STABILITY OF UNIFORMLY REINFORCED SLOPES

By Radoslaw L. Michalowski,' Member, ASCE

ABSTRACT: A limit analysis approach is applied to determine the amount of reinforcement necessary to prevent
collapse of slopes due to reinforcement rupture, pullout, or direct sliding. The reinforcement is uniformly dis-
tributed over the height of the slope, and each layer of the primary reinforcement has the same length. A rigorous
lower bound to the required reinforcement strength is calculated. This formulation is equivalent to that where a
strict upper bound to the slope failure height is sought. The length of reinforcement is also calculated; both
reinforcement pullout and direct sliding are accounted for. Design charts are produced for both the required
reinforcement strength and its length. Although the emphasis is on the analytical considerations, the way results

can be practically utilized is shown.

INTRODUCTION

Several methods for the stability analysis of reinforced
slopes have been proposed in the last decade, and three dif-
ferent approaches can be distinguished. The first approach is
an extension of the conventional ‘‘method of slices,’’ in which
the reinforcement forces are included in the analysis [see, e.g.,
Wright and Duncan (1991)]. The second approach (structural)
includes considerations of limit equilibrium of multiblock
translational mechanisms or a rotational mechanism (Schmert-
mann et al. 1987; Leshchinsky and Boedecker 1989; Jewell
1990). A continuum approach is the third method used in the
stability analysis of reinforced slopes (Sawicki and Les$-
niewska 1989; de Buhan et al. 1989). The third method is very
different from the former two in that the soil and the rein-
forcement are first homogenized, and the stability analysis in-
volves an anisotropic continuum, rather than two separate con-
stituents (soil and reinforcement).

Both structural and continuum techniques were considered
earlier (Michalowski and Zhao 1995) for stability analysis of
reinforced soil structures, and the structural approach was
found to be more convenient. Calculations in the structural
approach can be made using either limit analysis or the limit
equilibrium technique. The limit analysis is chosen here
(Drucker et al. 1952) since some of the details, such as those
related to kinematical admissibility or the influence of soil
dilatancy, can be argued more clearly in the context of limit
analysis.

A limit analysis solution to the total amount of uniformly
distributed reinforcement in slopes (amount necessary to pre-
vent collapse) is presented here. The approach is further ex-
tended to estimate the length of the reinforcement. Also, a
technique suggested recently for including the effect of pore-
water pressure in limit analysis (Michalowski 1995) is applied
here. This paper focuses on the stability analysis of reinforced
slopes using the kinematic theorem of limit analysis, and it
does not address issues related to technology of construction,
construction details (for instance, secondary reinforcement),
durability, or the level of safety factors that should be used in
design.

Stability analysis of reinforced soil slopes has been the sub-
ject of several papers leading to design recommendations
(Schmertmann et al. 1987; Leshchinsky and Boedecker 1989;
Jewell 1990). A set of comprehensive design charts for rein-
forced slopes was presented by Jewell (1990), and the results
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in this paper are compared to those later. The differences be-
tween the two stem from the different assumptions in the dis-
tribution of the reinforcement. Slopes with a uniform distri-
bution of reinforcement strength are considered in this paper,
whereas those used often in design presume a triangular dis-
tribution.

The technique used here is described briefly in the next
section, followed by the formulation of the problem, and the
solution. Next, design charts are produced, and the paper ends
with some final remarks.

TECHNIQUE USED

The kinematic approach of limit analysis is used here for
stability analysis of reinforced slopes. This technique leads to
upper bounds to failure loads or critical heights, or the problem
can be alternatively formulated to yield the lower bound to
the required strength of reinforcement (the latter option is ex-
ercised here).

The technique is based on the kinematic theorem of limit
analysis. Applicability of this theorem requires that the mate-
rials (soil and reinforcement) be perfectly plastic and the de-
formation be governed by the normality rule. The theorem
states that ‘‘the rate of work done by traction and body forces
is less than or equal to the energy dissipation rate in any kin-
ematically admissible failure mechanism’’

fc}‘é,’}‘dVZfT,v,dS+jX,v,*dV—fué,’de, ij=1,2,3
v S \4 v
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where ¢} = strain rate in a kinematically admissible velocity
field; o} = stress tensor associated with £}, velocity v* = y,
on boundary § (given boundary condition); X, = vector of body
forces (e.g., specific weight); and S and V = loaded boundary
and volume, respectively. The last term in (1) represents the
work of the pore-water pressure on the skeleton expansion.
Compression is taken here as positive, and the minus sign
indicates that positive (compressive) pore pressure u does pos-
itive work on the skeleton expansion (negative strain rate).
Pore pressure is considered here as an external force, and the
failure process is considered to be drained [for details see
Michalowski (1995)]. The application of the inequality in (1)
for calculating lower bounds to the amount of reinforcement
required to avoid a slope collapse is shown in the following
sections.

PROBLEM DESCRIPTION

The reinforced slopes considered here are built over foun-
dation soils with the same properties as the slope fill, and
mechanisms with failure surfaces extending into the founda-
tion are permitted. The strength of soil is described here by
the standard Mohr-Coulomb failure criterion with no cohesion,
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and the deformation is governed by the normality rule. Rein-
forcement yielding force of a single layer is characterized by
its tensile strength per unit width T,. The influence of confining
stress on the strength of the reinforcement is neglected. The
reinforcement layers are distributed uniformly throughout the
height of the slope (uniform spacing), and each layer has the
same tensile strength. The reinforcement in a slope is char-
acterized here by an average tensile strength k, defined as
nT,

= @
where n = number of reinforcement layers; and H = slope
height. For strips of reinforcement, 7, should be taken as the
strength of a single strip times the number of strips per unit
width of the structure (need not be an integer).

