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Abstract

The kinematic theorem of limit analysis is used to evaluate the amount of reinforcement
necessary to prevent collapse of slopes. The results are also applicable to some failure modes
of reinforced walls. Calculations were performed assuming uniform and linearly increasing

distributions of reinforcement strength through the slope height. The computational results
are presented in charts, which can be used in design. The seismic in¯uence is substituted with a
quasi-static horizontal force. While such an approach ignores the acceleration history and

does not allow any insight into the behavior of a structure, it is being routinely used in prac-
tice, and the charts are o�ered as a design aid to determine the amount or strength of rein-
forcement. The length of reinforcement was also calculated, based on collapse mechanisms

which include rupture in some layers and pull-out in others. It was found that the distribution
of reinforcement with variable spacing, to match the triangular distribution of ``smeared''
strength, is more economical than a uniform spacing. Uniform spacing requires longer rein-
forcement and larger strength. # 1998 Elsevier Science Ltd. All rights reserved.

1. Introduction

Reinforcement of soil structures such as slopes and walls has become an accepted
engineering practice in the last 20 years. Reports on the behavior of reinforced soil
structures during seismic events emphasize a relatively small distress caused by
shaking (see e.g. [1]). White and Holtz [2] noticed that during the Northridge earth-
quake ``No adverse performance of geosynthetic-reinforced structures was observed,
even in areas where other types of structures experienced failures and/or other poor
performance.'' It is then natural to seek some guidelines as to how much reinforce-
ment is necessary to adequately protect structures from possible damage due to
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earthquakes. The most common method used for reinforced soil structures is the
quasi-static analysis where the seismic in¯uence is substituted with a static force,
usually in the horizontal direction. This method has been used in design of massive
retaining walls for more than 50 years, and was adapted for reinforced soil in the
1980s [3]. A ``sliding block analysis'' can be performed to approximately evaluate
the displacements of the structure during a seismic event. While used to determine
displacement of slopes since the 1960s, it was adapted to reinforced soil structures
only recently (see e.g. [4,5]). Numerical calculations, such as the ®nite element
method, did not gain popularity for reinforced soil analysis due to complexities with
modeling of the soil-reinforcement interface. A comprehensive review of the techni-
ques used for seismic analysis of geosynthetic-reinforced walls, slopes and embank-
ments was presented recently by Bathurst and Alfaro [6].
Substitution of a quasi-static force for the dynamic e�ect due to seismic shaking is

a rather approximate method. It does not give any insight into the behavior of a
structure, it neglects the seismic process (acceleration history), cannot yield any
information about permanent displacements of the structure, yet it seems to be a
widely accepted design technique. It is useful then to produce charts to aid such
design. While attempts have been made in the past at quasi-static analysis of rein-
forced soil structures [3], more comprehensive calculations to include complex col-
lapse modes including both the rupture (or plastic tensile failure) and pullout of
reinforcement, and direct sliding, have been presented only recently [5]. A similar
task is undertaken in this paper, although the technique used is di�erent, and cal-
culations are made for both uniform and variable spacing of reinforcement, corre-
sponding to uniform and triangular distributions of ``smeared'' reinforcement
strength. Calculations of stability for complex failure modes including simultaneous
plastic ¯ow (or rupture) of some reinforcement layers and pull-out of others also
di�er from those in [5]. The technique used here was applied earlier only to uni-
formly reinforced slopes with no seismic in¯uence [7]. The respective terms including
the quasi-static horizontal forces are now included.

2. Limit analysis of reinforced soil

The kinematic approach of limit analysis, with a quasi-static seismic force in the
horizontal direction, is used here to arrive at reinforcement strength and length, and
the results are presented in the form of design charts. Limit analysis has been applied
to reinforced soil in the last 10 years or so. Two approaches can be distinguished in
limit analysis of reinforced soil: (a) the continuum approach, where the soil and
reinforcement are ®rst homogenized, and the limit analysis is then applied to the
anisotropic continuum, and (b) the structural approach, in which the soil and rein-
forcement are considered as two separate structural components. The latter is also
referred to as a ``mixed'' approach [8], since the reinforcement constitutes structural
members, and the soil is considered as a continuum. Examples of the application of
limit analysis in reinforced soil can be found in papers by de Buhan et al. [9], Sawicki
and LesÂ niewska [10], de Buhan and Salens,on [11], and others [7,8,12].
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It is assumed in the kinematic approach of limit analysis that the soil and rein-
forcement are perfectly plastic and their deformation is governed by the associative
¯ow rule

