig. 1) tends to
90°, and the minimurm value of the safety factor
approaches that in 2-D analysis. This is to be
expected, since, for mechanisms where all velocity
vectors are parallel to one plane (perpendicular to
the crest), a 2-D failure mechanism yields the
minimum of the safety factor (Cavounidis, 1987
{Cavounidis used a different definition of the
factor of safety)).

Figure 4 shows the factor of safety F; obtained
from the 3-D analysis of a locally loaded siope as
a function of ratio d/! (d being the length of the
failure mechanism, and [ the length of the load). It
is seen that when d increases, but the local load is
kept fixed, the 3-D factor of safety approaches the
2-D factor obtained from an analysis with no
load condition. This is to be expected; when d
approaches infinity, the influence of a local load
vanishes, and the influence of the ‘end effects” on
the 3-D safety factor becomes negligible.
However, depending on the level of the local load,
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Fig. 4. Safety factors from 3-D analysis presented in this
Paper for a locally loaded slope, as functions of-the
length of the collapse mechanism for different magni-
tudes of the load; ¢ = 20°, ¢ = 20 kPa, y = 20 kN/m”,
B=30%h=10ma=tmb=2m,i=3m

a 3-D analysis may provide higher or lower
values of the safety factor than a 2-D analysis
with no external load.

1t foliows from Fig. 4 that the minimum of the
safety factor is always obtained either from plane-
strain analysis or from 3-D computations with
d =1 Thus, in hypothetical experiments with
locally loaded homogeneous slopes (of infinite
length), a 3-D collapse mechanism (with d =1)
will always occur, since before loading, the experi-
mental slopes have to be stable (F; > 1). A plane-
strain collapse of a locally loaded slope could
theoretically be induced in a centrifuge, where the
load would be exerted by an elastic element (e.g. a
spring) with a small mass (so that the increase of
the load due to the increase of acceleration could
be neglected).

If a fraditional plane-strain analysis is applied
to slopes with confined loads (i.e. if the local load
is taken as a strip load in the computations), then
the resulting factor of safety is lower than that
obtained from 3-D analysis. These factors are
usually utilized in design procedures; however,
they should be considered very conservative. Fig.
4 suggests that small loads can be neglected in the
analysis {e.g. g = 20 kPa for the particular case

shown in Fig. 4), and the 2-D factor of safety (for
the g = 0 condition) seems to be an appropriate
design parameter in such cases. For higher loads,
3-D analysis yields safety factors lower than those
from 2-D analysis (and g = 0), but not as low as
the “traditional’ 2-D analysis with loads extended
to strip loads. For those larger loads, the 3-D
analysis presented here can be regarded as a less
conservative design (in fact, this approach is not
conservative at all, as it is based on the upper-
bound theorem of limit analysis).

Figures 5 and 6 show the limit pressure ratio
g/c (obtained using the proposed analysis) for
cohesive slopes with square loads, and those for
frictionless soils obtained by Azzouz & Baligh
{1983). The comparison is shown for slopes with a
margin of safety A(yh/c) equal to 3-0 (Fig. 5) and
equal to 1-0 (Fig. 6). The margin of safety used
here was defined by Azzouz & Baligh as the dif-
ference between the stability factor {yh/c)., and
the factor yh/c for the actual slope (this margin of
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Fig. 5. Limit pressure ratios for square loaded
(/b = 1-0) frictionless slopes with margin of safety
A(yhjc) = 3-0, compared with results from Azzouz &
Baligh (1983): (a) &/h=025; (B) blhk=050; (o)

blh =100
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Fig. 6. Limit pressure ratios for square loaded
(jb = 1-0) frictionless slopes with a small margin of
safety (A(phfc) = 1-0): (a) bk = 0-25; (b) bfh = 0-50;
(c) bk = 1-00

safety depends on the method used for estimating
{yh{c).,). For the purpose of making the compari-
son possible, the following stability factors were
adopted: for a vertical cut, §=00°, N,=
(yh/c)., = 3-83; for B =45°, N, = 5-86; and for
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Fig. 7. Dimensionless limit pressures as functions of geo-
metrical parameters of a slope (cohesionless soil);
¢=30°%c=0I0h=120

- yblo=025
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Fig. 8. Dimensionless limit pressures of a slope

(frictional/cohesive soil): Ifd=20; (0) ¢ =0°; (b)
¢ =10 (c) ¢ = 20°

B = 15°, N, = 7-35 (see Chen, 1975). It seems that
Azzouz & Baligh used the same values.