It is convenient to represent the required strength in a di-
mensionless manner as k,/yH where vy is the unit weight of
the soil. The lower bound solution to required reinforcement
strength k,/yH will be found using the inequality in (1) for
slopes of given inclinations and soils with different internal
friction angles. This approach is equivalent to seeking an up-
per bound to the (dimensionless) critical height of slopes yH/
k, (reciprocal of the required reinforcement strength).

The required length of reinforcement also will be calculated
from (1), using two different patterns of possible failure. The
solution to the reinforcement length presented here is a rea-
sonable estimate, but it is not a rigorous lower bound, since
the normal stress on reinforcement is approximated in calcu-
lations of the pullout force (y X depth).

SOLUTION

Limit state analyses (whether kinematic approach or limit
equilibrium) are based on considering mechanisms in which
the material reaches the limit state and the collapse is immi-
nent. Such mechanisms are then kinematically admissible only
when the forces in the reinforcement layers reach their limit
(equal to tensile strength or the pullout force). Therefore, we
will refer here to the reinforcement force distribution as the
distribution of reinforcement strength.

It was found earlier (Chen 1975) that the rotational collapse
mechanism leads to the least upper bounds to critical heights
of unreinforced slopes with traction-free boundaries. The anal-
ysis that follows involves a log-spiral failure surface consistent
with the rotational mechanism. In calculations of the required
reinforcement length, however, both the rotational and trans-
lational mechanisms are considered.

Required Strength of Reinforcement
The failure surface is described by the log-spiral equation
r= roe(e‘eo)ﬂlw (3)

where ¢ = internal friction angle of the soil; and r, = radius
of the log-spiral related to angle 6, (Fig. 1). The admissibility
of the rotational failure requires that the velocity jump vector
be inclined at angle ¢ to the failure surface, and its magnitude
propagates according to

U = Bre® e €]

where @ = rate of rotation of the moving mass.

With the normality rule and zero cohesion, the stress vector
on the failure surface and the velocity jump vector are mutu-
ally perpendicular; hence the energy dissipation rate in the soil
along the failure surface during collapse is zero. The only con-
tribution to dissipation on the left-hand side of (1) is that from
the reinforcement. For a traction-free slope the nonzero terms
on the right-hand side of (1) are those due to the soil weight
and pore-water pressure.

(a) 8;

(b)
[’]
do\
¢I R cos(@ — ¢) I
cos ¢

FIG. 1. Rotational Failure Mechanism: (a) Log-Spiral Failure
Surface; (b) Infinitesimal Increment

The dissipation rate in the reinforcement per infinitesimal
increment of the failure surface is equal to the dot product of
the force in the reinforcement and the velocity jump vector v
[Fig. 1(b)]

e —
D= krae 20 =9, )
cos ¢
where n = a unit vector in the direction of the reinforcement.
From (3) and (4), the increment of the dissipation rate in (5)
can be written as

dD = k,6ri(sin 0 cos & + sin®® tan @)e*® %% 4§ (6)

The expression in (6) is now integrated in the range from 6,
to 0, [Fig. 1(a)] to yield

D = = k,6ri[sin®0,e** % — gin%g,] Q)

(SR

An identical energy dissipation rate results from an analysis
with a discrete distribution (with uniform spacing) of rein-
forcement.

With no traction on the surface of the slope, the expression
on the right-hand side of (1) reduces to two terms describing
the work rate of the soil weight, Wy, and the contribution of
the pore-water pressure. The first term can be derived in a
closed form by calculating the rate of work of a fictitious soil
mass in region OCDO, and subtracting the rates for regions
OCAO and ODAO [Fig. 1(a)]. Consequently, for a toe failure
mechanism, the rate of work of the soil weight can be written
in the following form:

W, = yrio(fi — fi — f) (8)

where f,, f>, and f; = functions of slope inclination angle (),
the geometry of the failure surface (8,, 9,), and the internal
friction angle of the soil (¢). These functions were derived
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earlier by Chen et al. (1969), and, for completeness, are given
in Appendix L.

The influence of the pore water is included in the last term
of (1). This term represents the rate of work of the pore-water
pressure on the volumetric (dilative) deformation of sand, and
can be written as

W, = yrior. fs )

where r, = pore pressure coefficient as defined by Bishop and
Morgenstern (1960); and f; = a function of geometry and ¢
(given in Appendix I). Equating the energy dissipation rate in
(7) to the rate of work in (8) and (9) leads to the expression
for the lower bound to the dimensionless required strength of
reinforcement

k2K hHrRE) T

yH = sin0,e*® %" — gin’g, H

(10
where ry/H is derived from geometrical relations in Fig. 1(a)

" sin 0,e®%"=¢ — gin @, an

To
and functions f; are given in Appendix I [function f; is delib-
erately omitted in (10); it is used only for below-the-toe fail-
ures not considered here]. Eq. (10) represents the rigorous
lower bound to (dimensionless) uniformly distributed required
strength of reinforcement k,/yH (or it can be rearranged to
yield the upper bound to the critical height of slopes yH/k;).

The expression in (10) is valid for admissible combinations
of 0, and 0,, and, since it represents the lower bound, an op-
timization scheme needs to be used to find the maximum of
k,/yH, with 8, and 6, being variables. The charts for the re-
quired amount of reinforcement based on (10) are produced
later (section titled ‘‘Design Charts’’).

When 6, > ©/2 + ¢ the failure surface reaches deep into
the slope base (assumed to have the same properties as the
fill), and it passes through the unreinforced soil. It can be
shown, however, that the expression in (10) is valid for such
cases.