_"plij � _l
@f��ij�
@�ij

;
_l50 if f � 0
_l � 0 if f < 0

�1�

where _l is a nonnegative scalar multiplier, and f��ij� � 0 is the yield criterion. We
will assume here that the Mohr±Coulomb failure criterion holds for soils. The con-
sequence of the normality rule in Eq. (1) is a well-de®ned dilatancy rate during
plastic deformation. If velocity discontinuities (rupture surfaces) appear in the fail-
ure mechanism, the discontinuity vectors (``velocity jumps'') must be inclined to the
discontinuities at angle of internal friction '.
The technique of calculations is based on the kinematic theorem of limit analysis.

This theorem states that the rate of work done by traction and body forces is less than
or equal to the rate of energy dissipation in any kinematically admissible failure
mechanism�

V

��ij _"
�
ijdV5

�
S

TividS�
�
V

Xiv
�
i dV; i; j � 1; 2; 3 �2�

where _"�ij is the strain rate in a kinematically admissible velocity ®eld, ��ij is the stress
tensor associated with _"�ij, velocity v�i � vi on boundary S (given kinematic boundary
condition), Xi is the vector of body forces (unit weight and the distributed quasi-
static inertial force), and S and V are the loaded boundary and the volume, respec-
tively. A more comprehensive description of this method can be found in [13,14].
No pore water pressure or liquefaction potential is considered here. This paper

deals primarily with slopes, but the results also can be used in analysis of some fail-
ure modes of reinforced walls. The slopes considered here are not loaded on their
boundaries, so that the ®rst integral on the right-hand side of Eq. (2) is zero. The
stability problem is formulated for a given slope with an unknown amount of rein-
forcement necessary to prevent failure. Thus, the inequality in Eq. (2) will provide
the lower bound to the strength (or amount) of reinforcement.
An alternative technique to solving the limit state problem is the traditional ``limit

equilibrium'' method. One can prove that, provided the same admissible collapse
mechanisms are used in the kinematic limit analysis and in the limit equilibrium
method, the results must be identical. The kinematic method is utilized herein, since
the kinematics of collapse mechanisms appeals to engineering intuition better than
the distribution of forces. The limit equilibrium method was applied to reinforced
slopes in [15,16].

3. Distribution of reinforcement

Most design suggestions available today assume the linear (increasing with depth)
distribution of the reinforcement force. In limit state design this reinforcement force
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must be interpreted as the limit force, otherwise the mechanism of collapse con-
sidered in the limit analysis (or limit equilibrium method) is not admissible. Thus, if
reinforcement layers of equal strength are used, the triangular distribution of the
reinforcement force implies reinforcement distribution of the type in Fig. 1(a). From
geometrical considerations one can calculate depth zi of each layer of reinforcement
(i=1,2,3...n) assuming that every layer is placed at the centroid of its respective tra-
pezoidal distribution segment:

zi � 2

3
nH

�����������
i

n

� �3
s

ÿ
������������������
iÿ 1

n

� �3
s24 35; i � 1; 2:::n �3�

where n is the number of layers. For a uniformly reinforced structure [Fig. 1(b)] the
depth of layers can be calculated as

zi � �iÿ 0:5�H
n
; i � 1; 2:::n �4�

The average strength of the reinforcement in the structure can be represented as

kt � nTt

H
�5�

or, in a dimensionless form

kt
H
� nTt

H2
�6�

where Tt is the tensile strength of a single reinforcement layer (per unit width), n is
the number of reinforcement layers, H is the slope height, and  is the unit weight of
the soil. It is then kt and the length of the reinforcement which need to be deter-
mined from the analysis.