The analysis presented here yields the upper
bound to the true limit load, vet, for a wide range
of parameters, the results obtained are lower than
those found by Azzouz & Baligh (1983). Only if
the margin of safety is small (eg. 1-0) and the
length of slope (h/sin B) is less than about twice
the width of the loaded area does Azzouz &
Baligh's analysis yield lower values of the limit
load (e.g. Fig. 6(c)). Including base (below-the-toe)
failures in the analysis presented here might result
in reducing the estimated loads for these specific
examples.

It needs to be emphasized that the present
objective was to include both cohesive and fric-
tional shear strength of soil in the 3-D limit
analysis of slopes. Comparisons of the results
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Fig. 9. Minimum height of slopes for which diagrams in Fig. 8 correspond to the most critical condition (Fig, 8 should
not be used for slopes with smaller heights); If6 = 2:0: (a) ¢ = 0°; (§) ¢ = 10°; {c) ¢ = 20°

with those for frictionless soil were made only
because, so far, no (rigorous) 3-D resuits for fric-
tional soils exist, These comparisons were made
in order to verify the validity of the proposed
approach.

A sample of the results from the analysis pro-
posed in this paper, for frictional soils, is shown
in Figs 7 and 8. Fig. 7 represents the dimension-
less limit pressure on a cohesionless slope as a
function of the distance of the load from the crest
of the slope. Similar diagrams for frictional-
cohesive slopes are shown in Fig. 8. The examples
are independent of the height of the slope, since
only above-the-toe failures are considered. In all
examples the slopes were high enough to allow
above-the-toe fajlures, but not so high as to
exceed the stability factor N, =(yh/c).. The
minimum slope heights for which the results pre-
sented in Fig. 8 should be considered applicable is
shown in Fig. 9, and the maximum slope heights
in Fig. 10.

Figures 7 and 8 can easily be converted to
resemble Figs 5 and 6 by first assuming the ratio
K = b/h, and then replacing b in parameters yb/c
and a/b with Kh.

The effect of the 3-D collapse mechanism in the
stability analysis of locally loaded slopes is shown
in Fig. 11, where a dimensionless limit pressure is
shown as a function of the length-to-width ratio
(i/b) of the local load. As expected, the limit pres-
sure drops as ratio [/b increases, and it
approaches the value from plane strain analysis.
All the curves in Fig. 10 are limited by the dotted
line, which represents the limit pressure for 3-D
foundation-type failure on the top of the slope.

gl

CONCLUSIONS
An analysis of locally loaded slopes, based on
the upper-bound approach of limit plasticity, has
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Fig. 10. Maximum height of slopes for which results in
Fig. 8 are considered to be applicable (equal to critical
height of plane slopes (Chen, 1975))

iib

Fig. 1. Limit load on slopes as a function of the length-
to-width ratio of the local load; ¢ = 20°, ybfc = 1-25




36 MICHALOWSKI

been described. The method aliows for evaluation
of the factor of safety or the limit load applied to
a slope. Examples for homogeneous soils with
drained strength described by the Mohr-
Coulomb yield condition were given. Modifi-
cations of the assumed collapse mechanism could,
however, accommodate some patterns of non-
homogeneity (e.g. horizontal layers).

The method provides the sofution for both
cohesive and frictional soils. The proposed
approach provides the upper bound to the true
limit load (or the factor of safety), yet, for a wide
range of parameters, yields lower loads than
those available in the literature for frictionless
soils.

The analysis presented here was related orig-
inally to stability of waste rock mine dumps {with
relatively small grain dimensions) under loads
from heavy dump trucks. Therefore, the analysis
includes only local loss of stability {the above-the-
toe collapse mechanism and the failure surface
crossing through the contour of the load), as
happens when a loaded truck reaches the arca
close to the crest of a dump slope.

The analysis given could be improved by
including the below-the-toe mode of failure. The
method as presented is valid in all cases of homo-
geneous locally loaded slopes, in that it always
yields the upper estimation to the true limit load.
Considering base {below-the-toe) failure mode,
however, could result in a lower overestimation of
limit loads for some slopes.

As expected, it was found that, for slopes with
no external load, the mechanism of failure (which
is being modified in the course of searching for
the minimum value of the limit load or factor of
safety) tends to a plane-strain case. Three-
dimensional analysis becomes important only
when the slope is locally loaded; it may also be
important when the length of a slope is physically
restrained or when local non-homogeneities in
soil parameters occur.

The analysis is useful whenever the guestion
arises as to the level of permissible loads on
slopes, when the load is clearly confined to a
limited area. It also can be helpful in estimating
factors of safety of locally loaded slopes. For
cases where no external load is present, or the
load is very small, the mechanism which yields
the minimum factor of safety tends to the plane-
strain mechanism.