It also should be pointed out that when 6, < O, the center
of rotation is located below the slope crest, and the reinforce-
ment in the top part of the slope may be in compression (this
is illustrated later in this section). This reinforcement contri-
bution to stability is neglected here since it is likely to kink
or buckle. For such instances the energy dissipation rate in (6)
needs to be integrated from O to 6,. The expression in (7) will
then become

1
D= > k,@rj sin®0,e™ e (12)

and the required reinforcement strength in expression (10) will
change accordingly. It was found from calculations based on
(10) that cases where 8, < 0 for the critical slip surface occur
only for steep slopes with significant pore-water pressure.

Length of Reinforcement

Two qualitatively different failure mechanisms are consid-
ered in calculations of the minimum reinforcement length: ro-
tational collapse with some reinforcement layers being pulled
out of the soil, and a translational mechanism where the entire
reinforced soil mass ‘‘slides’’ over one reinforcement layer.
The first collapse pattern is termed here a *‘pullout’” (or over-
all) failure, and the second one will be referred to as a ‘‘direct
sliding’’ mode.

Reinforcement Length— Pullout Mechanism

The length of reinforcement needs to be such that the re-
quired strength calculated from (10) does not need to be in-

creased because of the possibility of pullout failure in some
layers. In other words, the most adverse failure mechanism
involving the combination of the tensile failure in some layers
and pullout in others needs to provide a required reinforcement
strength, which is no larger than that in (10). An economical
design requires, of course, that the reinforcement not be longer
than necessary.

Common to most techniques is the assumption that the pull-
out force of a reinforcement layer per unit of its width, 7, is
proportional to the overburden pressure yz*, effective length
l, [Fig. 1(a)], and friction coefficient between the soil and re-
inforcement p,

T, = 2yz*(1 — r)leps (13)

The overburden depth z* for gentle slopes may be less than
depth z of the reinforcement below the slope crest. For strip
reinforcement, (13) has to be multiplied by the ratio of a single
strip width over the unit width times the number of strips per
unit width (need not be an integer). Coefficient w, (Jewell
1990) is expressed as a fraction of the tangent of the soil
internal friction angle

W =f, tan @ 14)

where f, = a ‘‘bond coefficient.”’ In what follows, the required
reinforcement strength is derived considering that some rein-
forcement layers fail in the pullout mode (7, < T)).

The effective length /,; of reinforcement layer i can be de-
rived from geometrical relations in Fig. 1(a) as

L;=L + (cos 8, + sin 8, cot B)ree'® %
— (cos 8, + sin 0, cot B)ree® ot (15)

where L = reinforcement length; and 0, = angle related to re-
inforcement layer i [Fig. 1(a)]. The following relation holds:

. — 8, Ytan . Zi
sin 9,® %" = gin @, + — (16)
o
where z;, = depth of the ith reinforcement layer. Since the dis-
tribution of the reinforcement strength is assumed to be
uniform, the following expression is used to calculate the
depth of the reinforcement layers:

H
z,=(i—0.5);, i=12,...,n an

The procedure of deriving the required k,/yH is the same as
earlier, but the energy dissipation rate is now calculated sep-
arately for reinforcement layers failing in tension (D,) and for
those being pulled out (D,)

k n
i . . . 2
D, = E T,ro» (sin 0, + 5); D, = 2 T, ro <sm 0, + ——)
-l o ikt o

(18a,b)

where k = number of layers that are pulled out (for which T,
< T)); and n = total number of reinforcement layers. Consid-
ering that force T, can be expressed as a function of &, [see
(2)], the dimensionless required strength assumes the form

2
b (o) o e - 2mnac -

k n
2l . z 1 ( . z,)
E — —|sin 6, + — - _;_ sin 8, + —
=1 [H H( ¢ ro>]}/” prors} ? ro 19)

The reinforcement strength in (19) is no longer a strict lower
bound, since the pullout force is only approximately calculated
in (13). Nevertheless, (19) is a reasonable estimate. Although
(19) seems complex, it is conceptually a straightforward result.
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It is obtained with the minimum number of assumptions within
the framework of limit analysis. For the reinforcement to be
used economically, its length should be such that k,/yH cal-
culated from (19) is the same as that in (10).

The length of the reinforcement L is included in the effec-
tive length in the numerator of (19) [see also (15)]. Having
calculated k,/yH from (10), and substituted it for the left-hand
side of (19), an implicit equation results for L. This equation
needs to be solved iteratively for a given geometry of the
failure surface expressed by angles 6, and 6,. This procedure
leads to a lower bound on the length of reinforcement, and an
optimization procedure was used to find maximum L with 6,
and 0, being variable.

It can be noticed that, while for a slope failure with tensile
rupture in all reinforcement layers the solution is independent
of the number of reinforcing layers n [see (10)], consideration
of pullout makes the result dependent on n (the sensitivity to
the number of layers may drop down with an increase in n,
nT, being constant).

The concept behind the reinforcement length criterion used
here is illustrated in Fig. 2. The length of the reinforcement
in the slope shown is L = 0.535H (B = 70°, ¢ = 35°, r, = 0).
The bold line in Fig. 2(a) shows the dimensionless required
reinforcement strength as a function of coordinate x at which
the failure surface intersects the crest of the slope. Point A
relates to the most adverse (critical) mechanism in which all
reinforcement layers fail in tension.