Fig. 1. Schematic of reinforcement in slopes: (a) variable spacing, and (b) uniform spacing.
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4. Collapse mechanism and seismic considerations

This paper focuses on reinforced slopes; in particular, the amount of reinforce-
ment and its length necessary to avoid collapse during seismic events is sought. The
results also will be applicable to walls, although design of walls requires considera-
tion of additional failure modes not presented here.
It was found earlier [7,15,16] that the rotational log-spiral failure mechanism, as

presented in Fig. 2(a), is the most adverse collapse mode, i.e. preventing it requires
more reinforcement than preventing other, for instance, translational failure modes.
Such a mechanism for slopes without reinforcement was considered earlier by Chen et
al. [17]. For a given slope inclination and internal friction angle of the soil, the toe log-
spiral failure surface is fully described by two parameters: �0 and �h [see Fig. 2(a)].
Rupture of the reinforcement is interpreted here as a plastic ¯ow process con-

sistent with the ¯ow rule in Eq. (1). The energy dissipation rate in a single layer of
reinforcement intersecting a velocity discontinuity can be derived assuming that the
discontinuity is a ®nite-thickness layer with a high velocity gradient [Fig. 3(a)]. The
reinforcement considered here is of a geosynthetics type (geogrids or geotextile), and
it contributes to the stability of the structure only through its tensile strength (this
reinforcement's resistance to shear, torsion and bending is negligible). Kinematical
admissibility requires that the velocity jump vector, [v], be inclined to the velocity
discontinuity at angle of internal friction '. If the reinforcement is inclined to the
velocity discontinuity at angle � [Fig. 3(a)], then, assuming no reinforcement pull-
out occurs, sector AB of length t/sin� (t being the thickness of the layer) is subjected
to plastic ¯ow. Thus, the work dissipation rate in a single layer of reinforcement
intersecting a velocity discontinuity (per unit width of the reinforcement) can be
calculated as

Fig. 2. Collapse mechanisms of slopes: (a) rotational mode, and (b) direct sliding over a single reinforce-

ment layer.
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_D �
�t= sin �

0

Tth _"lidx � Tt�v� cos��ÿ '� �7�

where Tt is the limit tensile force in the reinforcement sheet per unit width (taken as
positive), and the strain rate in the reinforcement is taken as positive in tension
h _"li � �v� cos��ÿ '�=t sin �, and h _"li � 0 when �ÿ ' > �=2 (the ability of reinforce-
ment to resist compression is disregarded due to possible buckling and kinking). If
the reinforcement is represented in terms of its average strength kt, as in Eq. (5), the
dissipation rate per unit area of the discontinuity surface becomes

_D

�t= sin �

0

kth _"li sin �dx � kt�v� cos��ÿ '� sin � �8�

For a log-spiral failure surface, the energy dissipation rate per in®nitesimal length
increment, Fig. 3(b), is

d _D � ktrd�
cos�� ÿ '�

cos '
n�v �9�

where v is the velocity discontinuity vector along the log-spiral [Fig. 2(a)], and n is a
unit vector in the direction of reinforcement. The radius of the log-spiral is
r � r0 expf�� ÿ �0� tan 'g and the magnitude of the velocity jump vector along the
log-spiral is v � v0 expf�� ÿ �0� tan 'g � _!r0 expf�� ÿ �0� tan 'g, hence

d _D � kt _!r20�sin � cos � � sin2 � tan'�e2��ÿ�0� tan 'd� �10�

and, integrating from �0 to �h and assuming that kt � const: [Fig. 1(b)], we have

_D � 1

2
kt _!r20�sin2 �he

2��hÿ�0� tan ' ÿ sin2 �0� �11�

Fig. 3. Plastic ¯ow of reinforcement at a velocity discontinuity: (a) a single reinforcement layer intersect-

ing velocity discontinuity, and (b) schematic for calculations of work dissipation rate along a log-spiral

discontinuity.
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where _! is the velocity of rotation about point O. Similarly, for the triangular dis-
tribution of reinforcement strength [Fig. 1(a)] we obtain

_D � 1

3
kt _!r20�2 sin2 �he

2��hÿ�0� tan ' ÿ sin �0 sin �he
��hÿ�0� tan ' ÿ sin2 �0� �12�

The rate of work of the soil weight and the quasi-static inertial force can be calcu-
lated as the work rate of block CDOC minus the work rates for blocks ACOA and
ADOA [Fig. 2(a)]. Only the horizontal quasi-static force is considered here. Conse-
quently, this work rate takes the form