The analysis described is related to the classical
approach to the slope stability problem. Includ-
ing elastic properties of soil and its scftening
characteristic in the plastic range of deformation
could result in predictions of ‘progressive failure’
of slopes where the peak strength is not reached
simultaneously on all sliding (shear) surfaces.
Such analysis could also predict the scale effect

observed in practice in many engineering prob-
lems related to ultimate loads. It seems that con-
tinuation of the study should follow in this
direction.
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APPENDIX 1

The equivalence of the resuits for limit load problemns
obtained using the upper-bound theorem of limit
analysis and the limit-equilibrium method has been
mentioned in the literature on a few occasions. In some
cases the two methods may indeed yield the same
results. However, as noticed by Collins (1974), Chen
(1975), and others, the two methods are not equivatent.

The upper-bound technigue of limit analysis can be
regarded as a particular case of the enecrgy balance
approach, as it is based on the energy (rate) balance
eguation. In general, energy balance does not supply the
upper bound to the true limit load. Both the limit equi-
librium method and the energy balance approach
require that a pattern of deformation (kinematical
mechanism) is assumed. The major difference between
the two techniques is in the extent of assumptions made
as to the material’s behaviour. The limit equilibrium
method requires that only the yield condition be speci-
fied, while for the energy balance approach it is neces-
sary to specify both the yield condition and the flow
law. The limit equilibrivm method will work only if the
kinematical mechanism consists of rigid-motion blocks
and is such that a force polygon can be uniquely con-
structed for each block {i.e. a set of global static egui-
librium equations is determinable for each block).

The energy balance approach is not limited to rigid-
block mechanisms. Energy dissipation within the
mechanism cannot be calculated, however, without
assuming a particular refationship between the strain-
rate tensor and the stress tensor (flow rule). The energy
balance solutions can be proven upper bounds to the
true limit load only if: the yield condition specified for
the material is convex in the stress space; the flow rule
is associated with this condition (see equation (1)); and
the failure mechanism for which the work (rate) balance
is considered is kinematically admissible (ie. satisfies
kinematical boundary conditions and obeys the associa-
tive flow rule). Note that, unlike in the limit-equilibrium
method, static equilibrium is not required in the energy
balance approach.

In further considerations, the energy balance method
is restricted here to the upper-bound approach. It is dis-
cussed in the following when upper-bound solutions
satisfy global static equilibrium, and the limit loads
from both limit-equilibrium and upper-bound tech-
niques are the same.

Let block OAB in Fig. 12 be part of a kinematically
admissible plane mechanism. Boundaries §,, S, and S,
are loaded with distributed loads T;. Block OAB moves
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Fig. 12. Rigid block with boundaries determined by sur-
faces S, §; and S,

with velocity VS' and adjacent blocks move with velo-
cities Vi, ¥ and Vi respectively. Thus, velocity
jump vectors on §,, §, and §, are

VI =¥ - vi®
VI = V- VPP (13)
[VIP = =V + VP

The balance of the internal work dissipation and of
external forces work can be written for a single block as

—J. TIV1 ds, —J TIV1™ 45,
S 52
+JﬂWFM%=JEW”ﬁ;
52 5y

+J. VP dS, + j TV ds, + J X, Vdv (14)
L7 5y I3

After using the compatibility conditions (equation {13}),
all terms with velocities other than ¥, vanish, and equa-
tion (14) can be written as

K{J 'I]dS,+J‘ 7;dsz+f ’I}dS3+jX,-du} =0 (19
5y 52 Sy 1]

The scalar product in equation (15) is equal to zero
when either block velocity ¥, is orthogonal to the total
force vector {the sum in curly brackets) or the total
force vector is equal to zero

Jndslq-.f T}dSz—t-.[ 'I}ng+J-X,du=0 (16)
St 51 5y (]

Note that equation (16) is nothing else but the set of
global force equilibriun equations which is used in the
limit equilibrium method. A similar derivation can be
pursued for a system of blocks. Equation {15) written
for a multi-block system has the form of a sum of
expressions similar to that on the left side of equation
(15), one expression f{or each block.

If the entire mechanism consists of only one block,
then the force acting on one side of the block, eg. 5,
can be considered as limit load {P, dS, and the force

acling on §; as given boundary condition j'Qi ds;.
Equation (15) can be written now as

V,U PtdS,+J‘ 'I;dSz+J Q¢d33+indu} =0 (17
81 ISz 53 o

Assume that block OAB (Fig. 12) slides over material
at rest (V¥ = 0) and that the material obeys the linear
Mohr-Coulomb yield condition. Energy dissipation in
the upper-bound approach is calculated assuming that
the stress vectors along gliding surfaces (or the stress
state within continually deforming regions) satisfy the
yield condition. However, for the Mohr-Coulomb yield
condition these stresses do not need to be specified, as
the dissipation along discontinuities is independent of
the stress components (see equation {I1)). Static equi-
libriumn will be satisfied by uppet-bound solutions if
there exists a vector [T; dS, salisfying the yield condi-
tion and assuring that the sum in braces in equation
{17) is zero.