If the failure surface is ‘‘moved’’ to the right [from A to-
ward B in Fig. 2(b)], the calculated strength of reinforcement
needed to maintain limit equilibrium will decrease (the new
location of the failure surface is not as critical as that at A).
When the failure surface is moved even further toward B, the
effective length of the top layer of reinforcement decreases,
and this layer starts to pull out rather than rupture. Conse-
quently, k,/yH varies with the change in the failure surface
location because of the two competing effects: a stabilizing
effect of the soil weight due to movement of the failure surface

(a)
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FIG. 2, Criterion for Estimates of Required Length of Rein-
forcement: (a) Required Strength for Varied Failure Surfaces;
(b) Fallure Surfaces Correlated to Maxima and Local Minimum
of Required Strength for L/H = 0.535

further away from its most detrimental position, and an ad-
verse effect due to reduction in effective reinforcement length
leading to a drop in the limit force in some reinforcement
layers (from their tensile strength to the pullout force).

The lower bound to required reinforcement reaches a max-
imum at point A (all reinforcement layers fail in tension),
reaches a local maximum at point B (with the top layer being
pulled out), then reaches a local minimum at point C, and
another maximum at D. The failure surface marked as D [Fig.
2(b)] bypasses the two top layers of the reinforcement and the
third layer is pulled out. For the reinforcement to be fully
utilized, its length needs to be estimated so that the magnitude
of the maximum of k,/yH at point D will be the same as that
at A (i.e., that failure surfaces A and D are both critical). For
this particular case it is: L = 0.535H.

An increase in the length of reinforcement beyond L =
0.535H will not decrease the required reinforcement strength
(or, it will not increase the slope safety), since it only reduces
the maximum of k,/yH at D, and the best lower bound to the
required reinforcement remains at A. Results of calculations
for L = 0.55H are also shown in Fig. 2(a). A reduction in
length, however, would cause an increase in required rein-
forcement, since the maximum at D would now increase; a
case for L = 0.52H is also marked in Fig. 2(a).

The geometry of the log-spiral failure surface intersecting
the slope toe is described by two parameters. Calculations of
results presented in Fig. 2(a) were made using an optimization
procedure where only one parameter was varied (8,), whereas
the second parameter was used to ensure the required coor-
dinate x [Fig. 2(a)].

Some peculiar cases are shown in Figs. 3(a) and 3(b) [these
were indicated earlier in Michalowski (1996)]. Each of the
figures presents a slope with the two most adverse failure sur-
faces (A and D), which correspond to maxima of k,/yH similar
to those in Fig. 2(a). Failure surface A in Fig. 3(a) relates to
a rotational mechanism with a center of rotation below the
slope crest. This was found to be the case for steep slopes with

(a)
Ve b

H / p=170°
/ o
/ L/H=09
f,= 05
(b)

B=40°
¢ =30°
re=0
L/H=0.46
f,=05

FIG. 3. Reinforced Siopes with Critical Failure Surfaces: (a)
Steep Slope; (b) “Shallow” Slope
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a significant pore-water pressure. In such an instance the top
layer/layers may be subjected to compression; this occurs
when sin 8, + z/r; < 0. A term for layer i should then be
omitted (taken as zero) in the summation in (19) (it also should
be taken as O if the failure surface does not intersect the re-
inforcement).

In some cases the reinforcement layers that are pulled out
during collapse may not necessarily be the top ones, and the
summation in (19) may not be in the sequence in which the
layers appear in the soil. This is presented in Fig. 3(b) (surface
D), where the tensile strength in the top two layers is fully
utilized, while the third layer (from the top) contributes very
little to stability (small effective length), and the fourth one
contributes nothing.

Reinforcement Length—Direct Sliding Mechanism

The direct sliding mechanism is shown in Fig. 4. The ro-
tation of the soil mass is incompatible with the direct sliding
(translation) pattern. In the incipient mechanism considered,
block BCED moves with velocity v, and block ABD moves
with velocity v,. The coefficient of friction in direct sliding .,
is expressed here as fraction f; of tan ¢

Hg = tan @, = f, tan ¢ (20)

where f; = a direct sliding coefficient. The normality rule re-
quires that v, and [7] be inclined at angle ¢ to surfaces BC
and BD, respectively, and vector v, be inclined at ¢, to rein-
forcement surface AB. The hodograph in Fig. 4(b) is used to
calculate magnitudes of v, and [v] as functions of v,. All layers
of reinforcement are of equal length L. The geometry of blocks
in Fig. 4(a) can be represented as functions of L and the depth
to the layer over which sliding occurs. This depth here is as-
sumed to be equal to the slope height H. Rupture surface BC
may or may not intersect the reinforcement.

The lower bound to the necessary length is calculated from
the theorem in (1). As the slope boundaries are load free, the
first term on the right-hand side is equal to zero, and the length
of reinforcement is implicitly included in all nonzero terms in
(1). The term on the left-hand side includes dissipation during
pullout of reinforcement along BD (and along BC if a > ).

(a)

FIG. 4. Direct Sliding: (a) Collapse Mechanism; (b) Hodograph

The results (design charts) produced later include cases for
which the required length calculated was the maximum (angles
a and 3 were variables in an optimization scheme).

Literature on the active pressure problem [for instance,
Chen (1975)] indicates that one plane failure surface (BC) is
a good approximation of the most adverse translational col-
lapse mechanism. Four different cases were distinguished, de-
pending on the reinforcement length, involvement of the pore-
water pressure, and location of point D in relation to point E
(Fig. 4). Equations describing the required length of reinforce-
ment to prevent direct sliding are all linear or parabolic. These
equations are of an algebraic nature, and the details are omitted
here.