_W � r30 _!�f1 ÿ f2 ÿ f3 � kh�fs1 ÿ fs2 ÿ fs3�� �13�

where seismic coe�cient kh represents the intensity of the distributed horizontal
inertial force as a fraction of the soil unit weight, . Coe�cients f1; f2; f3, and
fs1; f

s
2; and fs3 are functions of the slope inclination angle (�), the geometry of the

failure surface (�0; �h), and the internal friction angle of the soil ('). The ®rst three
functions were derived earlier by Chen et al. [17], and they all are given in the
Appendix.
Substituting now the expressions for the rate of energy dissipation [Eqs. (11) or

(12)] for the left-hand side of Eq. (2) and the rate of work of the weight and seismic
force for the right-hand side, one obtains the following expressions for the lower
bound to the amount of reinforcement necessary to prevent the slope failure

kt
H
� 2�f1 ÿ f2 ÿ f3 � kh�fs1 ÿ fs2 ÿ fs3��

sin2 �he2��hÿ�0� tan ' ÿ sin2 �0

r0
H

�14�

for the uniform distribution of reinforcement, and

kt
H
� 3�f1 ÿ f2 ÿ f3 � kh�fs1 ÿ fs2 ÿ fs3��

2 sin2 �he2��hÿ�0� tan ' ÿ sin �0 sin �he��hÿ�o� tan ' ÿ sin2 �0

r0
H

�15�

for the triangular distribution, and r0=H is found from the geometrical relations in
Fig. 2(a)

H

r0
� sin �he

��hÿ�0� tan' ÿ sin �0 �16�

5. Required reinforcement strength

The expressions in Eqs. (14) and (15) now can be used to arrive at the lower
bounds to the reinforcement strength for slopes with di�erent inclinations, for a
variety of internal friction angles of the soil, and for di�erent intensities of the
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seismic force, kh. An optimization scheme needs to be used in order to ®nd the best
lower bound to the required reinforcement. The maximum of kt=H was sought
from Eqs. (14) and (15), with angles �0 and �h being variable. A gradiental method of
optimization was used, and the results are presented in the design charts in Figs. 4
and 5.
The charts in Fig. 4 present dimensionless average strength kt=H of the reinfor-

cement necessary to prevent failure of uniformly reinforced slopes. The charts are
given for di�erent intensities of seismic coe�cient kh. The required strength increa-
ses with the decrease in the internal friction angle and with the increase in the seismic
coe�cient kh and the slope inclination angle �.

Fig. 4. Reinforcement strength (dimensionless) necessary to prevent slope collapse associated with rein-

forcement rupture; uniform spacing.
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Uniformly distributed reinforcement is commonly used for slopes of up to 6 m
high. For tall slopes it is more economical to design varied spacing of reinforcement
(or step-wise varied spacing). The calculations of the best estimate of the average
reinforcement strength were then made assuming a triangular distribution, accord-
ing to Fig. 1(a) [and Eq. (15)]. The respective charts are shown in Fig. 5. These
results appear to be similar to those presented recently by Ling et al. [5] for slopes
with selected inclination angles. It follows from Figs. 4 and 5 that the same slope
requires more reinforcement if it is uniformly distributed. It may be concluded then
that variable spacing leads to a more economic use of geosynthetic material. It was
interesting to notice that for very steep structures (typical of wallsÐnearly 90�) and

Fig. 5. Reinforcement strength (dimensionless) necessary to prevent slope collapse associated with rein-

forcement rupture; variable spacing.
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large kh, a translational mechanism (�0 � �h) gives the best estimate of kt=H. For a
translational mechanism, however, the energy dissipation rate in the reinforcement
during failure is independent of its distribution. Therefore, the results are identical
for these cases, whether the reinforcement distribution is uniform or triangular (see,
for instance, results for � � 90� and kh � 0:3).
The charts in Figs. 4 and 5 now can be utilized to ®nd the necessary amount (or

strength) of reinforcement for a given slope (given kh, and known slope inclination
angle �, internal friction angle ', and unit weight ). First kt=H needs to be read
from an appropriate chart, and, upon substitution of kt into Eq. (5), one can calcu-
late the number of layers if the tensile strength of geosynthetic, Tt, is given, or, for a
given number of layers n, one can calculate the necessary strength of a single layer.
The depth of the layers can then be calculated either from Eqs. (3) or (4). For
practical purposes, the angle of internal friction used in the chart should be reduced
according to an appropriate safety factor F�'d � tanÿ1�tan '=F��.