For a specified vector {T; d5,, the sum in braces in
equation (17) gives a certain vector AfT; d5 (this vector
is either zero or is orthogonal to velocity vector ¥).
Therefore, for the specified vector [7; dS, — A{T; dS on
§,, the sum in curly brackets is zero. The upper bound
solution will then satisfy global static equilibrium if
vector [T;dS, — A[T; dS satisfies the yield condition.
The last requirement is true for the Mohr-Coulomb
vield condition, associated flow rule, and for a block
sliding over material at rest (V12 = 0, Fig. 12}. Hence, in
this particular case, the upper-bound approach and
limit-equilibrium method, based on identical failure
mechanisms, supply identical limit loads. The same
argument can be made for a muiti-block system sliding
over material at rest.

Static equilibrium of upper bound solutions is not, in
general, satisfied when a non-linear yield condition is
considered (in such case, the stress vector on boundary
§, has to be specified before calculation of the energy
dissipation rate). Also, static equilibrivm cannot be
proven for energy balance solutions where the non-
associative fiow rule for the material is assumed.

The kinematical approach of limit analysis does not
lose its clear scheme if 3-ID mechanisms are considered.
As long as an admissible hodograph for the spatial
mechanism is found, one component {or maggitude) of
the limit force (upper bound) can be found. This is not
the case with the limit-equilibrium method. The number
of block interfaces for blocks in 3-D mechanisms is gen-
erally higher than that in 2-D mechanisms, and the set
of global static equilibrizm equations may not be deter-
minable. For example, for the slope collapse mechanism
considered in this Paper there are stili only two non-
trivial static equilibfium equations (symmetrical
mechanism), but the number of unknowns for each
block increases to four. Hence, no unique solution can
be obtained using the limit-equilibrium method.

In conclusion, the upper-bound approach of limit
analysis should be considered 2 more rigorous and
more general approach to limit load problems than that
using limit-equilibrium equations. Although in some
particular cases the two methods may yield the same
results, by no means should they be regarded as
equivalent.
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APPENDIX 2

The following algorithm was used to determine the
end surfaces for the 3-D collapse mechanism shown in
Fig. 1.

As the location of point A, is known (determined by
the location of the load or otherwise), the co-ordinates
of point B, can be found (angle £ assumed). With co-
ordinates of points A, and B, known, the unknown co-
ordinate z of point A, can be determined (x and y for
point A, are known, as «, and 5, are assumed a priori,
Fig. 2(a)). The direction of vector ¥, was analytically
described as

T X—Xy Y—Fg_ Z—%
o b ¢

(18)
(xg, Yo, 2, being co-ordinates of a point on this
direction) and plane A, B, A, was analytically defined as

Ax+By+Cz+D=0 (19)

In order for direction (18) to be inclined to plane (19) at
angle ¢, the following condition needs to be satisfied

Aa+ Bb+ Ce
JAT+ B4 CH i@ + B + oY)

=sin¢ {(20)

A, B, C and D in equations (19) and (20} are functions
of co-ordinates of points Ay, B, and A,, and, thus,
functions of the only unknown co-ordinate, z, of point
A,. This co-ordinate is computed from equation (20).
Having found z for poiat A, the same procedure is fol-
lowed for plane A,B,A;, where co-ordinate z of point
A, is now the only unknown, etc.

Analytical geometry relations were also used to
compute the volumes and areas of blocks. Each penta-
hedral block was divided into three tetrahedrons (the
only hexahedral block was first divided into two
pentahedrons), with the volume of each tetrahedron
being

x ¥y oz 1
H
volume == {[¥2 72 %2 ! @1
6]ixy yy 23 1
4
Xy Yo 2z, 1

where x;, y; and z; (i = 1, 2, 3, 4) are the co-ordinates of
the corner points of the tetrahedrons, The areas of the
discontinuity surfaces were computed using the analyti-
cal expression for the area of a triangle in 3-I space
(quadrangles were first divided into triangles)

S=£\Ail’z—y1 2y z; 2
2 Ya—W 23—
2 2
Z,—Z; X=X X, — X -
+|% 1 X2 1 2 1 Y2 .V:‘:! 22)
3T X3TX X3 — Xy Ya— N

where x;, y; and z (i =1, 2, 3) are the co-ordinates of
the triangle's corner points.
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