DESIGN CHARTS

The expression in (10) was used to calculate the lower
bound to the required strength of reinforcement represented by
dimensionless parameter k,/yH, as a function of slope incli-
nation angle B and the internal friction angle of the slope fill.
The results of calculations are shown in diagrams [Figs.
5(a)—(c)] for pore-water pressure coefficient r, equal to O,
0.25, and 0.5, respectively, for slope inclination angles in the
range of 30-90° and the internal friction angle of 20-50°. A
reasonable angle of internal friction for slope design does not
exceed 40° The results for larger ¢ are shown here to make
the comparison to other charts (Jewell 1990) more compre-
hensive. An optimization scheme was used in which angles 6,
and 0, were varied (with a minimum step of 0.05°) and the
maximum of k,/yH was sought.

The failure mechanism can extend into the foundation soil,
which has the same properties as the slope fill. If the foun-
dation soil is assumed to be rigid (i.e., if condition 8, < 6, <
/2 + ¢ is enforced), the calculations are affected only when
the pore pressure coefficient is significant. The tendency of the
solution for slopes on a rigid foundation is indicated by seg-
ments of dashed lines in Figs. S(b,c). A peculiar solution is
obtained for ¢ = 20° and r, = 0.5, where a slope of inclination
B = 45° requires slightly more reinforcement than that with 8
= 65°. This seems to be caused by the pore-water pressure, the
adverse influence of which increases with the increase in depth
of the failure mechanism.

Calculations of the required length of the reinforcement are
more complex. For the reinforcement to be fully utilized the
required reinforcement calculated considering either pullout
failure [(19)] or direct sliding should be the same as in (10).

Charts for reinforcement length (L/H),.;, including the most
adverse combination of pullout and rupture of reinforcement
layers in a rotational failure mode (‘‘overall’’ failure), are
given in Fig. 6. Calculations were performed assuming six
layers of reinforcement, and coefficient f, = 0.5 and 0.8. The
calculations revealed a rather small difference between the re-
sults for different f, (a few percent). This is understandable in
cases where only one or two layers are pulled out. When the
most adverse mechanism included rupture of some reinforce-
ment layers while the remaining ones did not intersect the
failure surface at all, the result was, of course, independent of
coefficient f, (i.e., an increase in f, would not produce a de-
crease in required length). To restrict the number of charts,
only the results for f, = 0.5 are presented in Fig. 6. Some
“‘irregularities’’ were noticed in the results; these were iden-
tified as being caused by the discrete distribution of reinforce-
ment (the charts in Fig. 6 were gently smoothened).

Finally, the minimum length of reinforcement required to
prevent the direct sliding failure mode (L/H ), is shown in Fig.
7. The charts are shown for f; = 0.8, which is a reasonable
value for most geosynthetics. Coefficient f, = 0.5 was used in
calculations of pullout forces along rupture surfaces BD (and
BC if a > B, Fig. 4).
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( a) The charts in Figs. 6 and 7 are based on calculations for

03 20° slopes with six reinforcement layers, and the required length
changes (drops) with an increase in the number of layers. The
charts in this paper are applicable for slopes with a number of

0.26 = o 4 layers not less than six, and should be applied more cautiously
/ / 28° for slopes with a smaller number of reinforcement layers.
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ment in Slopes; Design Charts for: (a) r,=0; (b) 7, = 0.25; (¢) 7, = Rupture) Fallure; Design Charts for Six Layers with Uniform
0.50 Spacing: (a) r, = 0; (b) r, = 0.25; (c) r, = 0.50
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The focus of this paper is on the solution (and the solution
technique), and not as much on the design. However, it is
indicated very briefly how one can determine the number of
layers (or spacing) using the solution charts. Once k,/yH is

determined from the charts (for a slope of given inclination),
referring to the definition of k, in (2), one can find the lower
bound to the number of reinforcement layers when the strength
of a single layer, T,, is given

n=k 21)

or vice versa. It is not suggested that either the peak or the
critical (large strain) value of the internal friction angle should
be used in every design. The decision may be influenced by
the designer’s confidence in the test data and the expected
variability of the fill. The use of the critical state friction angle
is certainly prudent, but it may be overconservative. In either
case, k,/yH should be read from the diagrams in Fig. 5 for the
reduced value ¢,

t
= tan™! <$> @2)

where F = factor of safety. T, in (21) is the strength of a single
layer including the necessary partial safety factors (due to
creep, chemical/biological deterioration, construction damage,
etc.). The necessary length L can be obtained from Figs. 6 and
7 (larger L should be used in design), and the depth of the
layers can be calculated from the formula in (17).

COMPARISON TO OTHER RESULTS

It is useful to compare the results to existing solutions to
indicate any differences, sources of these differences, and pos-
sible consequences in design. Design charts presented by Jew-

(a)
O {Average reinforcement strength)
"Smeared" distribution
H of required and available
Required reinforcement strength
reinforcement {uniform spacing)
z
| %
"Smeared" distribution of required
(b) reinforcement strength
q {Average reinforcement strength}
7
H Distribution of available
equired reinforcement strength
/ reinforcement (if uniform spacing is used)
y 4
V4
YHK e
{c) .
Required reinforcement strength
O (Average reinforcement strength}
H Available reinforcement strength

(step-wise varied spacing)

yHK

rex

FIG. 8. Required Reinforcement Strength: (a) Uniform Rein-
forcement; (b) Triangular Distribution; (c) Triangular Distribu-
tion and Stepwise Varied Spacing
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ell (1990) are selected for comparison as they seem to be the
most comprehensive in their scope, and also those by Schmert-
mann et al. (1987).