6. Required length of reinforcement

It has been assumed, so far, that the reinforcement fails by plastic ¯ow referred to
here as tensile rupture. This happens only when the reinforcement is of su�cient
length, otherwise some reinforcement layers may be pulled out from the soil. The
method used here for calculating the required length of reinforcement was proposed
earlier [7], with the exception that seismic forces are now considered. The pullout
force for a single layer of reinforcement is

Tp � 2z�lefb tan' �17�

where z� is the overburden depth and le is the e�ective length [Fig. 2(a)]. The soil-
reinforcement friction coe�cient is expressed here as a fraction of the tangent of the
internal friction angle fb tan '. The energy dissipation rate during rotational failure
needs to be calculated now as a sum of dissipation in all layers that are being pulled
out, and in the layers that rupture

_Dp �
Pk
i�1

Tpr0 _! sin �0 � zi
r0

� �
_Dt �

Pn
i�k�1

Ttr0 _! sin �0 � zi
r0

� � �18�

where k is the number of layers being pulled out [see Fig. 2(a) for zi and r0).
Equating the dissipation rate in Eq. (18) to the work of the body forces in Eq. (13),
and noting that Tt � ktH=n, one obtains

kt
H
�

r0
H

ÿ �2�f1 ÿ f2 ÿ f3 � kh� fs1 ÿ fs2 ÿ fs3�� ÿ
Pk
i�1

Tp

H2 sin �0 � zi
r0

� �
1
n

Pn
i�k�1

sin �0 � zi
r0

� � �19�
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The length of reinforcement is implicitly included in the pullout force Tp. An eco-
nomically designed reinforcement length is one that yields kt=H in Eq. (19) equal to
that in Eq. (14) [or Eq. (15)]. This is explained in Fig. 6. The dimensionless average
strength in Fig. 6(a) is calculated from Eqs. (14) or (19), and it corresponds to failure
surfaces which intersect the slope surface at a respective ordinate x; for instance, the
magnitude of kt=H at point A [Fig. 6(a)] corresponds to the failure surface A
[Fig. 6(b)]. Out of all failure surfaces, A and B are the two most critical ones (col-
lapse along other surfaces requires lower reinforcement strength). The maximum of
kt=H at point A relates to the best lower bound with rupture in all layers, [Eq.
(14)]. The maximum at B corresponds to the case where the top layer is bypassed by
the failure surface and the second layer is pulled out. If the maximum at B was less
than that at A, it would be indicative of having the reinforcement longer than
necessary. In such a case the all-rupture mechanism would control the collapse.
The results of calculations of the reinforcement length are presented in Figs. 7 and

8, for the uniform and variable spacing of reinforcement to match the distributions
in Fig. 1(b) and (a), respectively. The soil-reinforcement coe�cient of friction was
assumed to be 0:8 tan '�fb � 0:8�, and 24 layers (n � 24) were taken in all calcula-
tions. The calculated lengths are designated as �L=H�ovrl, since the type of collapse

Fig. 6. Criterion for calculating reinforcement length: (a) required strength to prevent failure, and (b)

failure surfaces associated with two most adverse failure mechanisms.
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considered is often referred to as an overall failure. These are the best lower bounds
to the reinforcement length necessary to prevent failure. The maximum of L/H was
calculated from Eq. (19) (L is implicitly included in Tp) with kt=H determined from
Eq. (14) for the uniform distribution [and with kt=H determined from Eq. (15) for
the triangular distribution of reinforcement]. The results were obtained numerically,
with an optimization scheme in which geometric parameters describing the failure
mechanism were taken as variables.
The results clearly indicate that the triangular distribution of reinforcement is

more economic: the uniform distribution requires longer reinforcement to prevent
failure.
From the limit analysis standpoint the lengths calculated are not rigorous bounds,

since the stress on the reinforcement layers was approximately assumed to be equal