Slopes with uniformly distributed reinforcement (evenly
spaced reinforcement layers of equal strength) were considered
in this paper. If the strength of such reinforcement is distrib-
uted continuously (‘‘smeared"”) through the slope height, it
can be represented by the shaded area in Fig. 8(a). Design
charts were produced based on the analysis of a rotational
failure. Jewell’s calculations are based on the same (rotational)
mechanism, but with a triangular reinforcement force distri-
bution [the shaded area in Fig. 8(b}]. In the framework of Hmit
analysis the difference between calculations with uniform and
triangular distributions of reinforcement strength appears in
the work dissipation rate during failure. For triangular distri-
bution the expression in (7} would read

= % kGord[2 sin®B,e ™ "= — gin @, sin 8, 7% — 5in’g,)
(23)

and the lower bound to the average reinforcement strength
becomes

ko MH—fH—hAtnf) )
yH 2 sin®0,e" 0 — gin §, sin B, — sin’B, H
(24)

The results in Jewell's (1990) charis are given in terms of
required coefficient K., which can be expressed as 2 function
of k,

k

Ky=2—

wH @25)

i

TABLE 1. Compariscn of Required Reinforcement (K,j)* tor
Slopas (r, =0}

Calculations of maximum k/vH were performed using (24)
{with 8, and 6, being variable), and the results are the same
as those in Jewell's (1990) charts. Only for large pore-water
pressure, r, = 0.5, steep slopes, and large internal friction an-
gles are the charts in Jewell (1990) excessively ‘‘smoothened’”
{for instance, for B = 70° and ¢ = 50° the charts read K, ~
0.36, while the calculations based on identical assumptions
yield K, = 0.319).

A comparison of numerical resuits obtained in this paper
(uniform reinforcement) to those found in Jewell (1990) and
Schmertmann ¢t al, (1987) (both with a triangular distribution
of the reinforcement limit force) is given in Tables 1-3. Re-
sults are shown in Table 1 in terms of K, [(25)] for selected
parameters. The numbers in columns 3 and 4 were calculated
using (10} and (24), respectively. The numbers in column 5
are taken from Schmertmann et al. (1987). The latter are based
on an approximate two-wedge mechanism and were modified
by their authors to be consistent with resuits from the Bishop
and Spencer methods. The larger the K., the larger the
strength (or amount) of reinforcement necessary to avoid col-
lapse,

In terms of the total amount of reinforcement, the analysis
presented here yields a larger amount than in Jewell (1990),
and the results are somewhat closer to those of Schmertmann
et al. (1987). These results are not at all surprising. When a
rotational mechanism is considered, it is the moment of rein-
forcement force {with respect to the center of rotation) that is
being estimated, and not the reinforcement force itself. The
resultant force for a triangular reinforcement distribution is
located at one-third of the slope height, and it provides a larger
resisting moment than a resultant force of the same magnitude
but for a uniformly distributed reinforcement. Consequently, a
lesser amount of the reinforcement with a triangular force dis-
tribution is required fo provide the same resisting moment.

The difference between the results in columns 3 and 4 of
Table 1 becomes more significant for slopes with large pore-

water pressure.
internal Design charts based on a triangular distribution of the re-
Slope | frigtion Triangular inforcement force are often nsed in a very conservative manner
angle | angle | Uniform | reinforcament (particularly for *‘short slopes''), where a uniform spacing of
B @ reinforcamant| [Eq. (£)] and | Schmartmann the reinforcement is calculated based on the required strength
) ) (Eq. (10)] | Jewell (1980) | st al. (1987) at the bottom of the slope, YHK,., [Fig. 8(b)]. In doing so, the
0] @) @ @) 5} amount of reinforcement is “‘silently’’ doubled in addition to
40 20 0.218 0.188 022 any safety factors used. The total required limit force in the
40 30 0.054 0.043 0.05 reinforcement consistent with the assumption of triangular dis-
60 20 0.353 0.283 037 tribution of reinforcement strength is equal to the integral of
60 30 0.169 0.146 0.17 the shaded in Fie. 8(b h the desi tr h (wh
60 40 0.073 0.064 0.07 ¢ shaded area in Fig. 8(b), whereas the design strength (when
80 20 0470 0.304 0.48 uniform spacing is used) is depicted by the solid vertical line.
20 30 0.285 0.251 0.30 The reinforcement will be less than doubled, however (but still
80 40 0.167 0.151 0.18 will exceed the necessary amount}, if varied spacing is de-
Koo = 2/ signed [Fig. B(c)], which is routinely done for high slopes
(H > 6m).
TABLE 2. Comparison of Required Relnforcement Langth {L/H},. for Slopes {r,=0)
Internal Unlform Reinforcement Triangular Schrmermann
Slope frictlon [Egs. (18) and (17)] [Egs. (19) and (26)] Jawell (1990)* | et al. (1987)®
angle angle
B @
) ) n=6,4=05n=6L=08{n=50,1=08(n=6§14=09[n=50£,=09 e =08
{1 2) (8) (4) (5) & N 8) (3)
40 20 1.085 1.065 0.960 1.025 1.000 1.05 0.98
40 30 0.460 0.460 0435 0.460 0445 0.47 0.29
60 20 1.005 0.985 0.950 0,885 0.840 0.84 0.89
60 30 0,605 0.600 0,580 0.525 0,505 0.51 0.52
60 40 0.370 0.365 0.355 0.320 0.310 0.31 0.28
BO 20 1.080 1.025 0.935 0.935 0.805 0.80 0.80
BO 30 0.840 0.725 0.675 0.645 0.565 0.57 0.56
80 40 0.525 0.520 0.485 0455 0.410 0.40 0.42

"Numbers read from diagrams in Jewell {1990).
*Length marked as L (top) given in Schmenimann et al, (1987).
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TABLE 3. Comparison of Required Reinforcement Length
(L/H)4, tor Slopes (r, = 0)

Internal
Slope friction Schmert-
angle angle Charts in Jewell mann
B @ Fig. 7 (1990) |et al. (1987)
) ©) f,=08 ;=08 f;=0.9
() @) (3 4) (5)
40 20 1.160 1.27 1.18
40 30 0.459 0.50 0.44
60 20 0.934 0.98 0.98
60 30 0.417 0.45 0.52*
60 40 0.161 0.16 0.28*
80 20 0.795 0.72 0.80"
80 30 0.306 0.30 0.56"
80 40 0.090 0.08 0.42*

*Larger of two numbers (for top and bottom of the slope) given in
Schmertmann et al. (1987).