Fig. 7. Reinforcement length required for uniformly reinforced slopes.
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to the overburden pressure. This assumption, however, is commonly used in calcu-
lations of pullout forces [15,16].
The last set of calculations was performed assuming a di�erent mode of failure:

direct sliding. Direct sliding of the soil mass over the bottom layer of reinforcement
is compatible with a translational mechanism in Fig. 2(b). Calculations of a similar
type were made recently by Ling et al. [5] in the context of seismic design, although
the calculations presented here di�er considerably from those in [5] in the way the
in¯uence of the reinforcement within the sliding blocks is taken into account. The
geosynthetic-soil coe�cient of friction for both the direct sliding and pullout was
assumed to be equal to 0:8 tan '�fd � fb � 0:8�, and 24 layers of reinforcement were
assumed. Angles � and � were taken as variables in an optimization procedure where

Fig. 8. Reinforcement length required for slopes with triangular distribution of reinforcement strength.
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the maximum of length L [Fig. 2(b)] was sought. Rupture of reinforcement or the
pullout force, whichever smaller, was considered along failure surface BD. A more
detailed description of a similar mechanism can be found elsewhere [7].
The length of reinforcement necessary to prevent direct sliding is shown in Fig. 9.

The di�erence in calculated length for uniform and variable spacing of reinforce-
ment appeared to be rather small (a few per cent), therefore only one set of results is
presented (uniform spacing). The reinforcement length increases signi®cantly with
the increase in seismic coe�cient kh. The lengths calculated are not as large as those
published recently by Ling et al. [5]. This is because here the e�ect of the reinforce-
ment between the sliding blocks is accounted for.

Fig. 9. Reinforcement length required to prevent direct sliding.
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7. Final remarks

Seismic design considerations, where dynamic forces are substituted with quasi-
static ones, are very approximate in nature, and they do not give any insight into the
behavior of structures. It is an accepted practice, however, to include quasi-static
forces as a means of seismic design. The charts produced can then be used as a
design aid. These charts are presented for both the uniform and triangular distribu-
tion of the reinforcement strength.
Slopes up to about 6m tall are routinely designed with evenly spaced reinforce-

ment. While this may be feasible economically, the reinforcement is better used if its
spacing is varied to approximately match the triangular distribution of the strength.
Uniform spacing requires longer reinforcement and larger strength.
The reinforcement length obtained from the calculations increases signi®cantly

with an increase in the quasi-static force, and, for large seismic accelerations, the
design according to the quasi-static method may not be feasible. This has been
already raised in the literature [5]. It may be more appropriate to allow the structure
be subjected to larger-than-critical accelerations, and to introduce a displacement
design criterion. Given the history of ground acceleration in a seismic event, the
expected displacement can be calculated by twice integrating its acceleration beyond
the critical acceleration of the structure. Such a method has been used for geo-
technical structures for many years [18], and it was suggested recently that it be
applied to reinforced soil structures [4,5]. While such an analysis was not in the
scope of this paper, it should be considered when the reinforcement length from the
quasi-static analysis exceeds a reasonable length (e.g. 1.5H).
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Appendix A

Functions fi and fsl �i � 1; 2; 3� used Eq. (13) for the description of the rate of work
of the soil weight and quasi-static inertial forces are given below. These functions
were derived based on geometrical relations in Fig. 2(a) (the ®rst three were pre-
viously given in [17]):

f1
1

3�1� 9 tan2 '� ��3tan' cos �h � sin�h�e3��hÿ�0� tan ' ÿ 3 tan ' cos �0 ÿ sin �0� �A1�

f2 � 1

6

B

r0
2 cos �0 ÿ B

r0

� �
sin �0 �A2�
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f3 � 1

6

H

r0

sin��� �h�
sin �

2cos�he
��hÿ�0� tan ' �H

r0
cot �

� �
e��hÿ�0� tan ' �A3�

fs1 �
1

3�1� 9 tan2 '� ��3 tan' sin �h ÿ cos �h�e3��hÿ�0� tan ' ÿ 3 tan ' sin �0 � cos �0� �A4�

fs2 �
1

3

B

r0
sin2 �0 �A5�

fs3 �
1

6

sin��� �h�
sin�

2 sin �he
��hÿ�0� tan ' �H

r0

� �
e��hÿ�0� tan ' �A6�

where

B

r0
� 1

sin �h
sin��h ÿ �0� ÿH

r0

sin��� �h�
sin �

� �
�A7�

and the ratio H=r0 is given in Eq. (16).
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