(a) (b)

FIG. 9. Failure Surfaces Related to Maxima of Required Rein-
forcement Length: (a) Local Maximum of 0.57H; (b) Global Max-
imum of 0.645H

Comparison of the required reinforcement length is pre-
sented in Tables 2 and 3. Required length calculated using the
uniform distribution of reinforcement [(19)] is shown in col-
umns 3-5 of Table 2, for a different number of layers, #, and
different ‘‘bond coefficient’’ f,. Results by Jewell (1990) are
independent of the number of layers and f, (column 8), and
those by Schmertmann et al. (1987) are independent of n (col-
umn 9). The last two are in good agreement, whereas the cal-
culations based on the uniform distribution of reinforcement
usually indicate larger length. The differences are understand-
able, considering different assumptions (reinforcement distri-
bution).

In an attempt to calculate a reinforcement length consistent
with the assumptions of triangular distribution of reinforce-
ment strength, but without any further presumptions, addi-
tional calculations were performed using (19). However, the
length of reinforcement was now such that the required
strength k,/yH was not less than that from (24). To achieve the
assumed triangular distribution of the limit force, the rein-
forcement layers of equal strength were distributed with spac-
ing decreasing toward the slope base. Assuming that each re-
inforcement layer is at the centroid of its respective trapezoidal
distribution segment, depth z, of reinforcement layers was cal-
culated from the following expression:

zi=§nH[\/<i>3— \/<"‘ 1>3], i=1,2,...,n (26)
n n

where n = number of layers. The optimization technique was
used (8, and 6, being variable) to find maximum L/H. Some
numerical results are shown in columns 6 and 7 in Table 2,
and an example is shown in Fig. 9.

The slope in Fig. 9 has an inclination of 80°, internal friction

angle of the fill ¢ = 30° and f, = 0.5 (r, = 0). The method
used leads to a lower bound on the length of reinforcement,
and, therefore, the maximum of the required length was sought
[calculated length is not a strict bound in the theoretical sense
because of the approximation in (13)]. The solution converged
to the maximum of L/H = 0.570 (+0.005) for some range of
initial parameters used in the optimization procedure. The fail-
ure surface associated with this solution is shown in Fig. 9(a).
This length coincides with that in Jewell’s (1990) charts (col-
umn 8, Table 2). However, function L/H(8,, 8,) for a small
number of reinforcement layers is not a single-extremum func-
tion, and L/H = 0.570 appears to be a local maximum. A better
solution can be found where L/H = 0.645 (=0.005) with the
failure surface illustrated in Fig. 9(b).

The critical length is sensitive to both the number of layers
and their distribution. By increasing significantly the number
of layers (for instance, to n = 50), implicit function L/H(0,,
6,) in (19) seems to be less ‘‘bumpy’’ in space 8, 0,, and a
single maximum was found, which matches that in columns 8
and 9 (Table 2) surprisingly well (L/H = 0.565).

When the reinforcement spacing is small (large number of
layers), there is a likelihood of failure where more than one
layer is pulled out with a portion of the fill as one rigid block,
significantly reducing the pullout force determined for a single
layer in (13). Such mechanisms were not investigated here.

The calculations indicate that assumptions in deriving re-
inforcement length need to be made with caution. Particularly,
representing required reinforcement length as independent of
the number of layers may be a significant approximation. Cal-
culations revealed that increasing the number of layers leads
to a more ‘‘regular’’ required length function, but the calcu-
lated required length for a small number of layers is always
larger than that for a large number of layers. This conclusion
is true for both uniform and triangular distribution of rein-
forcement.

The required length in charts by Jewell (1990) seems to
have been produced for a large number of reinforcement lay-
ers. The required length in these charts falls short of those
calculated for a small number of layers (for instance six). A
remedy for the deficiency in the length so calculated was in-
troduced through an ‘‘empirical’’ notion of the ‘‘bond allow-
ance’’ (or the ‘‘load shedding allowance’’), as explained in
Jewell (1992). While this concept has not been accepted en-
thusiastically by designers, the additional reinforcement rou-
tinely designed when using charts based on triangular distri-
bution [see, e.g., Fig. 8(b,c)] probably compensates for the
length deficiency when using a small number of layers.

Comparison of the required reinforcement length to prevent
direct sliding from occurring is shown in Table 3. The dis-
crepancies are not significant.

FINAL REMARKS

The required strength and length of reinforcement for uni-
formly reinforced slopes were calculated using the kinematic
approach of limit analysis. This approach, as applied in this
paper, leads to the lower bound for the required reinforcement
strength for a given slope, or it can be alternatively formulated
to yield the upper bound to the critical height of the slope.

The significant difference from existing solutions is in the
assumption that the reinforcement is distributed uniformly
throughout the slope height, which is commonly adopted in
the design of ‘‘low slopes.”” Limit analysis was also used to
document that it produces results identical to those available
in the literature for the triangular distribution of reinforcement.

The length of reinforcement against overall failure is de-
rived from the criterion that it be fully utilized (i.e., be no
longer than necessary). Two equally critical rotational collapse
mechanisms can be found for slopes that satisfy this criterion.
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The first one involves rupture of all reinforcing layers (with a
possible exception of the very top layer/layers). The second
one entails layers that may not even intersect the failure sur-
face, while the combination of reinforcement rupture and pull-
out occurs for other layers (see failure surfaces A and D in
Fig. 2). The reinforcement need not be longer than that which
renders the second mechanism as critical as the first one.

A feature of a rotational failure mechanism that was not
reported earlier is the likelihood of compression in the upper
reinforcement layers. This occurs in the presence of substantial
pore-water pressure in steep slopes with uniform distribution
of reinforcement. This is particularly important since a geo-
synthetic reinforcement is likely to kink under compression,
and such layers need to be excluded from the calculated re-
inforcement contribution to the slope strength. Another, per-
haps less surprising, feature of rotational failures is that for
gentle slopes the middle layers may be pulled out whereas the
top ones rupture {contrary to the common presumption that
the top layer is pulled out first).

The solution presented here requires a larger amount of re-
inforcement than that in routinely used design charts. The dis-
crepancy in the required amount {or strength) of reinforcement
stems from different distributions of the limit force in rein-
forcement: uniform versus triangular.

The required length of reinforcement is dependent on the
total required Hmit force (strength), frictional interaction of the
reinforcement and the fill, number of layers, and their distri-
bution. Both overall (rotational) and direct sliding (transla-
tional) failure mechanisms were considered. The required re-
inforcement length needed to resist overall failure was found
10 be consistently higher when it is uniformly distributed (as
opposed to triangular distribution).

Calculations with a triangular distribution of reinforcement
strength suggest that the routinely used design charts (Jewell
1990) predict the required length well for slopes with a large
number of layers. The required length is larger, however, if a
smaller number of layers is used (for instance six). Because
of the increased amount of reinforcement used commonly in
design [sece Fig. 8(b,c}), there is no concern about insufficient
pullout forces when using the existing design charts.

The technique used does not allow one to evaluate the in-

fluence of the soil and reinforcement stiffness on the estimates
of the required strength of reinforcement. This is a common
drawback of any technique based on limit analysis or limit
equilibrium. Also, both limit analysis and limit equilibrium
methods, when consistently carried out, provide a lower bound
to the required strength of reinforcement (%, or K,). Hence,
by definition, they are not conservative. The rotational failure
mechanism used in the analysis, however, is known to be the
most adverse failure mode, and the results are probably as
good as they can be within the framework of limit analysis
(or limit equilibrium).
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APPENDIX 1. EXPRESSIONS FOR FUNCTIONS £-£

Functions fi—f; were given first by Chen et al. (1969) in the
context of slope stability analysis, and they are given here for
the case of a horizontal crest of the slope (as in Fig. 1)

1
T 31 + 9 tan’y)

— 3 tan ¢ cos 8, — sin 6] 27)

[(3 tan ¢ cos 6, + sin §,)e’® e

A

k= z g— (2 cos 8, — E-) sin 8, (28)

1
o g

in( + 6 H
- 1Hsin + 6) (2 05 B, + = cot B) gamtune
[}

k=g o sinp
29
where
B__L [sin(e,, oy~ H ,_,,.E.E..t_‘.’_)] 30
rp sin ql ro sing

and the ratio H/ro is given in (11). Coefficient f5 is more com-
plex in derivation (Michalowski 1995), and can be calculated
from

8y LN
fi=tang U & gra-tom gp 4 f L gua-tguse de] G1)
6 [}

o , To

where z,/r, and z/r, are given in

5L gine —sing, (32a)
a e

2 L R -
== —5in § — sin et
o To

+ [-—r- cos 8 — cos 9,,e‘°~"’°""'":t tan B
o

(32b)
with r given in (3). Angle 6, needs to be calculated from

B
cos 8,2 "M = cos 0, ~ “ cos o (33)
Ta

Closed-form solutions to integrals in (31) were found; angle
&,, however, was calculated numerically from (33), For verti-
cal slopes 8, = §,, and the second integral in (31) is equal to
70,
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APPENDIX III.

NOTATION

The following symbols are used in this paper:

D
F

Jo
Ja
H
k
k./yH

(LIH )y

energy dissipation rate;

factor of safety;

bond coefficient (, = f, tan ¢);

direct sliding coefficient (u, = tan @, = f; tan ¢);
slope height;

tensile strength of reinforcement per unit area of re-
inforced soil mass;

dimensionless required reinforcement strength;
reinforcement length;

dimensionless required reinforcement length against
direct sliding;

(L/H)nvrl

N

eOv eh
Pa

Pw

dimensionless required reinforcement length against
overall failure;

effective length of reinforcement;

number of reinforcement layers;

unit vector in direction of reinforcement;

log-spiral radius;

pore pressure coefficient (u = r,yz);

pullout force for single reinforcement layer per unit
width;

tensile strength of single reinforcement layer per unit
width;

pore-water pressure;

velocity vector;

rate of work of external forces;

depth of reinforcement layer i below crest;
overburden depth of reinforcement layer i;

slope inclination angle;

unit weight of soil;

polar coordinate (angle);

magnitudes of 6 used to describe failure surface;
internal friction angle of fill;

internal friction angle needed to maintain limit equi-
librium {tan ¢, = (tan ¢)/F);

geosynthetic-fill friction angle in direct sliding; and
rotational velocity.
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